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Abstract: This is a review of fiber-optic soliton propagation and of methods to determine the
soliton content in a pulse, group of pulses or a similar structure. Of central importance is the
nonlinear Schrödinger equation, an integrable equation that possesses soliton solutions, among others.
Several extensions and generalizations of this equation are customary to better approximate real-world
systems, but this comes at the expense of losing integrability. Depending on the experimental situation
under discussion, a variety of pulse shapes or pulse groups can arise. In each case, the structure will
contain one or several solitons plus small amplitude radiation. Direct scattering transform, also known
as nonlinear Fourier transform, serves to quantify the soliton content in a given pulse structure, but
it relies on integrability. Soliton radiation beat analysis does not suffer from this restriction, but has
other limitations. The relative advantages and disadvantages of the methods are compared.

Keywords: direct scattering transform; fiber optics; inverse scattering transform; nonlinear Fourier
transform; nonlinear Schrödinger equation; soliton; soliton radiation beat analysis

1. Introduction

Light pulses in optical fibers carry the bulk of all telecommunication today. In comparison to
electrical pulses in cables, fiber-optic transmission is vastly superior, mostly due to two fundamental
advantages: light in fibers suffers extremely low power loss, and fibers provide an extremely wide
bandwidth. For the loss, a rough number is 0.2 dB/km. This implies that even after 100 km, still, 1% of
the launch power is left, which is unrivaled. The available bandwidth can be estimated as 30 THz
(maybe 50 THz if one accepts slightly higher loss), which is several orders of magnitude better than
anything that can be achieved with electronics.

Further comparison of optical and electrical transmission brings us to an imperfection shared
by both: in either type of conduit, group velocity depends on frequency; as any signal requires
a certain bandwidth, transmitted signals suffer from distortion due to group velocity dispersion.
This is a linear distortion, which means that it can be perfectly compensated by adding an element of
opposite dispersion.

In one respect, however, optical fibers are very different from electrical cables. The response of
glass to light is nonlinear, whereas that of copper to current is not (within reasonable limits). Therefore,
the physics of data transmission with light pulses through optical fibers is fundamentally different
in that it involves a nonlinear response of the material to the signal [1,2]. Nonlinear distortions are
not as easily compensated as linear ones. This has led to a widely-held conception that optical power
in fibers must always be kept low enough so that nonlinear distortions are avoided.

To this argument, one can give two responses: One, nonlinearity can actually be put to good
use, even be used to an advantage, when the concept of solitons is adopted. It has already been
demonstrated even in a commercial setting. Two, the ever-growing demand for data-carrying capacity
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brings us close to a capacity crunch, unless means are found in just a few years to improve technology.
It may become necessary to look at solitonic formats again.

2. The Nonlinear Schrödinger Equation and Some of Its Solutions

The glass of optical fiber is a dispersive material. With the index being a function of wavelength
or optical frequency, i.e., n = n(ω), the group velocity is also frequency dependent. The glass is also
a nonlinear material. This chiefly means that the refractive index follows the instantaneous intensity,
i.e., n = n(I). Across the duration of a short pulse of light, the index experiences a slight modulation,
which gives rise to intensity-dependent phase shifts known as self-phase modulation [3].

A propagation equation for light pulses in fibers must contain these two influences, at least
in leading order. The equation that fits this description is known as the nonlinear Schrödinger equation
(NLSE). It plays an absolutely central role in all of the nonlinear fiber optics. It describes the evolution
of the pulse amplitude envelope (the fast oscillation at some central optical frequency ω0 is removed)
in a frame of reference comoving with the traveling light, i.e., with the group velocity at ω0. Written in
physical quantities, it is given by:

i
∂

∂z
A− β2

2
∂2

∂t2 A + γ|A|2 A = 0 . (1)

Here, A = A(z, t) is the complex amplitude with z the position along the fiber and t the retarded
time. β2 is the coefficient of group velocity dispersion, and γ is the coefficient of nonlinearity.
Depending on the situation, it may become necessary to add corrective terms for loss, higher-order
dispersion or other nonlinear effects, as we shall see in Section 3.1. The equation received its name
due to its formal similarity to the Schrödinger equation of quantum mechanics fame: The quantum
mechanical version typically describes how a wave function spreads out in space as time goes by;
here, the equation describes how a short pulse gets broadened temporally as it propagates down
the fiber. Therefore, time and space coordinates switch roles. The potential, in the nonlinear case,
comes from the self-phase modulation, which is captured in the nonlinear term.

The effort to find solutions to this equation benefited from the fact that the NLSE is integrable.
Integrable equations have very special mathematical properties like an infinite number of preserved
quantities. A first solution was found by Vladimir E. Zakharov and Aleksei B. Shabat in 1972 [4] using
the inverse scattering technique, developed by Gardner et al. in 1967 [5] (see Section 4.1). It exists for
a particular combination of algebraic signs of the two parameters; with γ always positive, one would
have the correct signs for β2 < 0, i.e., for what is known as anomalous dispersion. Two years later,
Junkichi Satsuma and Nubuo Yajima [6] treated the pertaining initial-value problem. Between them,
these two papers already form a solid base of the understanding of solitons. In the time between
those two, Akira Hasegawa and Frederick Tappert suggested that the NLSE was applicable to pulse
propagation in optical fibers, so that fiber-optic solitons would exist [7]. At that time, optical fibers were
a novelty and not yet technologically matured. Attempts to transmit light pulses for data transmission
suffered from dispersive distortions. It was therefore a bold proposal that the use of solitons as
signaling pulses might overcome dispersive broadening, in other words that nonlinearity could be
exploited to cancel distortions arising from a linear mechanism.

