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Abstract: This paper deals with a preventive maintenance strategy optimization correlated to
production for a manufacturing system made by several parallel machines under lease contract.
In order to minimize the total cost of production and maintenance by reducing the production
system interruptions due to maintenance activities, a correlated group preventive maintenance policy
is developed using the gravity center approach (GCA). The aim of this study is to determine an
economical production plan and an optimal group preventive maintenance interval Tn at which all
machines are maintained simultaneously. An analytical correlation between failure rate of machines
and production level is considered and the impact of the preventive maintenance policy on the
production plan is studied. Finally, the proposed maintenance policy GPM is compared with an
individual simple strategy approach IPM in order to illustrate its efficiency.

Keywords: correlated preventive maintenance; parallel leased machines; random demand; repair
time; production plan

1. Introduction

In classical scheduling strategies, it is generally assumed that the system is available to produce
at all times, which is wrong since machines are subject to failures and breakdowns. Finding the
optimal production plan taking into account the maintenance strategy is then necessary to increase the
economic returns of a firm and to handle backorders. In the frame of production and maintenance
optimization, Mohamed-Salah et al. [1] presented a simultaneous optimization model of production
flow and preventive maintenance actions taking into account the interaction between both services.
The authors considered a system composed by a single unit producing one type of product in order to
satisfy a constant demand. They proposed a model for the maintenance strategy based on the level of
the inventory and the age of the machine. They minimized firstly the total maintenance cost in order
to obtain the optimal age of preventive maintenance actions and then established the expression of
the total costs associated with the holding stock and unsatisfied demands. The combination between
both costs allows minimizing a global cost function integrating simultaneously the maintenance,
the inventory as well as the unsatisfied demands costs in order to obtain an optimal security stock.

So many works have treated the joint optimization of production and maintenance strategies.
Some of these works were devoted to study the case of restricted and simple systems composed by only
one machine while others were interested in more complex systems composed by several machines
whose number is fixed and known during the production horizon. Finding the optimal production and
maintenance policies, by minimizing the total costs, becomes then more complex when the number
of machines is variable. Chelbi et al. [2] developed an optimization model for a production system
composed by one machine producing with a constant cadence in order to satisfy the demand. Since
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the machine is prone to random failures, corrective and preventive maintenance actions are performed
at periodically dates T, 2T... They proposed the construction of a security stock S to meet the demand
during the period of machine shutdown. The objective of this work is to determine simultaneously the
optimal periodicity of preventive maintenance actions T* as well as the optimal stock level S* which
minimize the average total cost of maintenance, inventory and unsatisfied demands. Rezg et al. [3]
presented an analytical model for a production line composed by n machines which have an identical
production rate to satisfy a constant demand. Simulation and genetic algorithms are the approaches
used to determine the optimal preventive maintenance dates and stock levels. Some authors treated the
coupling between production and maintenance considering new constraints like subcontracting ([4]
and [5]). Dellagi et al. [4] developed new maintenance policies while coupling maintenance and
production under subcontracting constraint. To satisfy the customer demand, subcontracting is
sometimes needed in order to hedge against shortage. Concerning reliability, the authors considered
a constant failure rate for the subcontractor’s machine and an optimal maintenance planning for
the principal machine by proposing an improved maintenance policy which takes into account the
constraint of subcontracting. Zhao et al. [6] considered an order-dependent failure and developed an
iterative method to solve the problem for a single-machine system. The model developed by Li et al. [7]
optimizes jointly the production and the maintenance schedules for a single machine system taking into
account both the quality robustness and the solution robustness. An approach based on a three-phase
heuristic is used in order to find the optimal solution. Cui et al. [8] considered the quality aspect of
the system in order to integrate the lot-sizing problem to the preventive maintenance scheduling.
A system composed by M defined machines was considered and the production and maintenance
schedules were determined using a genetic algorithm. The system undergoes quality inspections
which are accompanied with adjustment and calibration activities to confirm that the machine will
start the next production interval in its normal state. If inspection detected that a shift has occurred
(the machine is in a degraded state), all items produced on the related machine interval need to be
checked, and defective items should be separated. Fakher et al. [9] studied a production system
with a decreasing production capacity over time and determined its production and maintenance
plans. Yalaoui et al. [10] studied a multi-product single machine system, which is subject to random
failures. They minimized the sum of the total production and maintenance costs related to inventory,
backorder, production, set-up, preventive maintenance, and minimal repair under demand satisfaction
and machine capacities constraints.

