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Abstract: A Differential Quadrature Time Element Method (DQTEM) was proposed by the author and
co-worker, its drawback is the need of larger storage capacity since the dimension of the coefficients
matrix for solution is the product of both spatial degrees of freedom and temporal degrees of
freedom. To solve this problem, an improved DQTEM is developed in this work, in which the
differential quadrature method is used to discretize both spatial and time domains, sequentially,
and the dimension of the coefficients matrix is greatly reduced without losing solution accuracy.
Theoretical studies demonstrate the improved DQTEM features superiorities including higher-order
accuracy, adequate stability and symplectic characteristics. The improvement of DQTEM is validated
by extensive comparisons of the present DQTEM with the original DQTEM.
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1. Introduction

The Differential Quadrature Method (DQM) [1] is an effective numerical technique to be used
as a global finite difference scheme or generalized collocation method. The study of DQM has been
mainly focused on how to select grid points, how to impose initial or boundary conditions, how
to determine weighting coefficients, and convergence of solutions. The relevant and representative
publications are reviewed below in turn since DQM is applied to the discretization of spatial and
temporal domains in the present work.

The extremum points of Legendre polynomial in the domain [−1, 1] [2] and the so-called
Gauss–Lobatto–Chebyshev points [3] were taken as unequally aligned node points, and the latter has
been widely accepted by far.

The efficient ways to deal with boundary conditions are formulating weighting matrix [4,5] except
δ method [3,6], and modifying the weighting coefficient points [5,7], adding boundary degrees of
freedom [8], employing Differential Quadrature Element Method (DQEM) [9], etc. The initial conditions
can be applied via some representative ways, including expressing initial conditions as Differential
Quadrature (DQ) analog equations at sampling points [2,10,11], modifying DQ rule [10,12], modifying
trial functions [13,14], and modifying weighting coefficient matrix [15,16]. Notably, the advantage
of modified DQ rule method is the accuracy of state variables at the end of time interval, and its
accuracy can be improved up to 2n order by using only n + 1 sampling points with unconditional
stability and non-dissipation. However, the power of the displacement polynomials is the same with
that of the velocity, which violates the differential relation between displacement and velocity [10,17].

Appl. Sci. 2017, 7, 471; doi:10.3390/app7050471 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/journal/applsci


Appl. Sci. 2017, 7, 471 2 of 15

Xing and Guo changed coefficients matrix and generalized load vector to simplify the imposition of
initial conditions [18].

As for the weighting coefficients, Quan and Chang obtained the first and second order explicit
weighting coefficients by differentiating Lagrange polynomials [19,20]. Shu and Richards derived
high-order weighting coefficients from recursion formulae [21].

In addition, Bert and Wang pointed out that DQM convergence speed is equal to that of Fourier
series solution while faster than that resulting from Ritz method; moreover, DQM is much simpler than
Fourier series, which is easily implemented by coding and applicable to static and dynamic structural
analysis [22].

In the past three decades, DQM has developed to an accurate and efficient numerical method for
plenty of applications. In solid mechanics, DQM is usually used for plate or shell [23,24] structure
analysis; many examples refer to mechanical behavior of a plate or panel [25,26], vibration of composite
laminated plate [27,28] considering lower-order shear deformation, nonlinear bending problems of
an orthotropic plate [29], nonlinear vibrations of a plate and nonlinear dynamics of viscoelastic
beams [27,30], etc. In fluid mechanics, typical applications include incompressible viscous fluid flow
analysis together with hydrodynamics and heat transfer [3], circulation around a circular cylinder at
Reynold’s number problems for incompressible viscous fluid flow [3,31], boundary layer equations
solutions [32,33] and coupled heat transfer problems [2,34,35].

In 2009, Xing and Liu [36] proposed a Differential Quadrature Finite Element Method (DQFEM)
which was motivated by the complexity of imposing boundary conditions in DQM of strong form and
the unsymmetrical element matrices in DQEM. In their later study, the explicit forms were presented for
the C0 and C1 one-dimensional to three-dimensional structural element matrices and load vectors [37].

The innovative idea of discretizing time coordinates through DQ rule were initially given by
Bellman et al. [1,38] and then extended to spatial domain. In 2012, Xing and Guo [18] formulated the
Differential Quadrature Time Element Method (DQTEM), which is denoted as DQTEM0 in this paper
for brevity, in which the time coordinate is also discretized by DQ rule and the spatial coordinate
is discretized by the standard Finite Element Method (FEM). The DQTEM0 is much more accurate
and efficient than conventional low-order time integration methods. Since Kronecker product of
matrices are adopted in DQTEM0, the coefficients matrix is consequently the product of spatial and
time Degrees of Freedom (DOFs), which results in considerable increase of the dimension of stiffness
coefficient matrix. In this context, the DQTEM0 is improved in the present work, in which both spatial
and temporal domains are discretized via DQM; therefore, the dimension of the coefficients matrix is
greatly reduced without sacrifice of accuracy.