Of course, the proposal required as a very first step that the existence of fiber-optic solitons
be corroborated experimentally. In the anomalously dispersive regime, i.e., at wavelengths longer than
ca. 1.3 µm, they were still too lossy for any meaningful test. By 1980, this situation had improved,
and Linn F. Mollenauer, Roger H. Stolen and James P. Gordon could experimentally verify the existence
of solitons [8].
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2.1. Soliton Solutions

2.1.1. The Fundamental Soliton

In the anomalous dispersion regime, the NLSE Equation (1) supports a stable solution known as
the fundamental soliton:

A(z, t) =
√

P0 sech
(
(t− ts)−Ωβ2(z− zs)

T0

)
× exp

[
i
γP0

2
(z− zs)− iΩ

(
(t− ts)−

1
2

Ωβ2(z− zs)

)
+ iϕs

]
. (2)

Here, P0 is the peak power; T0 is the pulse duration; Ω is the deviation of the soliton’s center optical
frequency from that of the frame of reference, ω0. ts, zs and ϕs are the initial values of center time, start
position and phase offset, respectively. As long as a single soliton is considered, frequency offset and
initial values may be set to zero without loss of generality so that a considerably simplified version:

A(z, t) =
√

P0 sech
(

t
T0

)
exp

[
i
γP0

2
z
]

(3)

remains. In either case, amplitude and duration are coupled and must fulfil:

P0T2
0 =
|β2|

γ
. (4)

The propagation of a fundamental soliton with Ω = ts = zs = ϕs = 0 is shown in Figure 1.
As the temporal evolution (sech term) does not contain z, the temporal shape does not change
during propagation. Without nonlinearity, the shape would change appreciably after one dispersion
length LD = T2

0 /|β2|. The other relevant length scale is the nonlinearity length LNL = 1/(γP0) after
which self-phase modulation becomes appreciable. As Equation (4) shows, for the soliton LD = LNL.
This equality expresses the balance between both.

Among the conserved quantities of the integrable equation are the soliton energy:

Esol = 2P0T0 (5)

and the soliton center frequency Ω. As will be described below (Section 4.1), these two values are found
from inverse scattering in the form of imaginary and real parts of a complex eigenvalue. We point out
that in a dispersive medium, a nonzero frequency translates to a relative motion, so that the frequency
is usually referred to as the velocity. The number of solitons is also preserved, even in cases when
there is more than one.

Figure 1. Evolution of a fundamental nonlinear Schrödinger equation (NLSE) soliton.
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2.1.2. Radiation and Higher-Order Solitons

To create a soliton, one can launch a sech-shaped pulse as in Equation (3) for z = 0 into a fiber
with parameters conforming to Equation (4). If, however, the parameters are only approximately right,
we can do as follows: In the spirit of [6] and as also detailed in [9] (but they call A what we call N as
in [1,2,10]), we write the initial condition as:

A(0, t) = N
√

P0 sech
(

t
T0

)
. (6)

where the pulse is scaled by a factor N ≥ 0, N ∈ R called the soliton order. The energy is then:

E = N2Esol . (7)

Of course, at N = 1, there is the fundamental soliton, but at non-integer N, there is also a part
of the pulse energy that is not part of the soliton energy. This balance is a linear wave; in the soliton
context, it is called radiation. Linear waves are subject to dispersive broadening, so that after a
sufficiently long propagation, radiation will be dispersed away from the soliton, and the soliton itself
emerges. Until that happens, the different phase evolution of soliton and radiation creates a beat note,
visible as a slowly-decaying beat pattern. This is shown for N = 1.2 in Figure 2 (left), where lengths
are scaled to z0 = (π/2) LD. Evaluation of the beat pattern can yield soliton parameters, see Section 4.2.

Figure 2. (Left) If a pulse with soliton order N = 1.2 is launched, a slowly decaying beat with radiation
lets the soliton emerge gradually; (right) at N = 2, one generates a higher-order soliton, a structure
with periodic shape oscillation.

There is a threshold value of N to generate a soliton. As long as N < 1/2, all energy goes into
radiation. At N = 1, the radiative part dips to zero. At N = 3/2, it reaches the same energy as at
N = 1/2 again, and that suffices to generate a second soliton. At N = 2, there is a combination of
two solitons without any radiative part. This structure, for which an explicit expression was already
given in [6], is called an N = 2 soliton (Figure 2 right). More generally speaking, for any N ∈ N, N > 1,
one has a so-called higher-order soliton of order N in the pure form, i.e., without radiation. An explicit
expression for the N = 3 case solitons was found in [11]. The power profile of all higher-order solitons
oscillates with period z0. For all non-integer values of N, there is a radiative contribution.

Figure 3 gives an overview of this situation. In its upper part, the pulse energy according to
Equation (7), shown in units of Esol, is represented by the dashed parabola. Beginning at N = 1/2,
the first soliton appears. Its energy then rises linearly and passes through unity at N = 1. Similarly,
at other half-integer values of N, more solitons begin, each of them contributing energy to a cumulative
value shown in blue. The latter is tangent to the parabola at integer N values; here, the individual
soliton energies are also integer in Esol units. They take the first N values of the sequence 1, 3, 5, 7, . . . ,
which add up to N2. For all non-integer N, there is a gap between the cumulative solitonic and
the total energy, which represents the radiative part of the energy. Radiation energy is shown in the
figure’s lower part on an inverted, magnified scale (green curve). Whenever, at some half-integer N,
it reaches Erad = 1/4 Esol, the next soliton is created. Always the integer number closest to N determines
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the number of solitons involved, while the fractional part determines the amount of radiation created
along with them.

Figure 3. Soliton and radiation energies as a function of soliton order N. Energy is normalized to units
of fundamental soliton Esol of Equation (5). The fundamental soliton is at the black dotted markers.
Individual soliton energies (grey lines) add up to a cumulative value (piecewise linear blue trace);
the latter approximates the total pulse energy (red dashed parabola). The difference between both
is shown on an expanded, inverted scale in the lower part (green curve). From [2].