Some works have dealt with the group maintenance scheduling optimization; we can mention
Hnaien et al. [11] which is one of the first works to deal with this type of problem. The authors
considered a system composed by n independent identical machines which fail separately and
developed a nomograph for all machines which allows determining the time for repair as well
as the total maintenance cost. The group maintenance activity is performed when a certain time
interval elapsed. Okumoto et al. [12] considered two time-intervals (0, T) and (T, T + W) during which
failures are either removed by minimal repairs or removed by replacement or are left idle. During
the first interval (0, T), if a unit fails at age y it is either replaced by a new one with a probability p(y)
or it undergoes a minimal repair with a probability 1-p(y). During the second interval (T, T + W),
no replacement is performed until the group maintenance; failures, when occurred, are either removed
by minimal repairs or are left idle. The group maintenance strategy in this work is performed at time
T + W or upon the kth idle whichever comes first. More recent works have also dealt with the group
maintenance optimization problem; Sheu et al. [13] studied the impact of opportunistic maintenance
on the effectiveness of condition-based maintenance. They considered a system composed by three
components mounted in series and varied few elements such as the number of components, the length
of the opportunistic zone and used a dynamic grouping in which group maintenance activity is
carried out only for the non-failed components that are in the opportunistic zone. Koochaki et al. [14]
developed a group maintenance policy for parallel machines. Their model allows determining jointly
the optimal maintenance frequencies, the optimal positions of the maintenance activities and the
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optimal job sequence. An algorithm in which the authors fixed the maintenance frequencies is
provided in order to solve the problem. In the work of Yang et al. [15], the authors used a genetic
algorithm in order to develop an optimum group maintenance schedule of a water-distributed network.
A judgment matrix based on the adjacent geographical distribution of the pipelines is used to control
the searching space of the maintenance grouping optimization model. Do et al. [16] developed a
dynamic maintenance grouping approach for a multi-components system using two optimization
algorithms (genetic and multifit). The developed approach allows obtaining an optimal maintenance
schedule taking into account the availability of repairmen constraints. Shafiee et al. [17] studied
the case of a multi-components system and proposed an age-based group maintenance policy that
provides an optimal group maintenance time T* by minimizing the average long-run maintenance
cost. Concerning joint optimization of production and group maintenance policies, Xiao et al. [18]
considered a series system of machines processing different types of jobs. They used a genetic
algorithm in order to find the optimal group preventive maintenance policy (the optimal preventive
maintenance interval) as well as the assignment of jobs on machines. Results are compared to an
individual preventive maintenance policy in order to show the effectiveness of the used approach.
In the work of Renna et al. [19], the author considered a manufacturing system composed by a
given number of cells consisting of a given number of machines which have to satisfy a random
demand. The impact of preventive maintenance on the manufacturing system’s performance is
investigated. Static and dynamic environments were also taken into account in order to study the
performance of the manufacturing system. The author used a multi-agents architecture to illustrate the
scheduling problem. A discrete event simulation using Arena platform was used in order to simulate
the manufacturing environment. The results found by the author show that changes and working time
uncertainty have a significant effect on the performance of the manufacturing system since they lead to
major benefits when a preventive maintenance policy is used. Zhang et al. [20] proposed a model for a
group preventive maintenance optimization using the failure effects analysis. The authors considered
a workshop composed by several machines which have two types of state: either good or failure state.
For each state, they determined the average of failure effect using the Monte-Carlo simulation taking
into account the different considered variables. The authors have considered a non-negligeable time
for repair which leads to production losses.

All aforementioned works in the frame of group maintenance strategy considered either a series
system where failed equipment leads to a whole system breakdown or a fixed number of components
(machines) in order to solve this kind of problem. However, and in the case of leased equipment, the
number of machines to use can vary from a period to another according to the customers’ demand.
Also, few works have studied the case of a parallel machines system, in which, even if a machine fails,
the system continues to perform its production process, unlike the case of a series system where a
failed machine leads to the whole system breakdown. The problem becomes harder to resolve when
the number of machines and the customer’s demands are dynamic from a production period to another
and depend on each other. This paper shows that it has a novelty and originality relative to this type
of problem since it investigates the case study of a production system composed by a variable number
Mk of identical parallel machines under lease contract. Mk can vary from a period to another according
to a random customer’s demand. Each machine has a unique processing time in regular work time;
if any machine achieves certain duration in regular work time, then it can perform an extra work time
in order to satisfy the random demand. The degradation rate of these machines is correlated with the
production during a finite horizon. The other added value of this study consists of the establishment of
a new method of correlated group preventive maintenance policy based on the gravity center approach
(GCA). We put emphasis on the originality of this work since it is characterized by the use of new
approaches and an analytical study taking into consideration the influence of the production rates
on the system’s degradation degree. Minimizing the cost of production and correlated preventive
maintenance provides the optimal number of machines to be leased, the quantity to produce by each
one and the optimal interval of group preventive maintenance.
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The remainder of this paper is as follows: Section 2 is devoted to describe the problem. In Section 3,
we formulate the joint optimization problem and give the objective function. The different approaches,
techniques and steps used to solve the problem are shown in Section 4. Section 5 deals with a numerical
example in which we compare our results to an individual maintenance strategy for the same studied
system. Finally, the conclusion of the paper is given in Section 6.