Generally speaking, it is agreed that a competitive method should be equipped with higher-order
accuracy and broad stable range as well as high computational efficiency. Bathe and Wilson [39]
presented a perfect and underlying process for the accuracy and stability analysis of time integration
methods. By referencing to predecessors’ procedure, this paper makes comprehensive researches
on the improved DQTEM which is different from the Differential Quadrature Time Finite Element
Method (DQTFEM) [40] proposed recently by the authors. DQTFEM solved the weak form of ordinary
differential equations of motion based on the general form of Hamiltonian Variational Principle, the
spatial domain was discretized by the standard FEM, and the Gauss-Lobatto-Legendre integration
points were used in the calculation of the time derivatives through DQ rule. However, the improved
DQTEM in this paper can be regarded as a combination of DQFEM and DQTEM0, in which the
ordinary differential equations of motion in strong form is solved directly, and the structural matrices
are calculated by using DQFEM.

2. Basic Rules and Formulations

In this paper, the spatial coordinate is discretized by using DQM, which is different from that in
DQTEM0. The formulae of DQ rule and Gauss-Lobatto quadrature rule are the same for both spatial
domain [−1, 1] and temporal domain [−1, 1], then for a better understanding of the present work,
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the spatial coordinate is used in the following for the brief introduction of DQ and Gauss–Lobatto
quadrature rules.

2.1. The DQ Rule

The basic idea of DQ rule is to analogously obtain the derivative of a function or variable by
a weighted linear sum of the function or variable values at all discrete points in the domain [41,42],
the r-th derivatives of f (x) at the i-th point can be expressed by

∂r f (x)
∂x

∣∣∣∣
i
≈

m

∑
j=1

A(r)
ij f (xj)(i = 1, 2, · · · , m) (1)

where A(r)
ij are the weighting coefficients and m is the number of sampling points. The weighting

coefficients have explicit forms [19] as

A(1)
ij =


m
∏

k=1,k 6=i,j
(xi − xk)/

m
∏

k=1,k 6=j
(xj − xk), (i 6= j)

m
∑

j=1,j 6=i

1
(xi−xj)

(i = j)
(2)

Higher-order weighting coefficients can be obtained by the sum of products of lower orders
as [21]

A(r)
ij =

m

∑
k=1

A(1)
ik A(r−1)

kj (3)

2.2. Gauss–Lobatto Quadrature Rule

The Gauss–Labatto quadrature formula for function f (x) with precision degree (2m − 3) is

∫ 1

−1
f (x)dx =

m

∑
j=1

C∗j f (xj) (4)

where the quadrature points are the zeros of polynomial as

P′m−1(x) =
[(m−1)/2]

∑
k=0

(−1)k(2m− 2− 2k)!(m− 1− 2k)
2M−1k!(m− 1− k)!(m− 1− 2k)!

xm−2−2k (5)

the quadrature coefficients C∗j are given by

C∗1 = C∗m =
2

m(m− 1)
, C∗j =

2

m(m− 1)[Pm−1(xj)]
2 (j 6= 1, m) (6)

2.3. The Formulae of the Improved DQTEM

The ordinary differential equation in structural dynamics has the form as

M
..
x + C

.
x + Kx = f (7)

where M = [Mij]M×M, C = [Cij]M×M and K = [Kij]M×M are the mass, damping and stiffness matrices
which are formulated explicitly by using spatial DQFEM, and will be indicated below. The displacement
vector x and load vector f are defined as{

xT = [x1(t) x2(t) · · · xM−1(t) xM(t)]
f T = [ f1(t) f2(t) · · · fM−1(t) fM(t)]

(8)
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By using the DQ rule, the velocities at sampling points can be obtained

.
xik =

n

∑
j=1

A(1)
kj xij (i = 1, 2, · · · , M and k = 1, 2, · · · , n) (9)

where n is the number of DOFs of time element, a dot over the letter denotes the time derivative;
the first subscript i of x or

.
x stands for the spatial DOF number, the second subscripts j and k stand for

the time point number; and
.
xik and xij represent the values of

.
xi at time point k and xi at time point j,

respectively. Note that Gauss–Lobatto–Chebyshev points [3] are employed as time sampling points in
present work. Let xi = [xi1, xi2, · · · xin], based on the DQ rule, the velocity vector

.
xi and acceleration

vector
..
xi can be written in a compact form as

.
xi = Atxi (10)