2.1.3. Soliton Interaction

When two or more pulses are launched in rapid succession, each of them is affected by
the presence of the others due to the index nonlinearity. In an integrable system, they cannot merge
(the number is preserved), but they can be set in relative motion as if there were interaction forces.
Gordon investigated the soliton-soliton interaction [12] and found that an effective force would decay
exponentially with growing separation between pulses and vary sinusoidally with their relative phase.
This means that there can be both attraction (in phase) or repulsion (opposite phase). This prediction
was tested experimentally in [13] and was found to be fully correct, with the only caveat that in
the attractive case, the first close encounter (collision) leads to processes of higher order not captured
in the NLSE.

Note that this view of interaction forces between particles is metaphorical and justifiable only if
both are well separated. In a nonlinear system, the superposition principle does not hold; therefore,
two sech-shaped pulses in close proximity to each other are not really two identical, but overlapping
solitons, but form a somewhat more involved two-soliton compound [14]. For that, energy and velocity
are preserved quantities.
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2.2. Breather Solutions

There is a different family of solutions of the NLSE, which is best explained by starting with
the continuous wave (cw) case. The NLSE is solved by the cw ansatz:

A =
√

P0 eiγP0z (8)

with constant power P0. It turns out that this solution is stable for normal (β2 > 0) and unstable
for anomalous dispersion (β2 < 0). The instability implies growth of small perturbations of the cw;
this is known as modulation instability [1]. The frequency of maximum gain is offset by ±ωmax from
the carrier frequency, with:

ωmax =

√
2γP0

|β2|
. (9)

If the cw is perturbed by white noise, there is always energy in these Fourier components,
and a ripple with frequency ωmax will begin to grow with gain:

gmax = 2γP0 . (10)

The further fate was widely appreciated only a couple of years ago even though the mathematical
results had all been worked out as early as 1986 [15]. There is a family of solutions of the NLSE
characterized by an infinitely extended cw background and some modulation on top. Its general form
can be written as [16]:

A(a, z, t) =
√

P0

[
1 + M(a, z, t)

]
exp(iγP0z) . (11)

where M(a, z, t) describes the modulation term. In the case of what is now known as the Akhmediev
breather, it takes the form:

M(a, z, t) =
2(1− 2a)cosh

[
b(a)γP0z

]
+ ib(a) sinh

[
b(a)γP0z

]
√

2a cos
[
ωmodt

]
− cosh

[
b(a)γP0z

] . (12)

with parameters 0 < a < 1/2 and b(a) =
√

8a− 16a2. The modulation frequency is ωmod =

ωc
√

1− 2a, and:

ωc =

√
4γP0

|β2|
≥ |ωmod| (13)

is the frequency range where gain is possible. Gain maximum occurs at a = 1/4 with ωmax = ωmod/
√

2,
and Equations (9) and (10) are recovered. This particular case is illustrated in Figure 4. From a cw
background, the modulation grows, until at z = 0, it reaches a maximum amplitude. Here, one has
a periodic train of pulses. During further evolution, the modulation decays until for z→ ∞, the cw
is recovered.

Figure 4. Evolution of an Akhmediev breather at a = 1/4. Tmod = 2π/ωmod.
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The first experiments to demonstrate the Akhmediev breather in optical fibers were described
in [17] and in more detail in [18]. The process was initiated either from random perturbation [17] or
from a suitable weak modulation as suggested in [19] and performed experimentally in [18].

If we let a → 1/2, this implies that ωmod → 0, and the temporal separation between the pulses
in the train diverges. The modulation then takes the form:

M(z, t) = − 4(1 + i2γP0z)
1 + ω2

c t2 + 4(γP0z)2 . (14)

This is a structure that is localized in both time and space, known as the Peregrine soliton [20].
It is shown in Figure 5 (left); a first experimental demonstration was given in [21]. A further member
of this family of NLSE solutions was studied in [22] and is known as the Kuznetsov–Ma soliton.
Mathematically, that solution is described by the modulation term:

M(a, z, t) =
2(1− 2a)cos

[
|b(a)| γP0z

]
− i |b(a)| sin

[
|b(a)| γP0z

]
√

2a cosh
[
|ωm| t

]
− cos

[
|b(a)| γP0z

] (15)

with a parameter range of a > 1/2. It consists of a periodically-recurring peak; see Figure 5 (right).

Figure 5. Evolution of a Peregrine soliton (left) and a Kuznetsov–Ma soliton (right). Tc = 2π/ωc.

3. Extensions to the Nonlinear Schrödinger Equation

3.1. Generalized Nonlinear Schrödinger Equation

The NLSE neglects linear loss, approximates dispersion by the leading group velocity dispersion
term and ignores nonlinear effects other than the intensity dependence of the refractive index.
Depending on the situation and/or the required accuracy of the calculated results, terms must be
added to include what is not represented. This leads to a generalized NLSE, which may take the form:

i
∂

∂z
A− β2

2
∂2

∂t2 A − i
β3

6
∂3

∂t3 A +
β4

24
∂4

∂t4 A . . .︸ ︷︷ ︸
higher-order dispersion

+γ|A|2 A

+ i
γ

ω0

∂

∂t

(
|A|2 A

)
︸ ︷︷ ︸
self-steepening

− TRγ A
∂

∂t
|A|2︸ ︷︷ ︸

Raman

+ i
α

2
A︸︷︷︸

loss

= 0 . (16)

As the generalized NLSE is not integrable, it usually must be treated numerically. The impact of
the new terms is as follows:

The dispersion curve can be written as a Taylor expansion around the carrier frequency ω0;
the NLSE is written so that the β2 term appears. All higher-order terms (shown here up to the fourth
order) provide corrections that become relevant when either the pulse spectrum gets quite wide
or when the carrier frequency is close to a zero-dispersion point (wavelength where β2 passes through
zero) of the fiber.
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The ‘self-steepening’ term [1,23] results from the intensity dependence of the group velocity and
leads to an asymmetry in the pulse shape. It can produce shifts in spectral and temporal positions
even in the absence of the Raman term.

