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Abstract: The finite element (FE) method has been widely used in predicting the structural responses
of asphalt pavements. However, the three-dimensional (3D) modeling in general-purpose FE
software systems such as ABAQUS requires extensive computations and is relatively time-consuming.
To address this issue, a specific computational code EasyFEM was developed based on the finite
layer method (FLM) for analyzing structural responses of asphalt pavements under a static load.
Basically, it is a 3D FE code that requires only a one-dimensional (1D) mesh by incorporating
analytical methods and using Fourier series in the other two dimensions, which can significantly
reduce the computational time and required resources due to the easy implementation of parallel
computing technology. Moreover, a newly-developed Element Energy Projection (EEP) method for
super-convergent calculations was implemented in EasyFEM to improve the accuracy of solutions
for strains and stresses over the whole pavement model. The accuracy of the program is verified
by comparing it with results from BISAR and ABAQUS for a typical asphalt pavement structure.
The results show that the predicted responses from ABAQUS and EasyFEM are in good agreement
with each other. The EasyFEM with the EEP post-processing technique converges faster compared
with the results derived from ordinary EasyFEM applications, which proves that the EEP technique
can improve the accuracy of strains and stresses from EasyFEM. In summary, the EasyFEM has a
potential to provide a flexible and robust platform for the numerical simulation of asphalt pavements
and can easily be post-processed with the EEP technique to enhance its advantages.

Keywords: finite layer method; asphalt pavement structural analysis; EasyFEM; element energy
projection; super-convergence

1. Introduction

The analysis of stress states is of considerable importance for the design, construction,
maintenance, and rehabilitation of asphalt pavements in practice. In the past several decades, a
lot of computer software has been developed and is increasingly used routinely in pavement design
and assessment processes.

In Germany, the guidelines for the analytical design of asphalt pavement superstructures RDO
Asphalt 09 [1] propose the use of layer elastic theory (LET), e.g., the program BISAR, (Shell global,
The Hague, The Netherlands) as the kernel of its pavement response model to calculate stresses,
strains and displacements for different temperatures at critical locations within the pavement structure.
Due to its simplicity, the LET has been utilized by pavement engineers for several decades. Currently,
LET has been expanded to handle some problems with the material properties of viscoelasticity and
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nonlinearity as well as non-uniform loads [2]. However, the features of the software application based
on the LET are still limited. For example, in BISAR, each layer is assumed homogeneous, isotropic, and
linear elastic; all materials are weightless (no inertial effects are considered); all layers are assumed to
be infinite in lateral extent and have a finite thickness except for the sub-grade, which is assumed to be
infinite; the pavement systems are loaded statically over a uniform circular area; the compatibility of
strains and stresses is assumed to be satisfied at all layer interfaces [3,4]. However, the reality of asphalt
pavements may be very different to the assumptions made in the BISAR, e.g., finite geometrical scale in
lateral extent, non-uniform loading conditions, and inelastic material properties. These differences may
result in significant deviations between the calculated and the real responses of asphalt pavements.

With the finite element method (FEM), which is a numerical analysis technique proposed for obtaining
approximate solutions for a wide variety of engineering problems, these specific requirements can be met
and the asphalt pavement responses can be predicted more realistically. Some representative software
applications have been widely used in pavement engineering, such as CAPA-3D (Delft University of
Technology, Delft, The Netherlands) and APADS 2D (Austroads, Sydney, Australia). The development
history of CAPA-3D goes back to the late 1980s. Currently, CAPA-3D is a linear/nonlinear, static/dynamic
finite element (FE) system for the solution of very large scale three-dimensional (3D) solid models such
as those typically encountered in pavement and soil engineering. It includes several constitutive material
models, e.g., linear elasticity, hyperelasticity, elastoplasticity and viscoelasticity. As such, it can simulate
a very broad range of engineering materials under various loading conditions [5]. Unfortunately, due to
its 3D characteristics, the high hardware demands and long execution times render it suitable, primarily
for research purposes [6]. APADS 2D was developed from 2008, in the scope of the Austroads project
Developments of Pavement Design Models. It applies a two-dimensional (2D) axisymmetric concept to
reduce the computational time and considers the effect of multiple loads through superposition. Due to the
inherent limitations of axisymmetric models, it is difficult to simulate a pavement model with a determined
geometry and complex loading conditions [7]. Other general-purpose FE software, such as ABAQUS
(SIMULIA, Johnston, RI, USA) and ANSYS (ANSYS, Canonsburg, PA, USA), may provide more powerful
capabilities to simulate the response of asphalt pavements to a certain extent. However, the expensive costs
to get valid licenses and the time-consuming training process often render it impractical to be used by a
road engineer.