..
xi = At

.
xi = (At)

2xi = Btxi (11)

where At and Bt are the first and second order weighting coefficient matrices with respect to time,
respectively. Substituting Equations (10) and (11) into Equation (7) yields

MXBT
t + CXAT

t + KX = F (12)

and {
XT = [x1 x2 · · · xM−1 xM]

FT = [f 1 f 2 · · · f M−1 f M]
(13)

where f i = [ fi1, fi2, · · · fin] has the similar definition as xi. According to matrix theory, Equation (12)
can be transformed into another form

GZ = R (14)

where Z = csX), R = cs(F), “cs” indicates column expansion of a matrix, and{
ZT = [x11 · · · xM1 x12 · · · xM2 x1n · · · xMn]

RT = [ f11 · · · fM1 f12 · · · fM2 f1n · · · fMn]
(15)

G = Bt ⊗M + At ⊗ C + E⊗K (16)

where “⊗“ is Kronecker product, and E is an n × n unit matrix. Introducing initial conditions into
Equation (14), one can solve displacements X, and the velocities and accelerations can be achieved
through Equations (10) and (11).

For a system with Rayleigh damping, its damping matrix can be represented by

C = αK+βM (17)

where α and β are the pre-determined constants [43,44]. When C = 0, Equation (12) can be solved
accurately and efficiently by the Bartels and Stewart method [45].

2.4. DQ Rod and Beam Elements

For the comprehensive understanding to obtain K and M matrices based on DQ rule and the
minimum principle of total potential energy, the C0 DQ finite rod element and the C1 DQ finite beam
element are given below, respectively.
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2.4.1. C0 DQ Rod Element

Assume the longitudinal displacement function of a uniform rod element is

u(x) =
M

∑
i=1

li(x)ui (18)

where li stands for Lagrange polynomials, ui = u(xi) is the displacement at the Guass–Lobatto
quadrature point, and xi is the coordinate of the Guass–Lobatto quadrature point. According to
DQ rule and Gauss–Lobatto quadrature rule, the total potential energy functional and kinetic energy
coefficient functional are

∏ = 1
2

∫ L
0 ES

(
∂u
∂x

)2
dx−

∫ L
0 f udx

= 1
2

m
∑

i=1
C∗i ES

(
m
∑

j=1
A(1)

ij uj

)2

−
m
∑

i=1
C∗i fiui

= 1
2 uTKu− uTF

(19)

T0 =
1
2

∫ L

0
ρSu2dx =

1
2

ρS
m

∑
i=1

C∗i u2
i =

1
2

uTMu (20)

where E and ρ are the Young’s modulus and mass density, respectively; S and L are the across section
area and length of rod element, respectively; and fi is the distributed force. The mass matrix M, stiffness
matrix K, generalized load vector F and other variables are given by

K = ESAT
s C∗s As, M = ρSC∗s , F = C∗s f (21)

uT = [u1 u2 · · · um] (22)

f T = [ f (x1), f (x2), · · · f (xm)] (23)

C∗s = diag[C∗1 C∗2 · · · C∗m] (24)

where the matrix As is the first order weighting coefficient matrix with respect to space, and C∗s is the
Gauss–Lobatto quadrature coefficient diagonal matrix.

2.4.2. C1 DQ Euler Beam Element

Assume the deflection of a uniform Euler beam element is

w(x) =
m

∑
i=1

li(x)wi (25)

where wi = w(xi) is the deflections at the Guass–Lobatto quadrature nodes, similar to ui. The total
potential energy and kinetic energy coefficient functions are

∏ = 1
2

∫ L
0 EI

(
∂2w
∂x2

)2
dx−

∫ L
0 f wdx

= EI
2 wTBT

s C∗s Bsw−wTC∗s f
(26)

T0 =
1
2

∫ L

0
ρSw2dx =

1
2

wT(ρSC∗)w (27)

where Bs = (As)2, I is the moment of inertia, and

wT = [w1 w2 w3 · · · wm−1 wm] (28)
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In order to satisfy C1 inter-element continuity requirement of Euler beam element, the displacement
vector is modified to

wT = [w1 dw1/dx w3 · · · wm−2 wm dwm/dx] (29)

Based on DQ rule, the relation between w and w is readily given by

w = Tw (30)

where

T =



1 0 0 · · · 0 0 0

A(1)
1,1 A(1)

1,2 A(1)
1,3 · · · A(1)

1,m−2 A(1)
1,m−1 A(1)

1,m
0 0 1 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0 0
0 0 0 · · · 0 0 1

A(1)
m,1 A(1)

m,2 A(1)
m,3 · · · A(1)

m,m−2 A(1)
m,m−1 A(1)

m,m


(31)