The Raman effect leads to a redistribution of spectral power to the advantage of the low-frequency
slope of the pulse spectrum. A first study of the Raman gain in fibers was done by R. H. Stolen et al. [24].
The gain curve peaks at a frequency offset of ≈13 THz, but is nonzero all the way down to zero offset.
As a result, the spectral ‘center of mass’ of a pulse is shifted to lower frequencies. This ‘redshift’ scales
with the inverse fourth power of the pulse width [25]. The term expressing this in the NLSE is shown
here in a simplified version, which contains the Raman response time TR. This model is valid for
pulses being longer than ≈100 fs; more accurate models are described in [26–28].

The loss term contains Beer’s loss coefficient α; the impact of the loss can be characterized by
the characteristic loss length Lα = 1/α. As long as the loss is weak, i.e., Lα � LD, LNL, the equilibrium
of dispersive and nonlinear effects that characterizes the soliton is only mildly perturbed. In that
situation, the soliton can rearrange its shape: With the peak power drooping and the width increasing
slightly, Equation (4) can still be approximately fulfilled even when the energy is reduced [29,30].

3.2. Dispersion-Managed Fibers

As a further complication in a realistic assessment of pulse propagation in fibers, one must
acknowledge that in the telecommunications field, a special type of fiber has been preferred for
20 years now in which β2 is not a constant. Originally, an attempt was made to cancel dispersive
effects by concatenating segments of fiber with alternatingly positive and negative group velocity
dispersion. As it turned out, a perfect cancellation (path average β2 = 0)—possible at a single
wavelength only anyway—did not work as well as if a small negative value were left. This is on
account of the fiber’s nonlinearity.

Figure 6 illustrates the structure of a dispersion-managed fiber (DM fiber). The dispersion map
is described by the spatial period Lmap = L+ + L− with which the alternating pattern is repeated [31].
Strictly speaking, the value of the nonlinearity coefficient γ will also alternate from one fiber segment
to the other.

Figure 6. Dispersion-managed fiber consists of alternatingly normally (dispersion compensating fiber
(DCF)) and anomalously dispersive fiber (standard single mode fiber (SSMF)) segments. The dispersion
parameter β2 alternates between values of β+2 and β−2 ; the lengths of segments are L+ and L−,
respectively. The dispersion map period is Lmap = L+ + L−.

It is not immediately clear whether in a dispersion-managed (DM) fiber something like solitons
can exist, as they are solutions of the NLSE for anomalous dispersion only. However, as it turned
out, a type of pulse exists that is stabilized by nonlinearity [32–37]. These pulses were then
called dispersion-managed (DM) solitons. Their shape is neither of the usual unchirped sech type,
nor constant. Rather, it breathes over a full dispersion period so that after a full period, the shape in
both the amplitude and phase profile is restored. An example of a DM soliton is shown in Figure 7.
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Mathematically, dispersion management is captured by making fiber parameters z-dependent:

i
∂

∂z
A− β2(z)

2
∂2

∂t2 A + γ(z)|A|2 A = 0 . (17)

This modifies the NLSE into a non-integrable form so that it does not support solitons in the usual
sense. Depending on the dispersion modulation strength (essentially, β+

2 –β−2 ), the DM soliton shape
may be nearly sech-shaped or closer to a Gaussian [38]. In the strong modulation limit DM, solitons
exhibit oscillating tails [38,39]. There is no closed analytical expression for it, but good approximations
to its shape can be found by numerical procedures like that given in [40]. During propagation, a DM
soliton suffers from continuous radiative loss, which may be weak, but nevertheless must lead to
its eventual decay. Fortunately, for applications, the decay distance typically exceeds any practically
relevant fiber length.

Figure 7. Evolution of a dispersion-managed soliton over two dispersion map periods.

It was eventually understood that dispersion-management provides advantages over
a constant-dispersion fiber. It suppresses four-wave mixing, a process occurring in a transmission
system with many wavelength channels filled simultaneously with independent data streams, where
it leads to cross-talk and, thus, errors. An extensive review of dispersion-management is given in [31].

3.3. Cases Involving Several Solitons

We mention a few more cases in which solitons or their compounds play a role and which have
received attention in the research literature.

3.3.1. Soliton Molecules

In DM fibers, stable compounds of solitons exist, which have been called soliton molecules [41].
The alternating dispersion creates a rapid to-and-fro of the chirp of DM solitons and, thus, a varying
mutual force. If two DM solitons are in a particular mutual separation, the net force is zero,
and an equilibrium is obtained [42,43]. For larger separations, there is attraction, for smaller, repulsion:
it is a stable equilibrium. Soliton molecules also exist for more than two DM solitons and have been
discussed as information carriers in data transmission [44,45]. As it turns out, there can be several
equilibrium positions [46].

3.3.2. Soliton Gas and Crystal

Another situation in which soliton propagation is subject to periodic perturbation was described
in a series of experiments about a synchronously-driven fiber resonator [47] (using non-DM fiber).
Free propagation in the fiber alternated with interference at an input coupler. As a result, relatively
long input pulses organized themselves into a pattern that contained a multitude of short pulses;
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each of those fulfilled the soliton condition Equation (4). The pattern could be either chaotic (soliton
gas) [48] or periodic (called soliton crystal) [49], depending on the drive power.

Similar phenomena have also been reported from fiber lasers [50–52], which, however, are not
described by the NLSE, as that does not consider nonlinear gain and loss. An equation including these
effects is the cubic-quintic complex Ginzburg–Landau equation. One finds that there are soliton-like
solutions of this equation that are called dissipative solitons [53–55].