2. Problem Description and Industrial Context

As mentioned above, in the present work we focus on a parallel manufacturing system composed
by several identical machines. We referred, in this study, to a real case of a company specialized in
metal and steel parts manufacturing. When the pieces ordered by customers are of a complex shape,
the technology used by this firm is based on laser machining tools used to cut materials (steel in most
cases) with extreme precision in order to obtain a high-quality product. Due to the expensiveness of
laser tools, and since the company does not use this type of equipment regularly, the managers use
to lease these machines in order to satisfy some customers’ orders. Given the fluctuation of demand,
the number of the leased machines does not remain constant and may vary from one period to
another. Also, given the complexity of the technology used by these machines, maintenance activities
are performed by specialists, generally from the lessor company. Leasing contracts are generally
concluded for one year, or more, depending on the use of the equipment. The leasing fees are paid
monthly at the debut of each period. Group maintenance activity for this kind of systems is then
of a huge importance since it allows the lessee to avoid unavailability of repairmen, which is most
frequently encountered in the case of an individual maintenance strategy.

Inspired from Hajej et al. [21], and in order to take into account production planning while
minimizing maintenance cost, we put emphasis on degradation function of each available machine
according to its production rate.

We consider the production system that has to satisfy a random demand dk of one type of product.
This demand fluctuates according to a normal distribution with mean and variance given respectively
by µd

k and σ2
d ≥ 0. The number of machines to be leased depends on the customer’s demand and

varies from one production period to another. Processing time for each machine is also variable:
in fact a machine can operate for a maximum duration in regular work time denoted by XN

max, once
exceeded this value, a machine can operate up to XS

max of extra time work (overtime). A periodic
group maintenance strategy is performed to all machines in order to reduce the probability of failure.
We put emphasis on the complexity of jointly determining production and maintenance plans for this
kind of systems in which many variables are stochastic and strongly dependent. We do make the
following assumptions:

- All machines are considered new at the beginning of the time horizon.
- All machines have the same production rate per time unit (same quantity of product for a same

period of processing).
- The number of machines per period is bounded as follows: m ≤Mk ≤M.
- Products are purchased by the customers through an inventory. The inventory level is calculated

at the end of each production period.
- Maintenance activities are not included in the lease contract. The lessor has to pay experts in

order to perform preventive and corrective maintenance actions.
- All machines are preventively maintained at every preventive maintenance interval and

preventive maintenance activity renews the system (after each preventive maintenance action,
the equipment is in “as good as new” state). If any machine fails within the preventive
maintenance interval, corrective action with minimal repair is done and the machine is restored
to the as-bad-as-old state.

- Repair time (preventive activity) is constant and is the same for all machines.
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- Corrective maintenance activities’ duration (minimal repair) is negligible compared to
preventive maintenances.

- Since production is off during preventive activities, the time taken for repair will be incremented
to processing time of any machine that did not work for extra time, if any, or to the machine that
worked the less otherwise in order to hedge against inventory shortage.

Figure 1 is illustrated in order to simplify understanding the case study.
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Figure 1. Problem Description.

3. Production and Maintenance Problem Formulation

In what follows, we develop a mathematical model expressing the total cost including leasing,
manufacturing, inventory holding, and maintenance costs over the considered finite horizon H. We give
at first the expressions of the different costs separately:

- Cost of leasing the machines
Leasing facility has the advantage of low costs comparing to purchasing equipment. Once the

number of machines to be leased is established, the company has to pay the fees of leasing per
production period as well as a fixed cost of administration settled by the lessor. The cost of leasing the
machines for a period k is given by:

c1 ×Mk + c2 (1)

- Cost of installation/removal of the machines
Inspired from Holt et al. [22], where the authors considered a variable level of workforce, we can

express the cost of setup and removal of machines as follows:

c3 × (Mk −Mk−1 − c4)
2 (2)