One proposed method to overcome the aforementioned difficulties assumes that the displacements
in one geometrical direction can be represented using Fourier series. Exploiting its orthogonal properties,
a problem of such a class can be simplified into a series of 2D solutions. This method is so called
semi-analytical FEM and was first developed in linear analysis by Wilson [8]. The analysis was extended
to an elasto-plastic body by Meissner [9] based on Wilson′s work. A visco-plastic formulation was used
by Winnicki and Zienkiewicz [10] to tackle material nonlinearity. To analyze the consolidation of elastic
bodies subjected to non-symmetric loading, Carter and Booker [11] provided an effective solution by
using the continuous Fourier series. Lai and Booker [12] successfully applied a discrete Fourier technique
to analyze the stress state of solids with nonlinear behavior under 3D loading conditions. Further
developments were made by Fritz [13] and Hu et al. [14], who programed simple FE codes to apply the
semi-analytical FEM for the analysis of asphalt pavements. Recently, an FE code named SAFEM with
more features was developed by Liu et al. [15–19]. Viscoelastic material property and dynamic analyses
were integrated in this code. Here, the partial bonds between pavement layers can be considered and the
infinite element was applied to reduce the influence of the boundary on the computational results.

The finite layer method (FLM) is proposed as another alternative way for analyzing the structural
response of pavements, whilst reducing the computational requirements without decreasing the
computational accuracy. This method combines a one-dimensional (1D) FEM discretization in the
pavement depth direction with Fourier series in the two horizontal directions, which can be considered
as a further development of the semi-analytical FEM. The idea is particularly suitable for multilayered
structures. Furthermore, due to the use of Fourier series in two directions, the computational cost
of FLM is significantly lower than that of conventional FE analysis methods. The FLM started to be
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applied in the analysis of elastic, horizontally layered foundations from 1979 [20], when the basic
theory and application were proposed. Thereafter, the approach was further developed for the analysis
of nonhomogeneous soils whose modulus increases linearly with depth [21]. An exact finite layer
flexibility matrix was introduced to overcome the difficulties when the conventional finite layer stiffness
approach was applied to incompressible materials [22,23]. Meanwhile, soil consolidation and surface
deformation entailing the extraction of water was also investigated by using this approach [24–26].
In the next several years, researchers applied the FLM in groundwater flow models [27] and analyses
of 3D Biot consolidation of layered transversely isotropic soils [28]. Recently, the FLM was applied for
modeling the noise transmission through double walls [29]. analytical model, called 3D-Move uses a
continuum-based FLM to compute pavement responses [30,31]. The 3D-Move model can account for
important pavement response factors such as moving loads, 3D contact stress distributions (normal
and shear) of any shape, and viscoelastic material characterization for the pavement layers.

Although the 3D-Move is freely available, it is not open source, and it still lacks some specific features
such as the interlayer behavior for the pavement modeling. Therefore, a re-implementation of the FLM
in code is necessary. As mentioned in the manual of 3D-Move, the accuracy of the calculated results
is not guaranteed. Therefore, an algorithm or a technique that can provide more accurate results is
of significant importance. In recent years, the research on super-convergence has increasingly drawn
attention since it can provide higher order accuracy. A number of research studies have been conducted
on this subject [32,33]. In recent years, a super-convergence technique named Element Energy Projection
(EEP) method was proposed by Yuan et al. [34–36]. Its core assumption is to assume the energy projection
theorem in the FEM mathematical theory [37] to be almost true for a single element. For various 1D
problems, this assumption proves to be true and the convergent displacements and derivatives of the
simplified form (i.e., with linear test/weight functions) converge at least one order higher than the
conventional FEM results [38]. This method has been proven to be simple, convenient and effective.
Moreover, it can be easily applied to other specific FE methods including FLM.