3.3.3. Supercontinuum Generation

For some metrological purposes like coherence tomography, wide bandwidth light with good
focusability is required. Thermal light sources cannot deliver adequate power due to both their
insufficient spatial coherence and the limitations set by Planck’s radiation law. One can, however,
generate broadband light in a fiber by exploiting the nonlinearity to create new frequency components.
Experiments involve, in most cases, a powerful mode-locked laser and a piece of highly nonlinear
fiber. Either a modulation instability according to an Akhmediev breather scenario evolves, but the
structure then breaks apart, or the input pulse represents a high-order (N � 1) soliton, which
undergoes fission [56]. In either event, the initial light signal breaks up into an arrangement of several
pulses, many of which have soliton characteristics, and radiation. This arrangement has similarities
to the soliton gas described above. Through the action of the Raman effect, four-wave mixing and
cross-phase modulation combined with complex phase matching properties in the fiber’s dispersion
curve (see, e.g., [57]), the light quickly develops a spectrum that may easily be one octave wide and
often much more. Such a structure is referred to as an optical supercontinuum and has found much
research interest; commercial supercontinuum sources are being offered. A good review is [58].

A corollary to this is the phenomenon of optical rogue waves. Rogue waves of the ocean have been
identified as a real phenomenon, not a myth. Unusually, large single waves can occasionally appear
without warning, possibly wreaking havoc on ships, and disappear again just as suddenly. It was first
discussed in [59] that in the context of optical supercontinuum generation, single spikes of extreme
power can occur every once in a while. There is an ongoing discussion about the mechanisms [60].

4. Methods to Verify Soliton Content

The inverse scattering technique allows one to find solutions to integrable nonlinear wave
equations. However, in practice, one quite often is faced with the reversed task of determining
the soliton content of a given signal. The task is relatively straightforward when the signal consists
of isolated bell-shaped pulses. One can check whether the power profile approximates a sech2(t)
shape and whether the chirp is close to zero. Then, duration and peak power can be checked with
Equation (4). This way, an N = 1 soliton can be directly identified, and for pulses with N 6= 1, the
local value of N can be found. However, the applicability of this direct method is limited to simple
cases. It is of no use for waveforms, as they may be found in more complex situations like soliton gas
or optical supercontinuum; see Section 4.1.3.

We will therefore briefly describe more advanced techniques. The direct scattering method is
often considered as the benchmark for the determination of soliton parameters. However, it has
its limitations, chief among which is that it relies on the integrability of the system. An alternative is
soliton radiation beat analysis, which does not have that same restriction, but the price to be paid for
that is that (i) more input data are required and that (ii) in complex cases, the obtained pattern may get
too complicated to interpret.

4.1. The Inverse and Direct Scattering Transform

4.1.1. The Method

The inverse scattering transform (IST) is a technique that can be used to solve certain nonlinear
partial differential equations (PDE) like the Korteweg–de Vries equation, the sine-Gordon equation
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or the nonlinear Schrödinger equation. The basic concepts of this method were presented in 1967
in a groundbreaking paper by Gardner and coworkers dealing with the Korteweg–de Vries equation [5].
Shortly after, Lax showed how to apply the method also to other nonlinear PDEs when certain
conditions are met [61]. The IST was successfully adapted to the NLSE by Zakharov and Shabat
in 1972 [4].

The method of IST is based on transformations between the time-space domain and a nonlinear
spectral domain, in which the nonlinear evolution of some given input field reduces to a linear
problem. In the spectral domain, a given field is represented by its scattering spectrum, which is
calculated by the so-called direct scattering transform (DST). The inverse operation is called the inverse
scattering transform. As these transformations can be regarded as extensions to the well-known
Fourier transform, they are also known as nonlinear Fourier transform and inverse nonlinear Fourier
transform, respectively. Using the nonlinear Fourier transform, one can get insight into the linear and
nonlinear components of a given field by analyzing its scattering spectrum. Generally, it consists of
a continuous part, which represents the small amplitude radiation, and a discrete part, which can
be attributed to the solitons contained.

In recent years, several groups took up the idea of using multi-soliton pulses for nonlinear optical
data transmission, which originally was suggested by Hasegawa and Nyu [62]. In the course of this
renewed attention, several nonlinear transmission schemes and techniques for the nonlinear Fourier
transform and its inverse transform have been (and still are) developed to overcome the linear capacity
limits of fiber-optical transmission lines. An overview about the latest developments can be found in [63].

DST is a great tool to analyze given pulses, but its application is somewhat involved. The DST
has been applied analytically to only a few simple pulse shapes like sech-shaped [6] or rectangular
pulses [64]. Even for such a standard shape as a Gaussian,

A(t) = A0
√

P0 exp

[
−1

2

(
t

T0

)2
]

, (18)

no analytical result is known to the authors’ best knowledge. Instead, approximate solutions can
be found numerically. As an example, when setting A0 = 3 and choosing P0 and T0 according to
Equation (4), DST reveals that the pulse consists of two solitons and a small amplitude radiation part
of nontrivial spectral shape (see Figure 8).

Figure 8. Nonlinear spectrum calculated for a Gaussian pulse shape (Equation (18)) with A0 = 3 and
P0, T0 fulfilling Equation (4). (Left) The discrete spectrum, consisting of two solitons of the same center
frequency. The reference energy here is chosen as E0 = 2P0T0. (Right) The power spectral density (PSD)
of the linear radiation part.

Various schemes for numerical calculations of the DST are available [63,65–68]. They all
solve the Zakharov–Shabat eigenvalue problem of a discretized input field with M sample points
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and determine the nonlinear spectrum. One can distinguish between matrix methods that calculate
the eigenvalues directly from a M×M matrix and search methods in which the eigenvalues are found
in an iterative manner. For a recent discussion, see, e.g., [63,66–68].