This equation includes the costs due to variation in the number of the machines required for
period k (e.g,: costs of installation/ uninstallation, mobilization/demobilization). The constant term c4
describes the asymmetry in costs of adding and eliminating machines. As in HMMS model, we use
here a quadratic formulation for the problem since it allows for a more realistic cost structure in the
planning process as explained by Hax et al. [23].
- Manufacturing costcn × u× ∆k×

(Mk
∑

i=1
XN

ik

)2

+ (αN × tr × N)

+

θk × c0 × u× ∆k×

(Mk
∑

i=1
XS

ik

)2

+ (αS × tr × N)

 (3)
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where θk, αN and αS are binary variables expressed as follows:

θk =

 1 i f dk > u · ∆k.
Mk
∑

t=1
XN

max

0 otherwise

αN =

 1 i f
Mk
∑

t=1
XN

ik <
Mk
∑

t=1
XN

max

0 otherwise

αS =

 1 i f
Mk
∑

t=1
XN

ik ≥
Mk
∑

t=1
XN

max and
Mk
∑

t=1
XS

ik <
Mk
∑

t=1
XS

max

0 otherwise

- Inventory holding cost per period
We assume that the manufacturer should always maintain an optimal level for inventory as

safety stock to hedge against shortages and which is equal to (a1 + a2 × dk), where a1 and a2 are two
constants chosen by manufacturer.

The inventory cost is calculated as below:

ch × E
(
[Ik − (a1 + a2 × dk)]

2
)

(4)

Otherwise, two cases may take place:

- If Ik > (a1 + a2 × dk): the manufacturer should bear more costs due to over-stock (e.g., more
space to be rented to hold this stock, more personnel costs, etc.)

- If Ik < (a1 + a2 × dk): the manufacturer may pay costs of holding a stock that he is not really
holding (e.g., rented space for stocking without using it, etc.)

- Total Maintenance cost
The global maintenance cost includes group preventive maintenance and corrective maintenance

activities costs. It can be expressed as follows:

Γ(t) = (Mc × An) +
(

Mp × N
)

(5)

with

N =

⌊
H − 1

Tn

⌋
(6)

The average number of failures is given by the following expression:

An =
Mk

∑
i=1



In( Tn
∆t )

∑
k=In( Ti

∆t )

Tn∫
0
λi,k(t) dt

+
Tn−In( Tn

∆t )·∆t∫
0

λi,(In( Tn
∆t )+1)(t) dt

−
In( Ti

∆t )

∑
k=In( Tn

∆t )+1

Tn∫
0
λi,k(t) dt

−
In( Tn

∆t +1)·∆t−Tn∫
0

λi,(In( Tn
∆t )+1)(t) dt


(7)



Appl. Sci. 2017, 7, 461 7 of 20

where the failure rate in a period k for each machine is given by the following equation:

λi,k(t) =

 k−1

∑
p=j.T+1

 k−1

∏
p′=p

Ci(p′+1)

× Pi,p
∆k

umax

λn(∆t) +
Pi,k
∆k

umax
× λn(t) (8)

Ci =

{
1 if workstation i has been used during period k− 1
0 if no

The objective function of the total cost for our production system can now be expressed as follows:

minCT = min(M∗k ,XN∗
ik ,XS∗

ik ,N∗ ,T∗n )




H
∑

k=1



[c1 ×Mk + c2] +
[
c3 × (Mk −Mk−1 − c4)

2
]

cn × u× ∆k×

(Mk
∑

i=1
XN

ik

)2

+ (αN × tr × N)

+θk × c0 × u× ∆k×

(Mk
∑

i=1
XS

ik

)2

+ (αS × tr × N)




+
[
ch × E

(
Ik − (a1 + a2 × dk)

2
)]




+
(
(Mc × An) +

(
Mp × N

))


(9)

Subject to:
Ik = Ik−1 + pk − dkk = 1, . . . , H

Prob(Ik ≥ 0) ≥ β

pk = u× ∆k×
[((

Mk
∑

i=1
XN

ik

)
+ (αN × tr × N)

)
+

((
Mk
∑

i=1
XS

ik

)
+ (αS × tr × N)

)]
k = 1, . . . , H

m ≤ Mk ≤ M

0 ≤ XN
ik ≤ XN

max

0 ≤ XS
ik ≤ XS

max

4. Optimization Approach

In order to find the different optimal values of the decision variables, i.e., number of group
preventive maintenance actions over the horizon, number of machines to be leased and quantities to
produce in order to satisfy the random demand, we use an algorithm based on branch and bound and
random exploration methods combined with gravity center approach (GCA).