In the following sections, the basic theory of FLM is introduced, based on which the computer
code named EasyFEM is self-developed. The EEP super-convergence strategy for EasyFEM is then
described in detail to improve the accuracy of the results derived from EasyFEM. The EasyFEM is
verified by comparing the results from BISAR and ABAQUS; the convergence rates between the
results from ordinary EasyFEM and the EasyFEM with the post-processing with EEP are compared.
The application of EasyFEM is to predict the mechanical responses of asphalt pavements. Lastly, a brief
summary and outlook are provided.

2. Numerical Solution of EasyFEM

2.1. Finite Elements

A typical 3D EasyFEM model for the pavement problem was set up as shown in Figure 1.Appl. Sci. 2017, 7, 611  4 of 4 
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The system is discretized in the pavement depth direction; thus, the conventional 1D isoparametric
elements of degree k can be adopted, e.g., the 3-node quadratic elements as shown in Figure 2:
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where the shape function used was as follows:

N1 = −ξ(1−ξ)
2

N2 = ξ(1+ξ)
2

N3 = 1− ξ2

(1)

with ξ being local coordinate.

2.2. FE Solution of Displacements

The pavement is assumed to be supported at side edges (x = 0, x = a, z = 0 and z = c) in a
manner preventing all displacements in the vertical planes but permitting “unrestricted” movement
in the x- and z-directions. The shape functions are re-written as the conventional 1D shape functions
multiplied by the Fourier series, in which x ranges between zero and a; z ranges between zero and c.
If the displacement functions with three components u, v and w are formulated in the following form,
the boundary condition will meet this above-mentioned requirement:

d =


u
v
w

 =
M
∑

m=1

N
∑

n=1

 cos mπx
a sin nπz

c 0 0
0 sin mπx

a sin nπz
c 0

0 0 sin mπx
a cos nπz

c




umn

vmn

wmn


= ∑M

m=1 ∑N
n=1 Nmn·dmn,

with Nmn =

 cos mπx
a sin nπz

c 0 0
0 sin mπx

a sin nπz
c 0

0 0 sin mπx
a cos nπz

c

,

dmn =


umn

vmn

wmn

 = [Nk(y)]
{

dmn
k
}

.

(2)

Nmn is the matrix for the Fourier series expansion in the two horizontal directions, dmn is the
displacement vector without the Fourier series expansion, [Nk(y)] is the conventional 1D shape
function applied in the FEM model, and

{
dmn

k
}

represents the corresponding nodal displacements.
Similarly, the loading function for the pavement analysis can be formulated as:

f =
M
∑

m=1

N
∑

n=1
p(y)sin mπx

a sin nπz
c =

M
∑

m=1

N
∑

n=1
{p}mn,

p(y) = ∑S
s=1

(
2Ps
mπ

)[
cos mπ

a Xs1 − cos mπ
a Xs2

]
∑T

t=1

(
2Pt
nπ

)[
cos nπ

c Zt1 − cos nπ
c Zt2

]
,

(3)

where m and n are the terms of Fourier series in the x and z directions, respectively. In this study, both
M and N are adopted as 100, which has been previously proved to be sufficiently accurate to represent
the load variation [16,17]. The product of Ps and Pt represents the tire load pressure, when m = n; Xs1

and Zt1 are the x and z coordinates, where the tire load area starts, respectively; Xs2 and Zt2 are the x
and z coordinates where the tire load area ends, respectively.
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At the nodes the strains are determined through displacements:

ε =



εx

εy

εz

γxy

γyz

γzx


=



∂
∂x 0 0
0 ∂

∂y 0
0 0 ∂

∂z
∂

∂y
∂

∂x 0
0 ∂

∂z
∂

∂y
∂
∂z 0 ∂

∂x


d =

(
L1

∂
∂x + L2

∂
∂y + L3

∂
∂z

) M
∑

m=1

N
∑

n=1
Nmn·dmn

= ∑M
m=1 ∑N

n=1 Emndmn = ∑M
m=1 ∑N

n=1 Bmn·
{

dmn
k
}

,

(4)

where L1, L2, L3 are three different matrices of size 6 × 3 whose elements are either 0 or 1,

