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Abstract: The prediction of initial returns on initial public offerings (IPOs) is a complex matter.
The independent variables identified in the literature mix strong and weak predictors, their
explanatory power is limited, and samples include a sizable number of outliers. In this context,
we suggest that random forests are a potentially powerful tool. In this paper, we benchmark this
algorithm against a set of eight classic machine learning algorithms. The results of this comparison
show that random forests outperform the alternatives in terms of mean and median predictive
accuracy. The technique also provided the second smallest error variance among the stochastic
algorithms. The experimental work also supports the potential of random forests for two practical
applications: IPO pricing and IPO trading.
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1. Introduction

The magnitude of initial returns in initial public offerings (IPOs) has been puzzling both
researchers and practitioners for decades. The difference between the offering price and the first closing
price regularly results in sizeable gains or losses. Among these, there is a bias in the distribution of
initial returns that is positive and heavily skewed to the right. For this reason, first-day initial returns
are often referred to in the literature as IPO underpricing.

During the Internet bubble of the late 1990s, when the market was very hot, a substantial portion
of the companies taken public in the USA more than doubled their offering price in the first day
and the phenomenon often resulted in headlines in the news. Ritter and Welch [1] researched the
phenomenon, and reported that the average initial return on a sample of 6249 companies taken public
in the USA between 1980 and 2001 was 18.8%. More recently, the number of IPOs has dramatically
gone down, and so has the average initial return. Having said that, in 2014 Castlight, San Francisco,
CA, USA, a health care software company, soared 149% during its first trading day. Another recent
example, though more limited, would be Alibaba Group, Hangzhou, China, the e-commerce giant.
This corporation showed a 38% increase from its initial public offering price on the day it went public.

The academic literature has been tracking first-day trading returns in initial public offerings (IPOs)
for a long time. Over time, researchers have postulated a large number of explanatory theories, and it
is still a very active field of investigation. The vast majority of the empirical analyses carried out to
explain and predict underpricing relying on variables related to the structure of the offerings are based
on linear models. There have been, however, a number of efforts trying to predict first-day returns
using computational intelligence.

Among the latter, we should mention the work of Jain and Nag [2]. These authors try to
predict the post-issue market price using artificial neural networks. More recently, Reber et al. [3],
Meng [4], Chen [5], and Esfahanipour et al. [6] followed suit with the same technique. This line was
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complemented by Quintana et al. [7] and Luque et al. [8], who explored the problem using evolutionary
algorithms. Others, such as Chou et al. [9], used a combination of both of them.

In this paper, we suggest that there is an instrument that has not been tested in the domain
yet, that has the potential to be extremely valuable. In a field where the presence of outliers and the
problem of overfitting severely affects the performance of predictive algorithms, random forests [9],
are likely to bring a great deal to the table. For this reason, we intend to benchmark the random forests
on a sample from the USA financial markets against a number of classic machine learning alternatives
that represent different algorithm categories.

The rest of the paper will be structured as follows: in Section 2, we provide a brief introduction to
random forests and introduce both the explanatory variables and the sample that will be used in the
analysis; Section 3 will be used to report the experimental results; that will be followed by a discussion
in Section 4; and, finally, Section 5 will cover the summary and conclusions.

2. Materials and Methods

Random forests [10] are ensemble learning methods that combine trees of predictors.
This approach, which is usually treated as a supervised method, creates sets of decision trees that vote
for the most popular class for vectors according to a number of features.

The trees in a forest are created according to a procedure that is similar to classification and
regression trees. The previous element is combined with randomized node optimization and bagging.
According to Breiman, the author who introduced the technique, the process follows three key ideas:

• Each tree is grown based on a unique training set that is generated by a random sampling
with replacement from the original dataset. The size of this new sample mirrors the size of the
initial one.

• For every node, a subset of the original input variables is selected at random, and the
best-performing split on these is used to split the node. The size of the mentioned subset is
kept constant during the forest growing.

• Trees are grown to the largest extent possible while complying with a minimum number of
training patterns at a terminal node constraint, leaf size, and there is no pruning.

The resulting set can then be used to make predictions using a voting mechanism. The process
simply entails obtaining individual class predictions for unseen samples from all the components of
the forest, and assigning the data pattern to the majority vote.

This technique is applicable to both classification and regression tasks. IPO underpricing
prediction falls in the latter category. In this case, tree predictors take on numerical values instead of
class labels, and the predictor is formed by taking the average prediction from the tree set.