Substitute Equation (30) into Equations (26) and (27), the mass matrix M, stiffness matrix K and
generalized load vector F are obtained as

K = EIT−T(BsC∗s Bs)T−1, M = T−T(ρSC∗s )T
−1, F = T−TC∗s f (32)

In fact, the mass matrix, stiffness matrix and generalized load vector of other structures with
arbitrary geometry, such as plane , Kirchhoff plate and shells, etc., can be obtained by the same way [37].
Note that DQ rule cannot be used directly for irregular geometric domain; it should be transformed
from the Cartesian x–y coordinate system to the natural ξ–η coordinate system, so the DQ rule should
be reformulated, and Bert and Malik [46] have done this work first, and Xing and Liu [36] gave a very
detailed description about the transformation.

2.5. Discussion

(1) Unlike previous high-order methods, the present method is easily implemented, and the shape
functions are no long necessary for constructing spatial element matrices, which are explicit and
can be obtained by simple algebraic operations of weighing coefficient matrices of the DQ and
Guass–Lobatto quadrature rules.

(2) For any C0 and C1 problems, Lagrange polynomials are used as trial function; in addition, the
Guass–Lobatto quadrature points are selected as nodes and collocated not uniformly.

(3) The mass matrix of DQ finite element is diagonal, which is different from conventional diagonal
lumped mass matrix, but the element mass matrix used in DQTEM0 is full.

(4) Compared with DQTEM0, the dimension of the coefficient matrix G of the present method
is reduced and the present method is more efficient than DQTEM0, which are validated by
numerical results in Section 4.

(5) To avoid confusion, the comparison among DQTFEM, DQTEM0 and the improved DQTEM is
presented in Table 1. In addition, these DQ time element methods seem similar to the standard
spectral method in some sense, since they are all based on polynomial interpolation. The standard
spectral method is global interpolation, in which the Chebyshev polynomials, the Legendre
polynomials and the Fourier series or harmonic series are employed in general. While the DQ
time element methods employ Lagrange polynomials, and if only one element is employed in
time and/or spatial domain, they are global interpolation; if the domain is divided into several
elements, the DQ time element methods are local interpolation.
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Table 1. Comparison among DQTFEM (Differential Quadrature Time Finite Element Method),
DQTEM0 and the improved DQTEM.

Method Equation Time Domain Spatial Domain

DQTFEM [40] Integral form or weak form
DQ time finite element

with non-uniform nodes
.
xi = Atxi

Conventional finite element
with uniform nodes

DQTEM0 [18] Differential form or strong form
DQ time element with

non-uniform nodes
.
xi = Atxi,

..
xi = A2

t xi

Conventional finite element
with uniform nodes

Present Differential form or strong form
DQ time element with

non-uniform nodes
.
xi = Atxi,

..
xi = A2

t xi

DQ finite element with
non-uniform nodes

.
ui = Asui for C0 problems
..
wi = A2

s wi for C1 problems

3. Accuracy and Stability

By virtue of modal decomposition, the linear undamped multi-DOFs system can be equivalently
transformed to a set of single-DOF systems; therefore, in the analysis of accuracy and stability of a new
method, single-DOF system is used generally. Consider the following single-DOF system

..
x + (ωh)2x = 0 (33)

where ω is the angular frequency, h is time step size, here an over dot represents the differential with
respect to the non-dimensional time τ = t/h, t is the real time. In this case, displacement vector x is

xT = [ x1 x2 x3 · · · xn ] (34)

where xi (i = 1, 2, . . . , n) denote the displacements at time sampling points, and

G = B + (wh)2 E, Z = x, R = 0 (35)

According to the method of imposing initial conditions in Reference [18], the relationship between
the n-th sampling point and the initial displacement and velocity is[

xn
.
xn

]
= J

[
x0
.
x0

]
(36)

and the elements of the Jacobi matrix J are
J11 = Sn1

J12 = Snn

J21 = An1S11 + An1S21 + · · ·+ AnnSn1

J22 = An1S1n + An1S2n + · · ·+ AnnSnn

(37)

where S = G−1, then stable interval can be obtained by using criterion ρ(J) ≤ 1, ρ(J) is the spectral
radius, which is shown in Figure 1, and the first stable intervals are listed in Table 2. It should be
stressed that, for different sampling point n, ρ(J) > 1 or ρ(J) = 1.
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Table 2. The first stable intervals with ρ(J) = 1 for different n.

n 3 4 5 10 15 30

0 < wh ≤ 2.828 2.954 3.098 6.282 12.56 34.52

Before discussing the accuracy of the improved DQTEM, the definition of sympletic method is
recalled first. If the Jacobi matrix J of a method satisfies the following conditions