Emn = L1
∂Nmn

∂x
+ L2Nmn ∂

∂y
+ L3

∂Nmn

∂z
, (5)

and matrix

Bmn =
[
Bmn

1 Bmn
2 · · · Bmn

k+1
]
=
[

EmnN1(y) EmnN2(y) · · · EmnNk+1(y)
]

(6)

is called the strain-displacement matrix.
The relation between stresses and strains is used to express the total potential energy with nodal

displacements {d}:

Π({d}) =
∫

V

1
2
([B]{d})T [D]([B]{d})dV −

∫
V
([N]{d})T{b}dV −

∫
S
([N]{d})T{ f }dS . (7)

The nodal displacements {d} which correspond to the minimum of the functional Π are
determined by the condition that the first variation of Π should be zero, i.e.,

δΠ({d}) = 0,
δΠ({d}) =

∫
V{δd}T [B]T [D][B]{d}dV −

∫
V{δd}T [N]T{b}dV −

∫
S{δd}T [N]T{ f }dS .

(8)

Then, the arbitrariness of {δd} leads the following equilibrium equation for FE:∫
V
[B]T [D][B]dV{d} −

∫
V
[N]T{b}dV −

∫
S
[N]T{ f }dS = 0, (9)

which is commonly given in the following form:

[k]{d} = { f },
[k] =

∫
V [B]

T [D][B]dV and { f } =
∫

V [N]T{b}dV +
∫

S[N]T{ f }dS, begin
(10)

where [k] is the element stiffness matrix; and { f } is the load vector.
From Equations (4) and (10), the stiffness matrix of one element includes:

I1 =
∫ a

0

∫ c
0 sin mπx

a sin nπz
c · sin pπx

a sin qπz
c ·dxdz,

I2 =
∫ a

0

∫ c
0 cos mπx

a sin nπz
c · cos pπx

a sin qπz
c ·dxdz,

I3 =
∫ a

0

∫ c
0 cos mπx

a cos nπz
c · cos pπx

a cos qπz
c ·dxdz.

(11)

The integrals exhibit orthogonal properties, which ensure that:

I1 = I2 = I3 =

{
ac
4 , f or m = p and n = q
0, f or m 6= p or n 6= q

}
. (12)
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This means that the matrix (kmnpq)e is diagonal. In other words, the non-zero values are only
located on the diagonal, where m = p and n = q. Thus, the stiffness matrix can be reduced to:(

kmnmn
gk

)e
=

ac
4

∫
length

(
Bmn

g
T DBmn

k

)
dy m = 1, 2 . . . M; n = 1, 2 . . . N, (13)

where g and k represent the nodes of the element, respectively. The length corresponds to the length of
the element.

A typical term for the force vector becomes:

( f mn)e =
∫ ∫ ∫

vol
(Nmn)T{p}mndxdydz. (14)

By assembling the stiffness matrix of each element to the global domain, the global linear system
is achieved as follows:

K1111

K1212

. . .
KMNMN




U11

U12

...
UMN

+


F11

F12

...
FMN

 = 0. (15)

Equation (15) shows that the large system of equations splits up into M× N separate problems:

KmnmnUmn + Fmn = 0, (16)

where K is the global stiffness matrix; U is the global displacement vector; and F is the global
loading vector.

3. EEP Super-Convergence Strategy for EasyFEM

When Equation (16) is solved for Umn, both dmn and d can be obtained from Equation (2).
These two approximate solutions are denoted as dmn

h and dh to distinguish them from the exact
solutions. It is clear, that if M and N are fixed, the accuracy of dh mainly depends on the accuracy
of dmn

h . For conventional FEM models, a rather extensive mesh should be used to attain more
accurate dmn

h , which leads to a large number of degrees of freedom in the calculation. In this case, the
newly-developed super-convergence technique EEP was introduced into EasyFEM as to improve the
accuracy of the solutions for strains and stresses over the whole pavement model.