Random forests show a major strength vs. other tree-based techniques, such as bagging, that is
likely to be useful in the IPO domain. Specifically, the ability to combine strong and weak variables to
generate models where the former do not dominate tree generation is a key property. The reason is
that it affects the correlation among tree output and, therefore, the generalization error of the model.
Krauss et al. [11] show that random forests are the dominant single method for deriving trading
decisions on the Standard and Poor′s (S&P) 500 stock universe vis-à-vis deep neural networks and
gradient-boosted trees. Other general properties that are relevant in the IPO underpricing prediction
domain are its relative robustness with regard to outliers in training data and the fact that it does
not overfit.

The use of random forests to tackle financial problems is not new. Recent papers illustrate potential
application areas, such as trading [12], bankruptcy prediction [13,14], or credit rating prediction [15],
but, as we mentioned in the introduction, despite the desirable traits, its suitability for IPO underpricing
prediction is still to be studied.
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2.1. Variables

The starting point to study the phenomenon of IPO underpricing, the most prevalent target
variable on IPO research, is providing a formal definition. IPO underpricing, Ri, is defined in this
paper as the percentage difference between the offer price and the closing price on the first trading day,
adjusted for the market return:

Ri =

(
Pci − Poi

Poi

)
−

(
Mci −Moi

Moi

)
where Poi represents the offering price for stock i; Pci is the closing price for stock i; Moi is the opening
for the broad market index of the market where stock i was taken public for the day before the IPO and
Mci is the closing for market index on the day of the IPO. For the purposes of this study, the relevant
indices are the S&P 500, AMEX Composite Index, and NASDAQ Composite Index.

As we have already discussed, the body of research on IPO initial returns is vast. The number
of explanations and variables that have been postulated to explain the phenomenon is very wide.
However, there is a set of independent variables concerning the structure of the offerings that show up
in the literature very often. Among them, we relied on six that we will succinctly describe: width of the
price range; offer price; price adjustment; relation to the tech sector; offering size; and retained stock.

• Width of price range (RANGE): the width of the non-binding reference price range offered to
potential investors during the roadshow has been traditionally considered to have a signaling
effect. Wider ranges show uncertainty regarding the valuation of the company and, therefore,
tend to be associated with riskier investments. Following [16,17], this indicator will be defined as
the difference between the maximum and minimum price, divided by the minimum.

• Offering price (PRICE): the final offering price is considered a key value, not only as a component
of previous indicators, but in its own right. Studies such as [18,19], among others, support the
idea that price itself might be identified by potential buyers as a quality indicator.

• Price adjustment (P_ADJ): many studies such as Hanley [16], Benveniste and Spindt [20], or
Ljungqvist and Wilhelm [21] show that relation between the initial tentative price range and the
final offer price might be interpreted as a signal by investors. These authors suggest that this
effect is likely to be captured the expression that follows:

PADJ =

∣∣∣Pf − Pe

∣∣∣
Pe

where Pf is the offer price and Pe, the expected price, is the price at the middle of the non-binding
reference range.

• Technology (TECH): companies whose industrial activities are related to the technology sector
tend to show higher initial returns. This is usually controlled in the models by means of a dummy
variable that equals one for tech companies and zero otherwise [22–24]. Our labeling criterion
will be based on the definition used by IPO Monitor. This company classifies IPOs according the
US Standard Industry Codes and activities reported by the companies in their filings. Hence, we
will consider IPOs to be “tech-related” if IPO Monitor considers them so in their reports.

• Offering size (LSIZE): studies such as [19,25,26] defend the importance of including this factor
in the models. The variable is defined as the logarithm of the size of the offering, in millions of
dollars, excluding the over-allotment option.

• Retained stock (RETAINED): the amount of capital retained by initial investors has been
traditionally interpreted as a signal of the quality of the stock, as it would reveal the confidence
of insiders in the future of the company [21,27]. Since we lack the breakdown of primary and
secondary shares, this variable will be proxied by the ratio of the amount of shares sold at the IPO
divided by the post-offering number of shares minus the shares sold at the IPO.
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2.2. Data

The experimental work is based on a sample of 866 companies taken public between January
1999 and May 2010 in three US stock markets, AMEX, NASDAQ, and NYSE (the New York Stock
Exchange). As it is customary in IPO research, it excludes closed-end funds; American Depositary
Receipts; Real estate investment trusts (REITs), and unit offerings. The primary source of data was the
commercial provider IPO Monitor. Missing information was completed with data from a second data
vendor, Hoovers. Finally, index information was retrieved from DataStream (S&P 500) and NASD
(NASDAQ and AMEX composites).