J1=J11JT
22 − J12JT

21 = I, J2 = JT
11J22 − JT

21J12 = I
J3 = JT

11J21 − JT
21J11 = 0, J4 = JT

12J22 − JT
22J12 = 0

J5 = J11JT
12 − J12JT

11 = 0, J6 = J21JT
22 − J22JT

21 = 0
(38)

then the method is symplectic which preserves energy and momentum of conservative system.
The present improved DQTEM is proved to be highly symplectic (see Table 3), from which one
can see Equation (37) is satisfied excellently, especially J3–J6 are rigorously satisfied. This implies the
improved DQTEM has high-order accuracy for amplitude and phase, which will be validated below
by numerical comparisons.

Table 3. The Precisions of J1~J6, |J| and ρ(J).

(n, max (ωh)) abs(J1 − 1) abs(J2 − 1) Ji (i = 3, 4, 5, 6) abs(|J| − 1) abs(ρ(J) − 1)

(3, 2.8284) 2.3563 × 10−7 2.3536 × 10−7 0 2.6781 × 10−7 1.5214 × 10−9

(4, 2.9541) 5.5475 × 10−8 5.5475 × 10−8 0 6.0547 × 10−8 2.2148 × 10−10

(5, 3.0983) 4.0174 × 10−8 4.0174 × 10−8 0 4.2503 × 10−8 3.2145 × 10−10

(10, 6.2827) 1.0043 × 10−10 1.0043 × 10−10 0 1.5340 × 10−10 1.0018 × 10−11

(15, 12.5662) 2.9468 × 10−11 2.9468 × 10−11 0 3.0976 × 10−11 4.2154 × 10−12

(20, 18.8495) 1.4581 × 10−9 1.4581 × 10−9 0 1.0002 × 10−9 7.4521 × 10−11

(25, 28.2741) 5.1471 × 10−8 5.1471 × 10−8 0 5.9896 × 10−9 4.2154 × 10−10

(30, 34.5274) 9.2145 × 10−8 9.2145 × 10−8 0 9.5474 × 10−9 6.2148 × 10−10

Note: max (ωh) indicates the upper limit of ωh for the first stable interval in Table 2.
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4. Numerical Analysis

This section aims at demonstrating the superiority of the improved DQTEM over the DQTEM0,
the free vibrations of rod and beam are first solved, then the impact problem of rod. The used material
properties are listed in Table 4. All numerical results are obtained by MATLAB.

Table 4. Material properties.

Rod Euler Beam

Young’s modulus E = 125 GPa Young’s modulus E = 125 GPa
Density ρ = 8980 kg/m3 Density ρ = 8980 kg/m3

Length l = 1 m Length l = 3 m
Diameter d = 0.1 m Cross section area S = 0.0468 m2

4.1. Frequency Comparisons

The natural frequencies of a rod and a Euler beam are obtained by the improved DQTEM (or using
the spatial DQ finite element) and DQTEM0 (or using linear rod element and cubic beam element);
the results are compared with exact ones to show the advantage of the proposed method.

For evaluating the computational accuracy of natural frequency, a relative error is defined

RelErr1 =
abs(Exact− Present)

Exact
× 100 (39)

where the exact frequencies are obtained by solving characteristic differential equations according
to boundary conditions. For evaluating the effectiveness of both methods in calculating frequencies,
a percentage is defined as

Nerr5 =
Merr5

M
× 100% (40)

where Merr5 is the number of frequencies with RelErr1 less than 5% and M is the total number
of frequency.

4.1.1. Uniform Rod

This subsection aims to show the improved DQTEM is more accurate than DQTEM0, if the spatial
DOFs used by both method are the same.

Table 5 gives the comparisons of natural frequencies via constant strain rod element and DQ
element for a fixed-free rod, in which the dimensionless frequency parameter λ = ωl/c is used,
where c =

√
E/ρ is the longitudinal wave propagation velocity. In Table 5, NE is the number of

spatial element, and m is the DOF of each spatial element.
For this problem, DQTEM0 adopts 10 and 100 constant strain elements, respectively. For comparison

using the same number of spatial DOFs, the improved DQTEM employs a DQ element with 11 and
101 unequally spaced points (Gauss–Lobatto–Chebyshev points), correspondingly. It can be concluded
from Table 5 that the Nerr5 of DQTEM0 with NE = 10, m = 2 is about 30%, while the Nerr5 of the
corresponding improved DQTEM with NE = 1, m = 11 is almost 70%, and the RelErr1 of the improved
DQTEM are much smaller than DQTEM0. A similar conclusion is also apparent when NE = 100, m = 2
is used in DQTEM0 and NE = 1, m = 101 is used in the improved DQTEM. If more spatial DOFs are
used, this conclusion can also be observable.