4.1. Random Exploration

This method consists in generating randomly a solution Si and then evaluating the objective
function F considering solution Si. These two steps should be repeated until a fixed number of
iterations is reached. We find few references in literature dealing with this method, which can be due
to the randomness that characterizes it. This method has been criticized by specialists, it is worth
mentioning that while dealing with big sized problems or those with multi-modal objective function,
the random exploration may help to reduce the problem size before exploring it, using another method
based on global or local neighborhoods and many specialists confirm this point.

Moreover, this method may be useful to have an idea about the “response surface” of the objective
function and that can be achieved mainly by considering a three-dimensional representation. If the
surface points out few irregularities, an extrapolation can be performed saying that the problem is not
complex. But, if there are a lot of irregularities and with important amplitude, the problem is certainly
considered as a complex one.
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4.2. Branch and Bound

Branch and Bound is a method used to find the optimal solutions to problems, typically discrete
problems. It is an algorithm that explores almost the entire space of candidate solutions, and throws
out large parts of the search space by using previous estimates on the quantity being optimized.
A branch-and-bound algorithm can be described as a tree search. At any node of the tree, the algorithm
must make a finite decision and set one of the unbound variables. This method consists in two steps:

- Branching/Separation

This step consists in dividing the original problem into a number of sub-problems, which have
each one its feasible solutions. So that, by resolving all these sub-problems and considering the
best obtained solution, we are sure about resolving the initial problem. The set of solutions and the
correspondent sub-problems have a natural hierarchy of a tree always called tree of research or tree
of decision.

- Bounding/Evaluation

After constructing the tree of decision, the second step aims at selecting the leaf, which should
be studied. Otherwise, this step consists in determining the optimum between the feasible solutions
associated to a particular node or proving mathematically that this set of feasible solutions does not
contain an interesting solution for the problem resolution. If such a node is identified in the tree, it is
useless to perform the separation step on its solutions space.

4.3. Gravity Center Approach

In the literature, the GCA is frequently used in logistics systems in order to study the location
selection of single distribution center [24,25]. It is used to minimize the sum of depot operating cost
and routing costs [26].

We adopt this approach in the following part and apply it to our manufacturing system in
order to find an optimal preventive maintenance plan. Our methodology consists of determining
an optimal maintenance interval Tn at which we can group several preventive maintenances so that
Mk
∑

i=1
Ai.

→
TnTi =

→
0 . In order to find the value of Tn, we use the following expression used to find the

center-of-gravity of different points:

Xn =

Mk
∑

i=1
pixi

/
di

Mk
∑

i=1
pi

/
di

(10)

with pi is the weight factor assigned to each machine i and it corresponds in our case study to the
average number of failures for each machine i; xi is the maintenance interval of each machine for an
individual maintenance strategy; and di is the distance (in time unit) between the group maintenance
location (interval) and the individual maintenance location for each machine i. di can be described
as follows:

di =
[
(Tn − Ti)

2
]1/2

(11)

The choice of the average number of failures as the weight factor is justified by the fact that the
degradation of each machine i is strongly correlated to its production rate (the quantity produced):
more the machine works (pik is important), more its degradation is high (average number of failures).
So, it would be preferable to bring its maintenance closer to an optimal new date (or to bring it further
otherwise). The expression of Tn is as follows:

Tn =

Mk
∑

i=1
Ai .Ti

/
di

Mk
∑

i=1
Ai

/
di

(12)
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where the average number or failures for each machine i can be expressed as follows:

Ai =
N−1
∑

j=0

 In((j+1)× Ti
∆t )

∑
i=In(j× Ti

∆t )+1

∆t∫
0

λi,j(t) +
(j+1)×Ti−In((j+1)× Ti

∆t )×∆t∫
0

λ
In((j+1)× Ti

∆t )+1,j
(t)dt

+
(In((j+1)× Ti

∆t )+1)×∆t−(j+1)×Ti∫
0

u
In((j+1)× Ti

∆t )+1

Umax
× λn(t)dt

 (13)

In order to find the optimal value of Tn, we find at first a value T0
n using the following expression:

T0
n =

Mk
∑

i=1
Ai .Ti

Mk
∑

i=1
Ai

(14)

Once found, T0 is replaced in Formula (11) in order to calculate Tn. Then, a new value T1
n is found

which will be replaced in the same formula in order to find another value T2
n , and so on, repeated

until the two identical results show up within iterations. The value found corresponds to the optimal
interval of group maintenance activity for the leased system.