Table 1 reports the main descriptive statistics (mean, median, standard deviation, minimum, and
maximum) for the sample.

Table 1. Descriptive statistics for the dependent and independent variables. RETURN represents
market adjusted first trading day return. Independent variables are the width of price range (RANGE);
offering price (PRICE); initial public offerings (IPO) price adjustment (P_ADJ); dummy variable
representing whether the company operates in the technology space (TECH); the size of the offering
(LSIZE); and the proportion of the company retained by insiders (RETAINED).

Mean Median Std. Dev. Min Max

RETURN 0.176 0.073 0.389 −0.281 3.718
RANGE 0.149 0.143 0.063 0.000 0.500
PRICE 14.641 14.000 5.812 3.250 85.000
P_ADJ 0.105 0.082 0.099 0.000 1.509
TECH 0.328 0.000 0.470 0.000 1.000
LSIZE 2.054 2.025 0.446 0.061 3.939
RETAINED 0.309 0.262 0.198 0.002 1.000

Figure 1 shows the return distribution. As we can see, it shows a positive mean return, high
kurtosis, and the classic right-skewness corresponding to several hot IPOs with extremely high initial
returns (in this case, the most extreme case almost got to quadruple the offering price with a 372%
price increase). The mentioned basic characteristics are consistent with the structure of the sample
used in previous studies, such as [1,7,18,19,21], among many others.

Appl. Sci. 2017, 7, 636 4 of 16 

data vendor, Hoovers. Finally, index information was retrieved from DataStream (S&P 500) and 
NASD (NASDAQ and AMEX composites). 

Table 1 reports the main descriptive statistics (mean, median, standard deviation, minimum, 
and maximum) for the sample. 

Table 1. Descriptive statistics for the dependent and independent variables. RETURN represents 
market adjusted first trading day return. Independent variables are the width of price range 
(RANGE); offering price (PRICE); initial public offerings (IPO) price adjustment (P_ADJ); dummy 
variable representing whether the company operates in the technology space (TECH); the size of the 
offering (LSIZE); and the proportion of the company retained by insiders (RETAINED). 

 Mean Median Std. Dev. Min Max 
RETURN 0.176 0.073 0.389 −0.281 3.718 
RANGE 0.149 0.143 0.063 0.000 0.500 
PRICE 14.641 14.000 5.812 3.250 85.000 
P_ADJ 0.105 0.082 0.099 0.000 1.509 
TECH 0.328 0.000 0.470 0.000 1.000 
LSIZE 2.054 2.025 0.446 0.061 3.939 
RETAINED 0.309 0.262 0.198 0.002 1.000 

Figure 1 shows the return distribution. As we can see, it shows a positive mean return, high 
kurtosis, and the classic right-skewness corresponding to several hot IPOs with extremely high initial 
returns (in this case, the most extreme case almost got to quadruple the offering price with a 372% 
price increase). The mentioned basic characteristics are consistent with the structure of the sample 
used in previous studies, such as [1,7,18,19,21], among many others. 

 

Figure 1. Histogram of the initial returns for the sample of 866 companies taken public between 
January 1999 and May 2010 on AMEX, NASDAQ, and NYSE exchanges. 

2.3. Methodology 

The experimental analysis started with an initial exploratory analysis followed by the main 
experiments intended to test the predictive accuracy of random forests. 

As a first step, we selected the appropriate parameters for the algorithm: leaf size and number of 
grown trees. This initial analysis was made on a subset of 256 patterns, approximately 30% of the data. 
The selection of the set of IPOs included in this subsample was random, and these patterns were excluded 
from the test sample used in the main experiments, that comprised of the remaining 610 IPOs. 

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

50

100

150

200

250

300

Figure 1. Histogram of the initial returns for the sample of 866 companies taken public between January
1999 and May 2010 on AMEX, NASDAQ, and NYSE exchanges.
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2.3. Methodology

The experimental analysis started with an initial exploratory analysis followed by the main
experiments intended to test the predictive accuracy of random forests.

As a first step, we selected the appropriate parameters for the algorithm: leaf size and number
of grown trees. This initial analysis was made on a subset of 256 patterns, approximately 30% of the
data. The selection of the set of IPOs included in this subsample was random, and these patterns
were excluded from the test sample used in the main experiments, that comprised of the remaining
610 IPOs.