In the following, we will sketch briefly how to calculate the scattering spectrum using a search
method. Using the formulation of Ablowitz et al. [69], one finds that solving the dimensionless NLSE:

∂q
∂z

=
i
2

∂2q
∂t2 + i|q|2q (19)

is equivalent to the integration of the system of equations:

∂Φ
∂t

+ TΦ = 0 , (20)

∂Φ
∂z

+ ZΦ = 0 . (21)

T and Z are operators (matrices) that determine the temporal and spatial evolution of some
auxiliary function:

Φ =

(
φ1

φ2

)
(22)

where φ1 and φ2 are called Jost functions. Explicitly, the operator T can be written as:

T =

(
−iλ q
−q∗ iλ

)
. (23)

Calculation of the DST can be done by integrating Equation (20) with respect to time with different
test values of the eigenvalue candidate λ = ζ. The initial condition can be chosen as:

Φ(z0, t, ζ) =

(
1
0

)
exp(−iζt) with t→ −∞ , (24)

when q is localized in the sense that for t → ±∞, q → 0 at an exponential rate [65,66]. As a result,
one obtains the scattering coefficients a(ζ) and b(ζ) from Φ(z0, t, ζ):

a(z0, ζ) = φ1(z0, t, ζ) exp(iζt) with t→ ∞ , (25)

b(z0, ζ) = φ2(z0, t, ζ) exp(−iζt) with t→ ∞ . (26)

Additionally, the derivatives of a and b with respect to ζ can also be calculated by extending
the integration scheme to include Φ′ = ∂Φ/∂ζ.

In the scattering spectrum for anomalous dispersion, solitons are present in the form of
discrete eigenvalues ζk with a(ζk) = 0 and Im(ζk) > 0. Re(ζk) represents the frequency,
and 2 Im(ζk) corresponds to the amplitude of the soliton; both values are preserved during
propagation. The continuous part of the spectrum (radiation) can be calculated from the values
of a(ζ), with Re(ζ) = 0. The spectral power density |F |2 is then obtained as:

|F |2 = − 1
π

ln(|a(ζ, z)|) . (27)

4.1.2. Numerical Restrictions

We have applied numerical DST to a case for which exact analytical results are known,
i.e., the fundamental soliton Equation (3), to assess inaccuracies of the numerical procedure. They arise
from various sources; we identify three main error sources.
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Truncation error: At the edges of the computational time window of finite width TW, the pulse
wings are truncated. A fraction Etrunc of the energy is not represented in the numerical field:

Etrunc = 2
∞∫

TW/2

P̂ sech2
(

T
T0

)
dT = Etot

(
1− tanh

(
TW/2

T0

))
. (28)

Sampling error: Sampling error arises from coarse sampling when the temporal discretization
step is too wide for the pulse duration.

Floating point error: Computers store numbers in some format with a limited number of digits;
‘double precision’ usually offers 15 digits plus the exponent. After a large number of floating point
operations, numerical errors accumulate.

To disentangle these contributions, we varied the number of sampling points and the width of the
time window for a given pulse width; the results are shown in Figure 9. To the right, the computational
window is sufficiently wide (TW � T0). Then, the three curves shown are for discretization step
numbers as indicated by the labels. For 212 points, sampling is increasingly coarse when these points
are spread over a wider window, and the error rises. Larger numbers of points improve the situation
quadratically because the error scales with the square of the sampling point separation. To the
left, truncation error dominates; the prediction of Equation (28), plotted as a solid curve, fits well.
Floating point error becomes relevant only where these two contributions are small and where the
number of calculation steps is large; in our example, it appears as ‘noise’ in the central section of the
curve for 222 points. We convinced ourselves that the transfer-matrix (TM) method presented in [65]
yields the same results.

Figure 9. Direct scattering analysis of an N = 1 soliton with different time window widths TW/T0.
The difference between the soliton energy found by direct scattering transform (DST) and the analytical
value is shown. Labels on the right indicate the number of sample points used. Solid curve: expected
truncation error, Equation (28) of the input pulse.

4.1.3. Applications and Limitations of DST

The DST method as described so far is quite generally applicable to arbitrary pulse profiles
provided two conditions are met: One is integrability, which is not fulfilled for many structures
in the generalized NLSE in Section 3.1 and for DM systems in Section 3.2. The other is that for time to
infinity, the structure must decay to zero sufficiently fast [65,66]. This is not the case for the structures
described in Section 2.2.

If integrability is violated only weakly either by loss or through the Raman effect, the concept
of solitons remains valid in an approximate sense as pulses that maintain an (near-) equilibrium
between dispersive and nonlinear influences. It might be more accurate to speak then of solitary pulses.
Strictly speaking, though, all preserved quantities are no more. Perturbation theory has shown [29,30]
that solitons rearrange their shape in terms of width and peak power; in the process, they acquire
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a new energy value, as well. In the sense that this may still be interpreted as solitons, some researchers
have adopted the following strategy: In a mildly non-integrable system with loss [70] or Raman
effect [71–73], the pulse structure is propagated numerically up to some position zi, where DST is then
applied to find what one may call ‘local eigenvalues’. Then, one lets zi slide and repeats DST, in order
to find the position dependence, or spatial evolution, of the eigenvalues. An example of such a case
is shown in Figure 10 where the Raman effect, third-order dispersion and loss are treated separately.
The most conspicuous effects are the energy reduction by the loss term and the frequency downshift
by the Raman effect.

Figure 10. Energy and frequency eigenvalues of a fundamental soliton obtained using the DST
method. The soliton was perturbed by Raman self-frequency shift (blue, solid, Raman response time:
TR = 0.03 T0), third-order dispersion (orange, solid, TODparameter: β3 = 0.5 T0β2), and linear loss
(green, dashed, loss length: Lα = 200 LD).

When it comes to complex situations like in the context of optical supercontinuum generation
where many interactions and collisions of several pulses take place, energy can be transferred between
pulses, and more changes to local eigenvalues will occur. In any event, one has to interpret the results
produced in this way with caution.

If one considers infinitely-extended structures, one first needs to acknowledge that they have
infinite energy. One possible approach is to start with a finite piece (‘window’) of the infinite structure
and determine eigenvalues, then increment the window width and follow the eigenvalues; finally, let
the window width tend to infinity [74]. In the limit, one obtains an infinite number of eigenvalues,
but with a finite density (number of eigenvalues per unit time). These eigenvalues cover a continuum
of energies from zero up to some maximum; if one considers the simplest case of an unmodulated
continuous wave, this maximum depends only on its power P0 and is given by Emax = 2

√
|β2| P0/γ.