The original idea of the EEP technique came from a well-known mathematical theorem for FEM
called the projection theorem [37]. Actually, the principle of minimum potential energy with respect
to nodal displacements {d} in Equation (8) can be rewritten in the same manner with respect to the
continuous 1D displacement d(y) as follows:

δΠ(d(y)) =
∫

V
δd(y)T [E]T [D][E]d(y)dV−

∫
V

δd(y)T [N(x, z)]T{b}dV−
∫

S
δd(y)T [N(x, z)]T{ f }dS = 0.

(17)
By replacing δd(y) in Equation (17) with the test displacement d̃(y), an equivalent expression for

the above principle of minimum potential energy is the virtual work equation as follows:

a(d(y), d̃(y)) = ( f , d̃(y)),∀d̃(y) ∈ Sh,

with a
(

d(y), d̃(y)
)
=
∫

V d̃(y)T [E]T [D][E]d(y)dV,

(f, d̃(y)) =
∫

V d̃(y)T[N(x, z)]T{b}dV +
∫

S d̃(y)T[N(x, z)]T{f}dS,

(18)

where a(·, ·) and (·, ·) are defined as the energy product and the linear form in mathematics,
respectively, and Sh is the test space of FLM.
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It can be easily understood that Equation (18) holds true both for the exact solution d(y) and
the approximate solution dh(y). Always taking the same test displacement for these two cases, the
following projection theorem is derived for FLM:

a(d(y)− dh(y), d̃(y)) = 0, ∀d̃(y) ∈ Sh. (19)

This theorem holds true over the entire 3D pavement model. By assuming that it is approximately
true over one element of FLM, the EEP equation was obtained:

ae(d(y)− dh(y), d̃(y)) ≈ 0, ∀d̃(y) ∈ Sh. (20)

A typical element e of the FLM is shown in Figure 3, which is actually a small layer of the
pavement with the y-coordinate ranging from y1 to y2.
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Denoting Emn
13 = L1

∂Nmn

∂x + L3
∂Nmn

∂z , Emn
2 = L2Nmn, and considering the zeros from integration of
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(
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∂y
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with integration by parts along the y-direction, the EEP can be equivalently converted into the
following expression:

M
∑

m=1

N
∑

n=1

∫ y2
y1

(
−d̃mnT

Amn ∂2emn
h

∂y2 + d̃mnT
((Gmn)T − Gmn)

∂emn
h

∂y +
(

d̃mn
)T

Hmnemn
h

)
dy

+
(

d̃mnT
(Amn ∂emn

h
∂y + Gmnemn

h )
)y2

y1
≈ 0.

(23)

Since the test function d̃mn can be arbitrarily selected for any m and n, the left side of Equation (23)
is decoupled into

∫ y2
y1

d̃mnT
(
−Amn ∂2emn

h
∂y2 +

(
GmnT − Gmn

)
∂emn

h
∂y + Hmnemn

h

)
dy +

(
d̃mnT

(Amn ∂emn
h

∂y + Gmnemn
h )
)y2

y1
≈ 0. (24)

Taking two linear polynomials:

N1 =
y2 − y
y2 − y1

; N2 =
y− y1

y2 − y1
(25)

as two test functions d̃mn, respectively, and considering that:

dmn(y1) = dmn
h (y1),dmn(y2) = dmn

h (y2), (26)

since the nodal displacements are super-convergent based on mathematical theory, one can obtain
the following equation to calculate a recovered derivative solution at either of the two end-nodes of
element e [39]:

∂dmn
E (y1)
∂y = (Amn)−1[(b, N1

)
− ae(dmn

h , N1
)
− G1dmn

h (y1)
]
,

∂dmn
E (y2)
∂y = −(Amn)−1[(b, N2

)
− ae(dmn

h , N2
)
+ G2dmn

h (y2)
]
,

(27)

where:
i = 1, 2, m = 1, · · · , M, n = 1, · · · , N. (28)

Substituting the derivative results calculated from Equation (28) into Equation (4), recovered
strains and the corresponding stresses are obtained for the pavement model. This is the EEP
super-convergence technique for FLM. When it is implemented in EasyFEM, stresses are obtained with
much fewer elements and significantly less computational effort.