We chose one third of the input features for decision splits at random and subsequently tested
different combinations of number of trees and leaf sizes ranging from five to 25. As we can see in
Figure 2, these parameters have a major impact on the results.
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We conducted several experiments and we saw that the progressive addition of trees resulted in
patterns of out-of-bag, OOB, prediction errors such as the one represented in the figure. There, we
can observe that the root mean square error (RMSE) on the cases left out of the bootstrap sample used
in the construction of the trees tends to stabilize with 40–50 elements. For this reason, we decided to
set the number of grown trees at 45. We also fixed at five the minimum number of training patterns
per terminal node. It is worth noting that this figure matches the standard rule-of-thumb used in
regression problems.

As part of this preliminary analysis, we also studied the relative explanatory power of the
independent variables. We assessed the out-of-bag feature importance by the mean decrease in
accuracy [28]. This indicator, also known as permutation importance, evaluates the contribution
of independent variables by removing the association between predictor variables and the target.
The rationale is that a random permutation of the values of the feature mimics the absence of the
variable from the model, and the resulting increase of error can be used as an importance measure.
More formally, the procedure carried out was the following: for any variable, we computed the increase
in the prediction error if the values of that variable were permuted across the out-of-bag observations.
Once we obtained the measure for every tree, we averaged it over the entire ensemble and divided
it by the standard deviation for the entire ensemble. The last step was carried out to standardize
the raw variable importance score. The results of this process are reported in Figure 3. There, we
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can see how the offering price is the most relevant variable in the set. The second, most explanatory
variable is the price adjustment made by the seller once he has received the initial show of interest
during the road-show, closely followed by the offering size. Among the rest, the dummy variable
signaling whether the company is part of the tech sector or not, seems to be the least important one.
The prevalence of price vs. the rest clearly illustrates the need for a technique that efficiently combines
strong and weak variables that we mentioned in the introduction to random forests.Appl. Sci. 2017, 7, 636 6 of 16 
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Figure 3. Out-of-bag independent variable importance measured by the standardized mean decrease
in accuracy on the training set. Considered values are: width of price range (RANGE); offering price
(PRICE); IPO price adjustment (P_ADJ); dummy variable representing whether the company operates
in the technology sector (TECH); the size of the offering (LSIZE); and the proportion of the company
retained by insiders (RETAINED).

2.4. Benchmarks

We intend to benchmark random forests against a set of machine learning alternatives.
For implementation purposes, we will rely on a very popular collection of machine learning algorithms
called WEKA (Waikato Environment for Knowledge Analysis) [29]. The algorithms we will use
as benchmarks are: instance-based learning algorithms (IBK); least median of squares regression
(LMSReg); locally-weighted learning (LWL); M5 model trees (M5P); M5 model rules (M5Rules);
multilayer perceptron (MLP); radial basis function networks (RBFN); and support vector machines
trained with sequential minimal optimization (SMO-Reg). This selection of algorithms includes
different categories, such as alternatives based on functions, nearest neighbors, rules, and decision trees.

• IBK [30]: an implementation of a K-nearest neighbor classifier.
• LMSReg [31]: a robust linear regression approach that filters out outliers in order to enhance accuracy.
• LWL [32]: a local instance-based learning algorithm that builds classifiers based on weighted instances.
• M5P [33]: a numerical classifier that combines standard decision trees with linear regressions to

predict continuous variables.
• M5Rules [34]: the algorithm generates decision lists for regression problems using

divide-and-conquer. It builds regression trees using M5 in every iteration, and then it turns
the best leaves into rules.

• MLP [35]: a standard feed-forward artificial neural network that simulates the biological
process of learning through weight adjusting. The algorithm used to train the networks will
be back-propagation.
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• RBFN [36]: a type of artificial neural network that uses a combination radial basis functions to
approximate the structure of the input space.

• SMO-Reg [37]: a support vector machine trained with the sequential minimal optimization algorithm.

All these are described in more detail in Appendix A.
Table 2 summarizes the parameters used to run these algorithms. The selection of the specific

values was made according to the performance of the algorithms in an exploratory analysis. Different
configurations were tested on the same portion of the sample used to parameterize the random forests,
and the final choice was made according to predictive accuracy in terms of RMSE using a 10-fold
cross validation. A summary of configurations and results is reported in Appendix B. The results for
stochastic algorithms average the outcome of three different experiments.

Table 2. Summary of experimental parameters by benchmark algorithm.