Note that Nerr5 indicates the percent of accurate frequencies, for example, when M = 10 as in
Table 5, the RelErr1 of the first three frequencies by DQTEM0 is less than 5%, so Merr5 is 3, then
Nerr5 = Merr5/M × 100% = 3/10 × 100% = 30%.

To further show the superiority, the improved DQTEM is also compared with High-Order
Lagrange Element Method (HOLEM) with equally spaced nodes in Table 6. It can be seen in Table 6
that the Nerr5s of the improved DQTEM and HOLEM are the same since they use the same order of
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interpolation polynomials. However, the improved DQTEM is more accurate and efficient because,
in the improved DQTEM, the unequally spaced nodes are used, and the mass and stiffness matrices
are only the products of the explicit weighting coefficient matrix and the coefficient matrix of
Gauss–Lobatto integration, while those of HOLEM depend on shape functions.

From the comparisons in Tables 5 and 6, one can see that the improved DQTEM is superior to
DQTEM0 if the same number of spatial DOFs is used for the solution of natural frequencies, which is
further validated by the results of the following beam.

Table 5. Frequency parameter λ of rod by linear rod element and DQ (Differential Quadrature) element.

Order Exact

M = 10 M = 100

DQTEM0
NE = 10, m = 2

Present
NE = 1, m = 11

DQTEM0
NE = 100, m = 2

Present
NE = 1, m = 101

λ RelErr1 λ RelErr1 λ RelErr λ RelErr1

1 1.5708 1.5724 0.1028 1.5708 6.3611 × 10−8 1.5708 0.0010 1.5708 7.2083 × 10−11

2 4.7124 4.7561 0.9277 4.7124 1.2722 × 10−7 4.7128 0.0093 4.7124 6.4515 × 10−12

3 7.8540 8.0571 2.5859 7.8540 2.5289 × 10−6 7.8560 0.0257 7.8540 7.7932 × 10−12

4 10.9956 11.5542 5.0803 10.9956 1.3213 × 10−4 11.0011 0.0503 10.9956 9.0158 × 10−13

5 14.1372 15.3203 8.3689 14.1355 0.0117 14.1489 0.0833 14.1372 1.4325 × 10−12

6 17.2788 19.4002 12.2779 17.2258 0.3065 17.3003 0.1244 17.2788 5.9357 × 10−13

7 20.4204 23.7547 16.3288 20.2612 0.7792 20.4559 0.1738 20.4204 4.9302 × 10−13

8 23.5619 28.1465 19.4575 25.1505 6.7420 23.6165 0.2315 23.5619 4.2105 × 10−13

9 26.7035 31.9858 19.7813 36.1197 35.2620 26.7829 0.2974 26.7035 3.4865 × 10−13

10 29.8451 34.3236 15.0056 70.5585 136.4153 29.9560 0.3715 29.8451 3.3358 × 10−13

Nerr5 30% 70% 35% 70%

Table 6. Frequency comparisons of rod using high-order rod elements.

Order Exact

M = 10 (NE = 1, m = 11) M = 100 (NE = 1, m = 101)

HOLEM Present HOLEM Present

λ RelErr1 λ RelErr1 λ RelErr1 λ RelErr1

1 1.5708 1.5708 9.1035 × 10−7 1.5708 6.3611 × 10−8 1.5708 5.2441 × 10−9 1.5708 7.2083 × 10−11

2 4.7124 4.7124 1.1863 × 10−6 4.7124 1.2722 × 10−7 4.7124 7.4895 × 10−9 4.7124 6.4515 × 10−12

3 7.8540 7.8540 2.0513 × 10−5 7.8540 2.5289 × 10−6 7.8540 8.6134 × 10−10 7.8540 7.7932 × 10−12

4 10.9956 10.9957 8.3315 × 10−4 10.9956 1.3213 × 10−4 10.9956 1.9500 × 10−9 10.9956 9.0158 × 10−13

5 14.1372 14.1436 0.4586 14.1355 0.0117 14.1372 4.2104 × 10−11 14.1372 1.4325 × 10−12

6 17.2788 17.3941 0.6675 17.2258 0.3065 17.2788 6.5482 × 10−10 17.2788 5.9357 × 10−13

7 20.4204 21.2563 4.0938 20.2612 0.7792 20.4204 3.6833 × 10−10 20.4204 4.9302 × 10−13

8 23.5619 27.2485 15.6461 25.1505 6.7420 23.5619 2.5574 × 10−11 23.5619 4.2105 × 10−13

9 26.7035 39.5463 48.0939 36.1197 35.2620 26.7036 3.5423 × 10−10 26.7035 3.4865 × 10−13

10 29.8451 77.5366 159.7964 70.5585 136.4153 29.8451 1.5918 × 10−10 29.8451 3.3358 × 10−13

Nerr5 70% 70% 70% 70%

CPU/s 1.106 0.016 417.625 0.051

4.1.2. Euler Beam

A simply supported Euler beam is considered here, the cubic element involving deflection
and slope at each node is used in DQTEM0, but all DOFs of an element in the improved DQTEM
are deflections. Non-dimensional frequency parameter λ = βl is introduced in comparison, where
β4 = ρSω2/EI.