4. Numerical Analysis Using EasyFEM and EEP Techniques

4.1. Analytical Verification of EasyFEM

The analytical verification of the EasyFEM without EEP post-processing was carried out.
The models of the asphalt pavement were created in BISAR, ABAQUS and EasyFEM, which
are representative software applications developed based on LET, FEM and FLM, respectively.
The pavement type is widely used in Germany according to the guidelines RStO-12 [40] and
RDO-Asphalt-09 [1], as shown in Figure 4. The thicknesses of all layers except for the sub-grade were
derived from RstO-12 [40]. The thickness of the sub-grade was defined to be 2000 mm in ABAQUS
and EasyFEM after a previous mesh study in order to minimize the influence of the boundary on
the computational results. Furthermore, the length and width of the pavement in the full-scale
model were set to be 6000 mm based on the same reason. A full-scale model was created in the
EasyFEM while the model in ABAQUS was one-fourth symmetrical model. The full-scale model
exhibits advantages for the simulation of nonsymmetrical models with complex loading conditions
in the further development of the EasyFEM. In BISAR, the thickness of the sub-grade as well as the
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length and width of the pavement were set to be infinite according to the LET. The pavement surface
temperatures of −12.5 (winter) and 27.5 ◦C (summer) were assumed, and then the associated material
properties were determined according to RDO-Asphalt-09 [1], as listed in Figure 4.
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Figure 4. Geometrical data and material properties of the pavement.

The square load with the side length of 264 mm and uniformly distributed contact stress of 0.7 MPa
was applied at the center of the full-scale pavement surface in the EasyFEM and a corresponding
set-up was applied in ABAQUS. In BISAR, only circular loads can be defined and thus a uniform
contact load of 0.7 MPa with a radius of 150 mm was applied. In all models, the three asphalt layers
were totally bound; the two contact layers among the asphalt base course, road base course, sub-base
and sub-grade were defined as being partially bound.

In order to attain a high accuracy, a very fine mesh was adopted in ABAQUS and EasyFEM after
a mesh study. The mesh size in EasyFEM was uniformly set as 10 mm and thus 275 3-node quadratic
elements with 551 nodes were generated. In order to reduce the computational consumption, the mesh
size increases gradually from the top to the bottom and from the loading center to the boundary in the
one-fourth symmetrical model in ABAQUS, as shown in Figure 5. The number of elements and nodes
in ABAQUS are 162,728 and 193,601, respectively. There was no mesh generated from the BISAR.
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The computational results shown in Figure 6 are derived from five series of response points offset
from the loading center to the boundary.
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Figure 6. Comparison of vertical displacement at the top of the asphalt surface in (a) winter, (b) summer;
comparison of horizontal strain along transverse direction at the bottom of the asphalt base course
in (c) winter, (d) summer; comparison of vertical stress at the top of the road base layer in (e) winter,
(f) summer; comparison of vertical stress at the top of the sub-base layer in (g) winter, (h) summer;
comparison of vertical stress at the top of the sub-grade layer in (i) winter, (j) summer.

Given these figures, it can be concluded that the results derived from ABAQUS and EasyFEM are
consistent with each other, yet the results from BISAR exhibit great deviations from those from the other
two software applications, especially along the first two series of response points. The underlying reasons
for the differences can be attributed to the different geometrical definitions of the models in BISAR due to
its intrinsic limitation (circular load, infinite length and width of the layers and infinite thickness of the
sub-grade); the deviations are the largest at the response points that are closest to the load.

In Table 1, the computational results from ABAQUS and EasyFEM are considered at five critical
locations directly below the loading center shown in Figure 6, where maximum compressive or tensile
values may occur.

Table 1. Comparison between ABAQUS and EasyFEM based on the results at critical points below the
loading center.

Points Results
Winter

EasyFEM ABAQUS Difference

1 Vertical displacement [mm] −1.63 × 10−1 −1.64 × 10−1 7.72 × 10−4

(−0.47%)

2 Horizontal strain [-] 3.54 × 10−5 3.25 × 10−5 2.82 × 10−6

(8.68%)

3 Vertical stress [MPa] −6.57 × 10−2 −6.09 × 10−2 −4.84 × 10−3

(7.95%)

4 Vertical stress [MPa] −9.70 × 10−3 −9.62 × 10−3 −8.61 × 10−5

(0.90%)

5 Vertical stress [MPa] −7.57 × 10−3 −7.55 × 10−3 −1.51 × 10−5

(0.20%)