IBK

Neighbors 4
Method Linear Search

LMSReg

R. Sample Size 100

LWL

Weighting Kernel Linear
Neighbors 10
Classifier Decision Stump

M5P

Min. Inst./leaf 15

M5Rules

Min. Inst./leaf 15

MLP

Transfer function Sigmoid
Neurons Hidden L. 6
LR 0.2
Epochs (max.) 2500

RBFN

Clusters 6
Min. Std. Dev. 0.1
Ridge 0.00001

SMO-Reg

Complex. Param 8
Epsilon 0.01
Tolerance 0.001
Kernel Polynomial, exp. = 1

The models will be assessed by their predictive accuracy in terms of RMSE on the same dataset.
In order to make the results as general as possible, we will perform a 10-fold cross-validation. Given
the stochastic nature of most of the algorithms, including random forests, we will run the experiments
15 times using different random seeds and compare the average results. We will, however, report the
main descriptive statistics of these averages to ensure that the image is complete.
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3. Results

In this section we report the results of the experimental analysis performed to test the suitability
of the random forest algorithm for the IPO underpricing prediction domain.

The main experimental results are reported in Table 3. There, we provide the main descriptive
statistics for the RMSE obtained in the 15 repetitions of the 10-fold cross-validation. For stochastic
algorithms we report the average, median, variance, maximum, and minimum. The exception to this is
SMO-Reg. Even though it has a stochastic component and we used different seeds, the 15 experiments
converged to the exact same solution.

Table 3. Descriptive statistics of mean RMSE for underpricing on test set based on 15 experiments.

Mean Median Std. Dev. Min Max

IBK 0.331
LMSReg 0.374 0.374 0.00001 0.371 0.376
LWL 0.396
M5P 0.361
M5Rules 0.358
MLP 0.386 0.389 0.00033 0.357 0.425
RBFN 0.361 0.361 0.00001 0.355 0.366
RForest 0.310 0.394 0.00001 0.306 0.314
SMO-Reg 0.361

The statistical significance of the differences reported in Table 3 was tested formally. Given the
distribution of the prediction errors, we relied on the Mann–Whitney test [38]. The results of this
analysis are reported in Table 4. There, we represent the fact that the algorithm in the row has median
prediction error that is significantly larger than the one in the column at 1% by “++”. In case a similar
difference in the opposite direction is found, the symbol used is “–”. If the disparity is such that the
first one is significantly smaller at 5%, we use “-”. Finally, if the possibility of equal predictive accuracy
cannot be discarded at 5%, we report “=”.

Table 4. Statistical significance of differences of median underpricing RMSEs on the test set according
to the Mann–Whitney test. Positive signs indicate higher prediction errors for the algorithm in the
columns vs. the algorithms in the rows.

IBK LMSReg LWL M5P M5Rules MLP RBFN RForest

LMSReg ++
LWL ++ ++
M5P ++ – –
M5Rules ++ – – –
MLP ++ ++ – ++ ++
RBFN ++ – – = ++ –
RForest – – – – – – –
SMO-Reg ++ – – ++ ++ – = ++

++ Significant at 1%; + Significant at 5%.

Following [3], we complement the analysis based on predictive performance illustrating the
potential economic benefits of using these techniques to price IPOs. In Table 5 we compare the actual
observed underpricing with the initial returns resulting should we use forecasts of the models as the
offering price. For each of the models, we provide the average value of the statistics on the 610-pattern
test set over 15 experiments. That is, we report the average mean underpricing, average median
underpricing, and the average of the standard deviations. All of the differences between the median
mean observed underpricing and model-based ones were significant at 1%.
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Table 5. Comparison between model-based and actual underpricing on the test set. Model-based
underpricing is based on the forecasted first-day close price instead of the offer price. Average values
are of the statistics on the test data over 15 runs.

Mean Median Std. Dev.

Observed 0.17570 0.074 0.379
IBK 0.01125 –0.020 0.331
LMSReg 0.08757 –0.003 0.364
LWL 0.02264 –0.003 0.395
M5P 0.00186 –0.032 0.362
M5Rules 0.00253 –0.029 0.359
MLP 0.00035 –0.029 0.385
RBFN –0.00255 –0.069 0.361
RForest 0.00083 –0.045 0.326
SMO-Reg 0.07406 –0.005 0.354

Random forests can also be used in this context as an investment tool. A potential trading
strategy would be investing in IPOs with the highest initial return potential according to the models.
Even though the predictions for initial returns might not be completely accurate, the distribution of
forecasts could provide very valuable insights. This is evidenced by Figure 4. There, we report the
returns obtained investing in IPOs prioritized according to the forecasts of the models. The 610 IPOs
that compose the test set were ranked by predicted return. Given that we repeated the experiments
15 times, we obtained as many ranks. The IPO Return series shows the average of the actual returns
that correspond to the 15 IPOs that have the same rank. The series labeled Av. Cumul. Return,
represents the cumulative average of actual returns. For example, the return for IPO 100 was obtained
by computing the actual mean underpricing of the 100 companies with the highest predicted initial
return. This process was repeated for the 15 experiments, and we report the observed mean cumulative
average return. Finally, we include the actual average underpricing to represent the naïve strategy of
investing in all IPOs.
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Figure 4. Return obtained investing according to the priorities set by the random forests (average over
15 runs on the test set). IPOs are ranked by the forecasted initial returns. Average cumulative return for
rank n averages are the actual initial returns of the n highest ranking IPOs.