Similar to the rod, DQTEM0 adopts 10 and 50 cubic elements, respectively, whereas the improved
DQTEM employs one element with 22 and 102 Gauss–Lobatto–Chebyshev points; apparently,
they have the same number of spatial DOFs. It follows in Table 7 that the Nerr5 of DQTEM0 with
NE = 10, m = 4 is nearly 45%, while the Nerr5 of the improved DQTEM with NE = 1, m = 22 is about
70%, and the RelErr1 of the improved DQTEM are much smaller than DQTEM0. A similar conclusion
is achieved when DQTEM0 uses NE = 50, m = 4 and the improved DQTEM uses NE = 1, m = 102.

Note that, in the cubic beam element, half of the spatial DOFs is deflection, and half is slope,
but all DOFs in the improved DQTEM are deflections. This motivates us to compare the case with the
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same degrees of deflections (see Table 8), in which the dimension of DQTEM0 model is nearly twice
of that of the improved DQTEM. Although the results of DQTEM0 in Table 8 are more accurate than
those in Table 7, it is also obvious that the improved DQTEM is much more accurate than DQTEM0.
In other words, the improved DQTEM is more accurate than DQTEM0 when the same spatial DOFs
are used. That is, the dimensions of G can be reduced by using the improved DQTEM without sacrifice
of accuracy.

Table 7. Frequency comparisons of beam with the same spatial DOFs (Degrees of Freedom) for
both methods.

Order Exact

M = 20 M = 100

DQTEM0
NE = 10, m = 4

Present
NE = 1, m = 22

DQTEM0
NE = 50, m = 4

Present
NE = 1, m = 102

λ RelErr1 λ RelErr1 λ RelErr1 λ RelErr1

1 3.1416 3.1416 0.0003 3.1416 3.0125 × 10−10 3.1416 4.9242 × 10−7 3.1416 1.2103 × 10−11

2 6.2832 6.2835 0.0054 6.2832 2.7142 × 10−11 6.2832 8.7025 × 10−6 6.2832 2.2619 × 10−12

3 9.4248 9.4273 0.0267 9.4248 1.1085 × 10−12 9.4248 4.4115 × 10−5 9.4248 9.8517 × 10−12

4 12.5664 12.5768 0.0828 12.5664 1.5574 × 10−11 12.5664 0.0001 12.5664 8.2115 × 10−13

5 15.7080 15.7389 0.1972 15.7080 2.5245 × 10−11 15.7080 0.0003 15.7080 6.6817 × 10−13

6 18.8496 18.9243 0.3963 18.8496 1.1124 × 10−10 18.8497 0.0007 18.8496 2.4812 × 10−14

7 21.9911 22.1465 0.7064 21.9911 2.7856 × 10−7 21.9914 0.0013 21.9911 8.5338 × 10−13

8 25.1327 25.4206 1.1453 25.1327 6.4210 × 10−7 25.1333 0.0022 25.1327 6.4821 × 10−13

9 28.2743 28.7486 1.6773 28.2746 0.0008 28.2753 0.0035 28.2743 1.1581 × 10−14

10 31.4159 33.0975 5.3526 31.4163 0.0012 31.4176 0.0054 31.4159 3.9475 × 10−12

Nerr5 45% 70% 49% 70%

Table 8. Frequency comparisons of beam with same deflection degrees for both methods.

Order Exact

DQTEM0
NE = 20, m = 4

Present
NE = 1, m = 22

DQTEM0
NE = 100, m = 4

Present
NE = 1, m = 102

λ RelErr1 λ RelErr1 λ RelErr1 λ RelErr1

1 3.1416 3.1416 2.1125 × 10−5 3.1416 3.0125 × 10−10 3.1416 6.9024 × 10−7 3.1416 1.2103 × 10−11

2 6.2832 6.2832 0.0003 6.2832 2.7142 × 10−11 6.2832 5.7241 × 10−7 6.2832 2.2619 × 10−12

3 9.4248 9.4249 0.0017 9.4248 1.1085 × 10−12 9.4248 2.8115 × 10−6 9.4248 9.8517 × 10−12