With respect to the interpretation of these eigenvalues as signatures of solitons, the following was
shown in [74]: Consider a finite window, which contains m eigenvalues, and allow it to propagate.
On account of integrability, it contains a constant number of m solitons. If one then applies a
perturbation, e.g., by Raman effect, precisely m separate pulses emerge; once they are sufficiently
separated from each other after some propagation, it can be checked that each fulfills the soliton
criterion Equation (4).

The other approach to infinitely extended fields is to consider periodic problems, like the
Akhmediev breather. Adaptations of IST to periodic boundary conditions (periodic IST, also called
finite gap theory) have been given in [75–77] where the obtained eigenvalues are not necessarily
interpreted as solitons, but rather as the representation of linear and nonlinear modes [78–80]. Like the
nonperiodic IST, this periodic case gained renewed interest in recent years. Different theoretical
and numerical schemes have been developed with a view toward the application of nonlinear data
transmission [63,66,67,81–83]. A variant of the periodic DST based on the artificial periodization of
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field components was used to analyze rogue events and numerically to find the eigenvalue spectra of
the breather solutions of Section 2.2 [84]. Another approach to characterize rogue events via DST was
taken in [85,86].

We have here concentrated on pulse-like initial conditions. Recently, the scope was extended to
integrable turbulence [87] with a view towards understanding rogue waves. Initial conditions for
the NLSE were generated by superimposing random perturbations in both amplitude and phase on
a continuous wave; the resulting field was characterized by its eigenvalue spectrum.

4.2. Soliton Radiation Beat Analysis

Soliton radiation beat analysis (SRBA) is a numerical method to determine the soliton content of a
pulse in an optical fiber even if the system is not integrable. In contrast to DST, which requires the pulse
profile at a single position in the fiber, SRBA requires knowledge of the evolution over a certain length
section of the fiber. This is easily understood: In integrable systems, soliton parameters are invariant
so that if they are known in one place, they are known everywhere. SRBA can follow the evolution of
soliton parameters in a non-integrable setting; the price to pay is that representative information about
it must be introduced into the calculation.

As early as in 1974, it was noted [6] that the envelope of a pulse not exactly conforming to a soliton
undergoes oscillations. Such a pulse contains a soliton and some radiation; the oscillation arises as
a beating between both. The radiation evolves linearly; the soliton contains a power-dependent phase
term as shown in Equation (3). The frequency of the beat note therefore allows a direct conclusion
about the soliton energy.

The SRBA method was first introduced in [88]. The propagation of a sech pulse with the initial
form A(z = 0, t) = N

√
P0 sech(t/T0) was simulated numerically. This was repeated while

incrementing the soliton parameter N. As the oscillation of the peak power is damped due to dispersive
spreading of the radiative part, it was found advantageous to evaluate the peak spectral power, which
undergoes undamped oscillation. A windowed Fourier transform was applied to the spatial evolution
of the power at the center frequency |Ã(Ω = 0, z)|2. This produces a spectrogram of spatial frequencies
called the soliton radiation beat pattern. An example is shown in Figure 11 (left).
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Figure 11. (Left) Soliton radiation beat analysis (SRBA) chart from repeated numerical simulations
with increasing soliton number N; (right) corresponding predictions of beat signals and its overtones
(from [88]).

As N is increased, a soliton radiation beat first appears at its expected threshold near N = 1/2.
The figure shows that this beat note also has overtones. Its amplitude (grey scale) vanishes at integer N
(apparent ‘white stripes’), which is of course because there, the radiation amplitude vanishes; the beat
amplitude is proportional to the product of both amplitudes.

If there is more than one soliton involved, the beat pattern will contain the frequencies of beats
between all pairs of solitons, as well as that of each soliton beating with radiation. In Figure 11 (left),



Appl. Sci. 2017, 7, 635 16 of 22

traces pertaining to the second soliton begin at N = 3/2 as expected and have amplitude nulls at N = 2.
Difference frequencies are visible as downward-bending curves. In the right panel of Figure 11,
analytical results for beat frequencies are plotted for comparison. Shown are all calculated frequencies,
up to four overtones, and all combination frequencies of this multitude. It is obvious that all SRBA
traces of the left panel can be identified in this way. SRBA provides the additional information that
there are notches in the amplitudes of all traces involving radiation at integer N values.

This shows that SRBA reproduces all known features of the soliton energies as known analytically
from IST. In [89], this method was shown to work for chirped Gaussian pulses in the NLSE.
Going beyond the NLSE to non-integrable situations is also possible as SRBA makes no assumption
about integrability. A lossy fiber was treated in [90]. It was shown that a mild, ‘adiabatic’ loss, if it
persists for a long fiber length, eventually turns diabatic because the relevant length scales LD and
LNL also change in the process. Once the loss is diabatic, the soliton decays. In that situation, however,
the applicability of DST even in the approximate sense as described above in Section 4.1.3 is ultimately
lost, and interpretations based on that approach [70] are doubtful and at variance to the SRBA results.

A further important example of the application of SRBA is the determination of the dispersion-managed
soliton content. This case is just not accessible for DST, not even in the sense of ‘local’ analysis as in
Section 4.1.3. Other than SRBA, no other numerical method to analyze DM structures is known. In [88],
a suitably-scaled Gaussian pulse was used as a good approximation to an ideal DM soliton, and an
SRBA pattern was obtained. Both the modification of the soliton energy and the characteristic minima
of soliton radiation beat traces were found.

In subsequent research, SRBA was also applied to analyze Akhmediev breathers and a sinusoidally
modulated cw [91], as well as soliton crystals [92]. One can assume that in principle, the SRBA
method can be applied to all non-integrable systems where a nonlinear phase shift appears. Potential
applications are soliton molecules (see Section 3.3.1) or dissipative solitons (see Section 3.3.2).