4. Discussion

As we can in Table 3, random forests provide the best results, followed by IBK. In addition to
the relatively low mean and median RMSE, we should highlight the fact that the approach seems to
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be the second-most reliable one among those with a stochastic component. The range of variation
for the prediction error is narrow and its variance is relatively low. It was only beaten by SMO-Reg.
This algorithm offered an intermediate performance in terms forecasting ability, but converged to the
same solution across the 15 experiments.

On the opposite side of the spectrum, LWL and MLP offered the worst results. Even though
multi-layer perceptrons have been successfully used in many regression tasks, their sensitivity to the
presence of outliers drags its performance in this domain. Conversely, random forests handle this
difficulty with much more efficacy. MLP showed the highest dispersion of results, including the worst
prediction error in one of the executions.

If we consider the potential economic implications of the potential of using random forests in this
domain, the results lay down two interesting applications: IPO pricing, and investing. On the first
front, random forests offered the lowest average difference between the actual closing price and the
predicted one. This reduced model-based underpricing, where offer price is replaced with the output
of the model, came together with the smallest average standard deviation. The implication is that
the use of this algorithm to support the pricing decision is likely to have the potential to reduce the
amount of money left of the table.

On the second front, Figure 4 makes it apparent that there could be room for profitable trading
based on the output of the models. Even though we cannot claim that random forests make perfect
initial return predictions based on the variables discussed, they show good capabilities ranking them.
IPOs that are predicted to offer the highest initial returns suffer significantly higher underpricing than
the expected bottom performers.

As we can see by the spikes of the IPO Return series, the models do not have the ability to rank
perfectly. The highest initial return does not correspond to the first element of the series, and it is far
from smooth. In addition to that, the 15 experiments do not result in the same rank (that is, the reason
why the maximum value of the series is lower than the highest initial return). Having said that, as the
highest values clearly tend to be at the beginning of the series and the lowest at the end, if we invested
if the n most promising ones we would be very likely to gain excess returns. That would happen as
long as the average return, shown in the Average Cumulative Return series, is higher than the IPO
market return, Average Return, and the difference is enough to cover the transaction costs.

A basic trading strategy would require establishing buy thresholds based on the distribution of
underpricing predictions and the ability to invest on all IPOs, which might not always be a possibility.
As several theories discussed in [1] suggest, factors such as higher demand for promising IPOs,
laddering practices, or book building strategies by underwriters, are likely to result in higher allocation
of bottom performers and lower than desired, if any, of the good ones. This means that the naïve
strategy might not be as lucrative in practice as it may seem at first sight. There are many other
alternatives that are worth exploring, but they are beyond the scope of this paper. However, the results
of the experiments leave the room open for additional work on random forests for IPO trading.

We should note that the reported performance gap between random forests and the other
algorithms might be understated due the decision to focus the analysis on variables related to structure
of the offerings. This technique combines efficiently strong and weak variables, and it has already
been proven to deal with large numbers of variables in financial applications [39]. Hence, it is likely
to profit very significantly from the inclusion of financial ratios and IPOs market indicators. This is
something that should be explored in the future.

The results obtained in the experiments support the idea that random forests are suitable in this
domain due to the good match, its mentioned characteristics, and the nature of the technique.

5. Summary and Conclusions

IPO underpricing prediction is a domain with some specific characteristics that make it especially
challenging. Among them, we could highlight the fact that the set of descriptive variables identified
by academic research is limited in their predictive power and mixes both weak and strong predictors.
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In addition to this, the presence of outliers, that usually take the form of IPOs with extremely high
initial returns, adds noise and complicates the process of training models.

In this paper, we suggest that random forests, a technique that, by design, is less sensitive to
distortions introduced by the extreme elements in the training sample, could be very useful to perform
the task. In order to do that, we test its predictive performance in terms of root mean squared prediction
error on a sample of 866 USA IPOs. The approach relied on six variables identified by literature review
that were available in commercial databases.