Points Results
Summer

EasyFEM ABAQUS Difference

1 Vertical displacement [mm] −2.99 × 10−1 −3.02 × 10−1 3.24 × 10−3

(−1.07%)

2 Horizontal strain [-] 1.01 × 10−4 9.33 × 10−5 7.39 × 10−6

(7.92%)

3 Vertical stress [MPa] −1.75 × 10−1 −1.62 × 10−1 −1.27 × 10−2

(7.85%)

4 Vertical stress [MPa] −2.06 × 10−2 −2.04 × 10−2 −1.75 × 10−4

(0.86%)

5 Vertical stress [MPa] −1.43 × 10−2 −1.43 × 10−2 −1.01 × 10−5

(0.07%)



Appl. Sci. 2017, 7, 611 12 of 17

It can be stated that the results from both programs have a high correlation except for a slightly
larger difference in the horizontal strain at the bottom of the asphalt base course and vertical stresses
at the top of the sub-base. Considering the different element types and mesh algorithms in the two
programs, the differences are judged to be acceptable. Moreover, the computational time of the
EasyFEM is much shorter than that of the ABAQUS. Both analyses were run on a computer with an
Intel Core Duo 3.4 GHz, 32 GB RAM (Santa Clara, CA, USA). On average, the computational time
required by the ABAQUS is about 420 s, whereas the EasyFEM model requires 120 s. It is worth
mentioning that the model in ABAQUS is one-fourth symmetrical, but the one in EasyFEM is full-scale.
With code optimization, the computation time of the EasyFEM can be reduced further. In summary,
the accuracy and efficiency of the EasyFEM are proved by these comparisons.

4.2. Comparison of Convergence Rate between Ordinary EasyFEM and EasyFEM with EEP
Post-Processing Techniques

As discussed above, by using 275 3-node quadratic finite elements along the y-direction, EasyFEM
has performed fairly well compared to ABAQUS. If the number of elements can be further reduced
without decreasing the computational accuracy, the EasyFEM will be even more suitable for application
in pavement design and assessment from an engineering point of view. The EEP technique for
recovering derivatives makes this possible. The convergence rates between ordinary EasyFEM and
EasyFEM with the EEP post-processing technique are compared in this section to show the impact of
the EEP technique on the solution accuracy.

To emphasize the significant improvement brought about by the application of EEP, a series of
rough meshes with 2-node linear elements was adopted in the EasyFEM. In particular, three models
with different meshes were created, i.e., each layer of the asphalt pavement was divided into one, two
and four elements (Ne = 1, 2 and 4), respectively; the asphalt pavement had six layers resulting in a
total of 6 × Ne = 6, 12 and 24 linear elements in the three pavement models. EasyFEM with the EEP
post-processing technique can produce strains and stresses with a higher accuracy, which is demonstrated
by a number of numerical results. In Figure 7, vertical strains at the points located below the loading
center and at the bottom of asphalt base course were compared between ordinary EasyFEM and EasyFEM
with the EEP technique, where one, two and four linear finite elements were used in each layer along the
y-direction, respectively. The results from the model with the fine mesh in ABAQUS created in Section 4.1
were taken as the reference. Since the stresses are calculated by multiplying strains with elastic constants,
similar results can be obtained for vertical stresses as well. It can be seen that the EEP technique for
FLM, which converges faster, can significantly improve the accuracy of vertical strains and stresses of a
plain EasyFEM. With the EEP technique, the EasyFEM can offer reliable results much more quickly and
efficiently and is thus suitable to be applied in pavement engineering practice.
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Figure 7. Comparison of the vertical strains at the points located below the loading center and at the
bottom of asphalt base course obtained with ABAQUS, ordinary EasyFEM and EasyFEM with EEP
(Element Energy Projection), (a) winter; and (b) summer.
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4.3. Application of EasyFEM

The EasyFEM was used to predict the mechanical responses and the predictions were compared
with the data derived from field measurements on the test track of the German Federal Highway
Research Institute (BASt), as shown in Figure 8a. A truck driving at a speed of approximately 30 km/h
was selected for the measurement to apply the loads, as shown in Figure 8b.
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During the test track construction, strain gauges and pressure load cells were embedded at
different depths of the test track along the center of the wheel path, which can measure strains and
stresses along the corresponding directions when the truck passes. Due to the low speed of loads
and the suggestion from [17], a static analysis with stationary loads is precise enough to compute the
pavement responses. The material parameters of the pavement layers were derived from the laboratory
tests on the specimens drilled from the test track. The thicknesses and the material properties of the
test track are listed in Table 2 [17]. The length longitudinal to the direction of traffic (both directions)
was defined as 20 times the loading radius to limit the time required for the computational calculation.
The width of the pavement was defined to be 3750 mm.