Figure 2 describes the difference between individual and group preventive maintenance strategies
for parallel leased machines system
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4.4. Steps of the Resolution Method

- Step 1: Generate randomly a solution Si for production plan: vector of number of machines to be
leased and matrix XN and XS;

- Step 2: Calculate the total production cost and check if the service rate constraint is verified for
the current solution;
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- Step 3: Evaluate the number of preventive maintenance activities for each machine for the current
solution by minimizing the total maintenance cost;

- Step 4: Group several maintenance activities using the center of gravity method and save the
new interval of maintenance;

- Step 5: Increment the time of repair to the minimal processing time of any machine for the current
combination and update the new configuration of production and maintenance plans;

• Step 5.1: If the sum of processing times of machines in regular time is less than the maximal
processing time for this equivalent work pattern, then browse through matrix Xn and find
the minimum value;

• Step 5.2: If Step 5.1 is not verified and the sum of processing times of machines in overtime is
less than the maximal processing time for this equivalent work pattern, then browse matrix
Xs and find the minimum value;

- Step 6: Repeat the same steps until founding the optimal solution Sn (return to Step 2);
- Step 7: Save the optimal values of Mk, XN , XS and Tn;

Figure 3 shows the algorithm of the resolution method.
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4.5. Deterministic Transformation

Since our model is a stochastic one, to facilitate its resolution, we aim to transform it into a
deterministic equivalent one. The certainty equivalent principle is the approach used among this
transformation: thanks to the linearity of the model and assuming that the demand’s variation can
be described by a Gaussian Process, we set the variables equal to their means ([27,28]). We remind
that the inventory variable Ik is strongly affected by the demand, which made it a stochastic variable.
The different transformations are made in Appendixs A and B.

Making all these deterministic transformations, we can now describe the model as follows:

minCT = min(M∗k ,XN∗
ik ,XS∗

ik ,N∗ ,T∗n )





H
∑

k=1



[c1 ×Mk + c2] +
[
c3 × (Mk −Mk−1 − c4)

2
]

cn × u× ∆k×

(Mk
∑

i=1
XN

ik

)2

+ (αN × tr × N)

+θk × c0 × u× ∆k×

(Mk
∑

i=1
XS

ik

)2

+ (αS × tr × N)




+

 ch ×
(

Îk − a1 − a2 × µd
k

)2
+ (1 + a2)

2 × σ2
d ×

H
2

×(H + 1) + a2
2 × σ2

d ×
H
2 × (H − 1)






+
(
(Mc × An) +

(
Mp × N

))



(15)

Our constraints are as follows:

Îk = Îk−1 + pk − µd
k k = 1, . . . , H

Prob(Ik ≥ 0) ≥ β→
(

pk ≥
√

k× (σd)× ϕ−1(β)− Îk−1 + µd
k

)
k = 1, . . . , H

pk = u× ∆k×
[((

Mk

∑
i=1

XN
ik

)
+ (αN × tr × N)

)
+

((
Mk

∑
i=1

XS
ik

)
+ (αS × tr × N)

)]
k = 1, . . . , H

m ≤ Mk ≤ M

0 ≤ XN
ik ≤ XN

max

0 ≤ XS
ik ≤ XS

max

5. Numerical Example

In order to prove the efficiency of the proposed model, a numerical example is hereinafter studied.
We put emphasis on the importance of group maintenance policy for a parallel leased machines system
by comparing its results to an individual maintenance strategy. A case study of a company specialized
in steel parts production using laser-machining tools is investigated. The laser machines are leased
by the company in order to produce some products and satisfy some customers’ demand over the
time horizon. The number of leased machines in each production period varies with the variation of
customers’ demand. The processing time for each machine in regular time and overtime is variable.
The failure rate of each machine depends strongly on the processing time (quantity produced) of
each one. The study consists in minimizing the total production and maintenance costs expressed
in monetary unit (mu) in order to find the optimal combination of number of machines to lease in
each production period, the quantity to produce to satisfy the customers demand and the maintenance
plan, consisting of the number of preventive maintenance activities to be performed, firstly in the
case of an individual preventive maintenance policy and secondly for a group preventive strategy.
As the firm receives a random demand, we vary hereinafter the dispersion of the ordered quantity
of products in order to study its impact in the production and maintenance plans and to prove the
efficiency of the developed group preventive maintenance policy. Two case studies are considered: in
the first case, the random demand is characterized by a low standard deviation which gives nearly
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equal quantities produced by each machine in each production period. In the second case, we consider
a random demand with a high standard deviation; the quantities of goods produced by each machine
are then widely different from each other’s. The obtained results are shown in Tables 1–8.