In order to have a meaningful base of comparison, we benchmark the results against eight popular
machine learning algorithms: IBK, least median of squares regression, LWL, multilayer perceptron,
M5P, M5Rules, radial basis neural networks, and SMO-Regression. This represents different families
of predictive algorithms as those based on functions, nearest neighbors, rules, and decision trees.

The outcome of this comparison shows that random forests outperform the alternatives in terms
of mean and median predictive accuracy over the 15 repetitions of the 10-fold cross-validation analysis.
The technique also provided the second smallest variance and error range among the stochastic
algorithms. As an additional side result, we also confirmed the importance of price over the other five
predictive variables.

The experimental work also explores the potential of the technique on two practical fronts: as an
IPO pricing support tool, and as the core of IPO trading strategies. The usefulness of random forests
for both applications is supported by the results. On the one hand, model-based average underpricing
is both the lowest among the benchmarked alternatives, and significantly smaller than the actual
observed one. On the other hand, the algorithm shows strong capabilities in terms of ranking IPOs
according to their potential initial returns.

The above-mentioned results suggest that IPO research would benefit greatly from a wider use
of random forests. Possible future lines of work would include replicating the analysis for samples
from other countries and extended sets of independent variables. Another promising line would be
exploring in depth the potential or random forests to identify a priori hot IPOs and exploiting this
knowledge for investment purposes.
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Appendix A.

In this appendix, we provide a very brief description of the algorithms used for benchmarking.

Appendix A.1. Instance-Based Learning Algorithms (IBK)

IBK is an implementation of a standard K-nearest neighbor-algorithm, in this case, for regression.
It is instance-based and is one of the simplest machine learning algorithms. Given a point of interest,
the approach identifies the k closest training examples in the feature space according to a predefined
distance, Euclidean in our experiments. Once this is done, the output for the pattern of interest is the
average value of the target variables of the neighbors.

Appendix A.2. Least Median of Squares Regression (LMSReg)

This is a robust linear regression model that filters out outliers to reduce the impact of outliers.
Classical least squares regression (OLS) minimizes the sum of square residuals on all data, which
makes the model very sensitive to extreme values. This alternative fits models to random subsets of
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the data and selects the least squared regression with the lowest median squared error. According to
the studies of the creators of the technique, the computational cost of this approach is significantly
higher than the one required by OLS. However, the models resulting from the mentioned process can
resist a contamination in the data of close to 50%.

Appendix A.3. Locally-Weighted Learning (LWL)

Locally-weighted learning covers a number of function approximation methods that, instead of
creating a single model based on all data, makes predictions based on models fitted to local subsets
based on data around the point of interest. For that purpose, data patterns are associated to weighting
factors that represent the contribution of each pattern to the prediction. The contribution of each
pattern to the final prediction is based on a weighting function that, most of the time, gives more
weight to data patterns that are in the close neighborhood of the query point vs. those that are far.
For this matter, the neighborhood can be defined as the whole sample, or be limited to a number of
neighbors. Like IBK, one of the interesting features of these algorithms is the fact the processing of the
training data is delayed until the system receives queries on specific points of interest.

Appendix A.4. M5 Model Trees (M5P)

M5 is a system that constructs tree-based piecewise linear models that, unlike other tree-based
algorithms, has the ability to predict values. The approach, which follows the divide-and-conquer
method, differs from similar algorithms such as CART, because instead of having values at the nodes,
they contain multivariate linear regressions. M5 divides the input space into smaller areas using
training and, subsequently, creates a regression model per area as a leaf of the tree. Some of the
interesting features of the algorithm are the fact that it can handle very large of attributes, and the fact
the resulting trees are generally smaller than similar approaches, such as regression trees.

Appendix A.5. M5 Model Rules (M5Rules)

This algorithm induces simple decision lists from model trees that are generated using M5.
The system builds model trees repeatedly, and every iteration it selects the best rules. Since the
algorithm is based the already-mentioned M5, it also relies on the divide-and-conquer principle.
The algorithm divides the parameter space into areas and creates a linear regression model for each of
them. According to the designers, this approach has the advantage of deriving rule sets that, despite
being smaller than those obtained directly from the whole dataset, offer the same performance.