4 12.5664 12.5670 0.0054 12.5664 1.5574 × 10−11 12.5664 8.7035 × 10−6 12.5664 8.2115 × 10−13

5 15.7080 15.7100 0.0130 15.7080 2.5245 × 10−11 15.7080 2.0951 × 10−5 15.7080 6.6817 × 10−13

6 18.8496 18.8546 0.0267 18.8496 1.1124 × 10−10 18.8496 4.4357 × 10−5 18.8496 2.4812 × 10−14

7 21.9911 22.0019 0.0490 21.9911 2.7856 × 10−7 21.9913 8.1096 × 10−5 21.9911 8.5338 × 10−13

8 25.1327 25.1536 0.0828 25.1327 6.4210 × 10−7 25.1330 1.4114 × 10−4 25.1327 6.4821 × 10−13

9 28.2743 28.3114 0.1311 28.2746 0.0008 28.2748 2.2241 × 10−4 28.2743 1.1581 × 10−14

10 31.4159 31.4779 0.1972 31.4163 0.0012 31.4167 3.4248 × 10−4 31.4159 3.9475 × 10−12

Nerr5 47.5% 70% 49.5% 70%

4.2. Comparison of Dynamic Responses

For evaluating the performance of the improved DQTEM in dynamic analysis, this section
investigates the transient problem of a fixed-free uniform rod subjected to an impact at free end by
a rigid body of mass 1.5ρSl. Initial conditions are zero except for the initial velocity of the free end
colliding with the body is v. The relative error used in this section is defined by

RelErr2 =
abs(Exact−Approximate)

‖Exact‖∞
(41)

where “Exact” denotes the exact displacements from the analytical mode superposition method at each
time sampling point; the infinity norm of “Exact” denotes the maximum absolute value of a vector,
and the elements of this vector are the exact values at all time nodes; and “Approximate” denotes the
displacements of DQTEM0 or the improved DQTEM at each time sampling point.
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In order to capture the physical phenomena of impact clearly, a few dimensionless parameters are
introduced as

ũ =
u
l

c
v

, τ = t
c
l
, ṽ =

dũ
dτ

(42)

where u is the longitudinal displacement.
As mentioned above, DQTEM0 is an accurate and efficient algorithm with some disadvantages

such as the large computational coefficient matrix which debases the applicability of DQTEM0.
To arrive at the same accuracy, different number of spatial DOFs can be used in the improved DQTEM
and the DQTEM0, since they use different methods to discretize the spatial domain and use the same
DQ approach to discretize the time domain.

Consider the dimensionless time domain [0, 4000]. Table 9 compares the efficiency and the used
spatial DOFs for achieving the same accuracy, in which ∆τ is the dimensionless time step size. For this
transient problem, the improved DQTEM requires much fewer spatial DOFs than DQTEM0; for
different RelErr2, the spatial DOFs used in the improved DQTEM are two-fifths as many as that of the
DQTEM0, i.e., the coefficients matrix G of the improved DQTEM is only 4/25 of the DQTEM0, which
leads to considerable saving of computational space and CPU calculation time. All these superiorities
of the improved DQTEM are due to the more finely description of spatial domain.

Table 9. Efficiency comparison of the improved DQTEM and DQTEM0.

Method
RelErr2 = 10−4, n = 15 RelErr2 = 10−5, n = 15

∆τ NT M (m) CPU (s) ∆τ NT M (m) CPU (s)

DQTEM0 0.3 1.3334 × 104 40 (2) 157.7580 0.3 1.3334 × 104 100 (2) 7378.9405
Present 0.3 1.3334 × 104 16 (17) 48.0679 0.3 1.3334 × 104 40 (21) 1208.6251

By using m = 16, n = 15, we give the comparisons of the dimensionless displacement and velocity
at free end or impact point with exact solutions, as shown in Figure 2. The dimensionless time τ for
longitudinal wave travelling from impact point to fixed end and then back to impact point is 2, which
is shown clearly in the time history of velocity as the wave characteristics of linear elastic impact of rod.
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5. Conclusions

In this paper, the improved Differential Quadrature Time Element Method (DQTEM) was
proposed, in which the DQ rule is employed to discretize both spatial and time domains.

It has been shown that, to achieve the same accuracy, the spatial DOFs in the improved DQTEM
are much fewer than the original DQTEM due to the use of high-order spatial DQ finite element in the
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improved DQTEM; the improved DQTEM is a highly accurate symplectic method, which is suitable
for long-term simulation, and the improved DQTEM is accurate and efficient for the analysis of both
free vibrations and forced vibrations.

These advantages of the improved DQTEM were validated by comprehensive numerical comparisons.
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