5.1. Case 1: Low Standard Deviation

We consider the following input data and present the corresponding results.
Temporal data: ∆k = 1; H = 20; tr = 1;
Cost coefficients: c1 = 500; c2 = 10; c3 = 50; c4 = 2, 5; ch = 15; cn = 20; co = 30; Mp = 100;

Mc = 50000;
Bounders: m = 4; M = 6; u = 40; XN

max = 8; XS
max = 4;

Service rate: β = 0.95 and initial inventory level: I0 =300;
Random Demand: σd = 25 and µd

k = 1000;
To compute the degradation function of each machine, we assume that the nominal degradation

follows a Weibull distribution given by:

λn(t) =
γ

µ
·
(

t
µ

)γ−1

This quantity corresponds to a nominal processing rate when machines perform at their
maximum level.

with: γ = 2; µ = 100;

5.1.1. Individual Maintenance Policy Results

Table 1. Case 1: Production plan for individual maintenance policy.

Period dk pk Mk

Period 1 962 1000 5
Period 2 1005 840 5
Period 3 1001 920 6
Period 4 1044 1040 6
Period 5 994 1320 5
Period 6 1022 760 5
Period 7 935 920 6
Period 8 998 1240 5
Period 9 992 800 5

Period 10 1004 1000 5
Period 11 1013 1360 6
Period 12 1007 1360 5
Period 13 1010 1200 6
Period 14 1026 840 6
Period 15 1005 1240 5
Period 16 1002 1520 6
Period 17 1018 1200 6
Period 18 986 1240 5
Period 19 973 1400 5
Period 20 989 1080 6
Total cost 1.1613 × 107 mu
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Table 2. Case 1: Maintenance plan for individual maintenance policy.

Machine Ni Ti

Machine 1 4 5
Machine 2 3 6.66
Machine 3 3 6.66
Machine 4 4 5
Machine 5 3 6.66
Machine 6 3 6.66
Total cost 5179.42 mu

5.1.2. Group Maintenance Policy Results

Table 3. Case 1: Production plan for group maintenance policy.

Period dk pk Mk

Period 1 962 1000 5
Period 2 1005 840 5
Period 3 1001 920 6
Period 4 1044 1040 6
Period 5 994 1320 5
Period 6 1022 780 5
Period 7 935 920 6
Period 8 998 1240 5
Period 9 992 800 5
Period 10 1004 1000 5
Period 11 1013 1360 6
Period 12 1007 1380 5
Period 13 1010 1200 6
Period 14 1026 840 6
Period 15 1005 1240 5
Period 16 1002 1520 6
Period 17 1018 1200 6
Period 18 986 1260 5
Period 19 973 1400 5
Period 20 989 1080 6
Total cost 1.1614 × 107 mu

Table 4. Case 1: Maintenance plan for GPM policy.

T* N* Total Maintenance Cost

6.018 3 2636.7 mu

5.1.3. Interpretations

Regarding the solution given in Table 1, we remark that the quantities produced by machines
in each production period are nearly the same. This is due to the barely constant demand generated
randomly by a relatively low standard deviation (σd = 25). Given the correlation between failure rate
and production rate for each machine, such a constant production plan leads to similar failure rates
and automatically to similar number of failures; Table 2 shows clearly that the intervals of maintenance
for machines are very close to each other in the case of an individual maintenance strategy (T1 = 5,
T2 = 6.66, T3 = 6.66, T4 = 5, T5 = 6.66, T6 = 6.66). When group maintenance policy is planned, we can
remark through Table 3 that the production cost increases. This can be explained by the fact that an
additional quantity of goods must be planned in order to hedge against shortages since all machines
are maintained at the same interval. However, the maintenance cost thanks to group maintenance
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strategy decreases considerably, as shown in Table 4 (from 5179.42 mu to 2636.7 mu) and all machines
are maintained at T∗n = 6.018 which proves the consistency of the proposed approach.

5.2. Case 2: High Standard Deviation

We consider the following input data and present the corresponding results.
Temporal data: ∆k = 1; H = 20; tr = 1;
Cost coefficients: c1 = 500; c2 = 10; c3 = 50; c4 = 2, 5; ch = 15; cn = 20; co = 30; Mp = 100;

Mc = 50000;
Bounders: m = 4; M = 6; u = 40; XN

max = 8; XS
max = 4;

Service rate: β = 0.95 and initial inventory level: I0 =300;
Random Demand: σd = 350 and µd

k = 1000;

5.2.1. Individual Maintenance Policy Results

Table 5. Case 2: Production plan for individual maintenance policy.