SRBA as described so far relies on the evaluation of the central spectral power Ã2(Ω = 0, z).
In a generalization of the technique, the consideration is extended to the full spectrum, Ã2(Ω, z) [93].
In this variant, the technique also yields information about soliton velocities. Figure 12 shows
an example for the case of an N = 2 soliton.

The pattern was generated using a value of N = 2.01, so that there is always a little bit of radiation
copropagating with the second-order soliton, and a beat note is generated. Parabola-like curves are
due to radiation; horizontal flat lines touching the parabolas are due to solitons. Once the traces are
identified, the soliton energies can be obtained from the spatial frequency of the nonlinear phase
rotation. To illustrate the interpretation of such data, we point out that the two solitons appear with
spatial frequencies in the ratio of 9:1. According to Equation (3), this means that the peak powers are
P0(S1) = 9P0(S2). Equation (4) then dictates that T0(S1) = 1/3 T0(S2). The ratio of energies obtained
from Equation (5) is then 3:1, precisely as expected from Figure 3. Any frequency shifts would appear
as horizontal displacements; in this particular example, there are none. There is no scan of N here;
this extended procedure has the advantage that only a single propagation simulation is necessary.

A particular difficulty with DM solitons is that their shape undergoes continuous changes.
At various positions within Lmap, the shape varies considerably, but the pulse shape repeats after
Lmap (it is ‘stroboscopically’ stable). Even then, when the power is modified, the shape varies from
‘nearly sech’ to ‘nearly Gaussian’, and depending on the dispersion modulation depth, oscillating tails
may appear. Therefore, extra measures need to be taken when the energy is scanned for an SRBA
pattern calculation. For the data in the left panel of Figure 13, at 0.5 pJ increments of energy, the best
approximation to the DM soliton shape was found using Nijhof’s method [40]. If the pulse shape were
exact, there would be no beat note with radiation. This is why in 0.5 pJ increments, there seem to be
white lines in the figure. Above and below each such step, the energy was scanned by simple scaling
of the pulse shape to ±0.25 pJ. The slight deviation from the best pulse shape suffices to produce beat
notes, and a full survey of their positions is obtained. For better clarity, the data from this calculation
are transferred to the right panel of Figure 13, and different line thicknesses are standardized into
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three classes in the process. The data show that a DM soliton consists of several constituent solitons;
the pertaining traces are labeled S1–S3.

Figure 12. Full-frequency SRBA chart to determine the soliton content of an N = 2 soliton. Grey scale
corresponds to the log of the Fourier transform of the spatial evolution of the spectral power density.
Arrows labeled S1 and S2 mark traces pertaining to the first and second soliton; their beat note is also
highlighted (from [93]).

Figure 13. (Left) SRBA chart for an energy scan of a DM soliton. For an explanation of the procedure,
and the apparent white vertical stripes in particular, see the text. (Right) Extract of the left panel,
with standardized line types. The fundamentals pertaining to three constituent solitons are labeled
S1–S3. The dashed line labeled ‘sol’ is for reference; it represents the spatial frequency for a non-DM
soliton in a fiber with β2 = β2 (from [93]).

A comparison of DST and SRBA reveals the advantages and weaknesses of both. SRBA requires
more input data. These can only be available from numerical simulations; it is hard to imagine how
suitable data could be obtained from an experiment. On the other hand, SRBA can treat cases that are
inaccessible to DST. Its limit is reached when for a growing number of solitons involved, the number
of traces becomes too large to disentangle them all. DST can be applied to many-soliton cases [94],
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but only in strictly integrable systems, or with the limitations in ‘nearly integrable’ systems as pointed
out in Section 4.1.3.

5. Conclusions

Solitons in optical fibers are pulses of light that maintain a balance between linear and nonlinear
distortions. Real-world systems are rarely, if ever, of the integrable kind. It is therefore appropriate to
apply the word ‘soliton’ also to pulses for which the balance is maintained at least approximately; to do
so is now common usage. However, one occasionally sees research papers in which the word is used
in a very loose sense, with no effort being made to actually check whether the balance is fulfilled.

In this review, we outline the concept of fiber-optic solitons, with a particular view toward
methods of verification of the solitonic nature of a given pulse, or group of pulses, or a similar
structure. Soliton content has been discussed in the context of structures like soliton molecules,
soliton gas and crystal, Akhmediev breather, optical supercontinuum and rogue waves. The simplest
method is to check pulse parameters with Equation (4), which directly expresses an equilibrium
condition. Unfortunately, this straightforward test is only applicable in very simple situations when
there are clean, well-isolated pulses, and it does not fully quantify the soliton content. Grown from
inverse scattering theory, the first method to analytically find the soliton solution of the NLSE is direct
scattering transform. It basically tests whether the structure under test contains pulses that hang
together as entities even when they collide, the property that gave solitons their ‘particle-like’ name
[95]. An alternative method is soliton radiation beat analysis, which basically tracks the nonlinear
phase rotation, which is the signature of solitons. We discuss some issues of practicality and accuracy
and compare the ranges of applicability of both DST and SRBA.

There is no single method that covers all cases; indeed, in some relevant cases, no available
method is fully satisfactory. In the complex evolution of supercontinuum, for example, the method
is often adapted ad hoc to the situation, for want of alternatives. In some interesting cases, soliton
content analysis has not been pursued yet, to our knowledge. Dissipative solitons are subject to yet
another condition beyond Equation (4), but should be accessible for SRBA. This article is meant to
provide the reader with a survey to what is currently known, to foster future research.
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The following abbreviations are used in this manuscript:

cw continuous wave
DM dispersion-management
DST direct scattering transform
IST inverse scattering transform
NLSE nonlinear Schrödinger equation
SRBA soliton radiation beat analysis
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