Appendix A.6. Multilayer Perceptron (MLP)

These feed-forward neural network models consist of multiple layers of nodes, also known as
neurons, in a directed graph, so that each layer is connected to the next one. All of the nodes, other
than those in the input layer, process input signals coming from other neurons, process them with
a nonlinear activation function, and propagate the result. The version used in this study consists of
three layers—input, hidden, and output—that use a sigmoid transfer function. The strength of the
connections, known as weights, and biases are adjusted to fit a dataset through a training process.
In this paper, we used retropropagation. Given an input, this gradient descent algorithm compares
the output of the network with the desired one, and then propagates the prediction error backwards,
starting from the output, adjusting the weights and biases.

Appendix A.7. Radial basis Function Networks (RBFN)

These neural networks use sets of radial basis functions (RBF) as activation functions. The version
used in the analysis is structured in three layers. The first one is an input layer, followed by a hidden
layer with a non-linear RBF activation function and, finally, a linear output layer. The output of these
models is generated by linear radial basis functions of the inputs and neuron parameters. Training
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usually follows a two-step process that started initializing the center vectors of the RBF functions using
the k-means algorithm. That is followed by a second that fits a linear model to the hidden layer’s
output with respect the objective function.

Appendix A.8. Support Vector Machines Trained with Sequential Minimal Optimization (SMO-Reg)

Support vector regression models (SVR) are learning machines that implement the structural risk
minimization inductive principle. These adapt the original support vector machines that were focused
on classification tasks. Unlike traditional regression models, this algorithm does not minimize training
errors. Instead, it simultaneously targets the minimization the training error and a regularization
term that controls the complexity of the hypothesis space, so as to achieve generalized performance.
The models disregard part of the training data, as the cost function ignores the training patterns that are
beyond a specified distance to the model prediction. Training these models requires finding solution
for convex optimization problems. In this instance, we tackled this latter part using the sequential
minimal optimization (SMO) algorithm.

Appendix B.

In this appendix, we summarize the results exploratory analysis aimed at parameterizing the
benchmark algorithms. Underpricing predictive performance was assessed in terms of RMSE on the
256-pattern training sample. For stochastic algorithms, the reported RMSE is the average of three runs.

Table A1. Sensitivity of instance-based learning algorithms (IBK) to the number of neighbors.

Number of Neighbors RMSE

1 0.4793
2 0.4364
3 0.3858
4 0.3832
5 0.3868
6 0.3876

Table A2. Sensitivity of locally-weighted learning (LWL) to the number of neighbors.

Number of Neighbors RMSE

1 0.4492
5 0.5361

10 0.3678
15 0.5028
20 0.446

Table A3. Sensitivity of M5 model trees (M5P) to the minimum number of instances per leaf.

Min Instances/Leaf RMSE

1 0.405
5 0.405

10 0.3916
15 0.3894
20 0.3896
25 0.3918
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Table A4. Sensitivity of M5 model rules (M5Rules) to the minimum number of instances per leaf.

Min Instances/Leaf RMSE

1 0.4664
5 0.4664

10 0.4451
15 0.4191
20 0.4192
25 0.4225

Table A5. Sensitivity of the least median of squares regression (LMSReg) to the sample size.

Reg. Sample Size RMSE (Av.)

200 0.4006
150 0.4006
100 0.4003
50 0.4021
25 0.4034

Table A6. Sensitivity of multilayer perceptron (MLP) to the number of neurons in the hidden layer and
the choice of the learning rate for the back-propagation training algorithm, the average over three runs.

Learning Rate

0.1 0.2 0.3 0.4 0.5

Neurons

2 0.4019 0.4059 0.4098 0.4201 0.4182
4 0.4036 0.3991 0.4082 0.4129 0.4194
6 0.4028 0.3972 0.4077 0.4135 0.4199
8 0.4022 0.3997 0.4073 0.4112 0.4194

Table A7. Sensitivity of radial basis function networks (RBFN) to the number of basis functions and
their minimum standard deviations, the average over three runs.

Min. Standard Deviation

1 0.5 0.1 0.05

Clusters

2 0.4110 0.4116 0.4116 0.4116
4 0.4107 0.4118 0.4117 0.4116
6 0.4102 0.4091 0.4070 0.4088
8 0.4081 0.4091 0.4088 0.4088

10 0.4107 0.4104 0.4095 0.4096

Table A8. Sensitivity of support vector machines trained with sequential minimal optimization
(SMO-Reg) to the complexity and the epsilon parameter of the loss function used by the optimizer, the
average over three runs.

Complexity

1 2 4 6 8 10

Epsilon
0.001 0.3984 0.3965 0.3964 0.3966 0.3960 0.3976
0.01 0.3962 0.3962 0.3960 0.3958 0.3956 0.3959
0.1 0.3959 0.4930 0.4868 0.4866 0.4838 0.4844
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