Table 2. Layer thickness and material properties of the test track.

Layer Thickness [mm] µ E [MPa]

Surface course 40 0.35 11150
Binder course 50 0.35 10435

Asphalt base course 110 0.35 6893
Gravel base layer 150 0.49 157.8

Frost protection layer 570 0.49 125.7
Sub-grade 2000 0.49 98.9
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The loading parameters are listed in Table 3 [17]. All of the contact areas are assumed as squares
with a side length of 264 mm. The distance between the center of the first left tire and the left edge of
the test track along the traffic direction is 1100 mm.

Table 3. Loading parameters of the tire.

Axle Wheel Number Pressure [MPa] Axle Load [kg]

1 2 0.522 7425
2 4 0.377 10725
3 2 0.513 7300
4 2 0.511 7275
5 2 0.519 7375

The upper three asphalt layers were totally bound. The two contact layers between the asphalt
base course, gravel base layer, frost protection layer and sub-grade were defined as being partially
bound. The 3-node quadratic elements with the mesh size of 10 mm were applied in the EasyFEM
with the EEP technique.

The following computational values were compared with the measured data, which is used to
verify the EasyFEM. The strain along the traffic direction at the bottom of the asphalt base course
and the vertical tensile stress at the top of the gravel base layer from the location below the center of
the left tire of each axle were used in the validation process. The values from the measurement and
simulation can be seen in Figure 9. All computational strains are higher than the measured values
and all computational stresses are lower than those obtained from the measurements. Due to the
uncertainties and fluctuations, the error range is considered to be ±20% [17]. The computational
values are all within this range. Thus, the EasyFEM is suited to simulate the response of the asphalt
pavement under the traffic load with sufficient accuracy.
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Figure 9. Comparison of the results derived from measurement and simulation. (a) horizontal strain
along the traffic direction on the bottom of the asphalt base course; (b) vertical stress on the top of the
gravel base layer.

5. Conclusions

Initially, the EasyFEM code is developed to predict the mechanical responses of asphalt pavements
under stationary load. The accuracy of the program is verified by comparing the results to those
obtained from BISAR and ABAQUS. The analytical verification showed that the pavement responses
derived from EasyFEM and ABAQUS are in accordance with one another. Due to the different
definitions in the models of the BISAR, some results appear to exhibit larger differences than those
observed between EasyFEM and ABAQUS, which indicates that BISAR is not as flexible as the other
two software applications when simulating the responses of the asphalt pavements. It should be
emphasized that the computational time of the EasyFEM is much shorter than that of ABAQUS.
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The EEP super-convergence strategy for FLM is introduced and applied in the EasyFEM to improve the
accuracy of derivatives at two end-nodes on any element. The convergence rate of the EasyFEM with
the EEP post-processing technique is much faster than without the EEP. The application of the EasyFEM
proves that the current version of EasyFEM can provide a reliable prediction of the mechanical
responses of asphalt pavements and thus represents a flexible and robust base for further development.

For the next step of development, various material properties, e.g., viscoelasticity and nonlinear
elasticity, may be applied for asphalt layers and sub-base of the pavement, respectively. The EEP
technique will be further developed for the new EasyFEM with more functions. Based on the EEP
technique, adaptivity is to be included into the EasyFEM, i.e., an error tolerance for the solution
is specified by the user before the calculation, and, finally, a numerical solution is obtained that
satisfies the error tolerance, while the meshes used in the simulation are adaptively generated and
adjusted automatically to produce a satisfactory solution with a high quality and accuracy. With these
improvements, the EasyFEM should be more suited to predict the mechanical performances of the
asphalt pavement.
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