Period dk pk Mk

Period 1 762 1840 6
Period 2 762 960 5
Period 3 1313 920 5
Period 4 761 1400 5
Period 5 431 1200 6
Period 6 1095 960 5
Period 7 1007 1080 5
Period 8 925 1040 6
Period 9 1006 960 5
Period 10 1030 960 5
Period 11 448 1400 6
Period 12 897 1080 6
Period 13 67 1360 6
Period 14 682 2240 6
Period 15 1358 1200 6
Period 16 1125 1760 6
Period 17 933 720 5
Period 18 991 960 6
Period 19 1211 1360 5
Period 20 1111 1120 6
Total cost 2.8739 × 107 mu

Table 6. Case 2: Maintenance plan for individual maintenance policy.

Machine Ni Ti

Machine 1 3 6.66
Machine 2 3 6.66
Machine 3 5 4
Machine 4 7 2.85
Machine 5 3 6.66
Machine 6 3 6.66
Total cost 5246.09 mu
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5.2.2. Group Maintenance Policy Results

Table 7. Case 2: Production plan for individual maintenance policy.

Period dk pk Mk

Period 1 762 1840 6
Period 2 762 960 5
Period 3 1313 920 5
Period 4 761 1400 5
Period 5 431 1200 6
Period 6 1095 980 5
Period 7 1007 1080 5
Period 8 925 1040 6
Period 9 1006 960 5
Period 10 1030 960 5
Period 11 448 1400 6
Period 12 897 1100 6
Period 13 67 1360 6
Period 14 682 2240 6
Period 15 1358 1200 6
Period 16 1125 1760 6
Period 17 933 720 5
Period 18 991 980 6
Period 19 1211 1360 5
Period 20 1111 1120 6
Total cost 2.8741 × 107 mu

Table 8. Case 2: Maintenance plan for individual maintenance policy.

T* N* Total Maintenance Cost

6.41 3 2593.3 mu

5.2.3. Interpretations

Regarding the solution given in Table 5, we remark that the quantities produced by machines
in each production period are widely different. This is due to the huge fluctuation of customers’
demand generated randomly by a relatively high standard deviation (σd = 350). Such a difference
in production rates leads to disparate failure rates and has a huge impact in number of failures; the
difference between the intervals of maintenance for machines is relevant in the case of an individual
maintenance strategy as shown in Table 6 (T1, T2, T5, T6 = 6.66, T3 = 4 and T4 = 2.85). As well as in
the first case, we can clearly remark through Tables 7 and 8 that a group maintenance policy leads
to an increase in production cost and a decrease in total maintenance cost (Total maintenance cost
goes from 5246.09 mu to 2593.3 mu) which proves furthermore the consistency and robustness of the
proposed approach.

5.3. Interpretation and Comments

Regarding the results shown in tables above, we can clearly remark that the group maintenance
strategy is interesting for both cases (low and high standard deviation for the random demand)
since it leads the firm to minimize the total costs of production and maintenance. The difference in
maintenance costs between individual maintenance policy and group maintenance policy is more
important in the second case. This can be explained by the fact that unlike the second case, the first
case is characterized by a barely constant demand, the production rates of machines in each production
period are then nearly similar which leads to very close failure rates. The intervals of maintenance
are then close to each other and also close to the new interval of maintenance. Obviously, the total
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maintenance cost is minimized by adopting the group maintenance approach for both cases, but it
is recommended to adopt it when production rates of machines are widely different. Concerning
production costs, we can remark that in both cases, group preventive maintenance policy (GPM)
leads to an increase in production costs. This can be explained by the fact that for the individual
preventive maintenance policy (IPM), there is no need to interrupt production during maintenance
activities since, even if few machines are under repair, other machines are still operating, unlike in the
case of GPM where all machines are shut down for repair. The duration of preventive maintenance
activity was taken into account in the production plan in order to satisfy customers’ demand and
hedge against shortages. Table 9 recapitulates and shows a comparison of the performance of IPM and
GPM strategies in term of costs for both cases.

Table 9. Comparison of the performance of the considered approaches for both cases.

Case I Case II

Production Cost (IPM) 1.1613 × 107 mu 2.8739 × 107 mu
Production Cost (GPM) 1.1614 × 107 mu 2.8741 × 107 mu

Individual Maintenance Cost 5179.42 mu 5246.09 mu
Group Maintenance Cost 2636.7 mu 2593.3 mu

Total Cost for IPM 1.16181 × 107 mu 2.87441 × 107 mu
Total Cost for GPM 1.16166 × 107 mu 2.87435 × 107 mu

6. Conclusions

Based on an industrial case study, this paper deals with a new developed approach in the frame
of group preventive maintenance policy for parallel leased machines. Production and maintenance
plans are studied taking into account new constraints related to leasing machines which have to work
during regular and overtime work in order to satisfy a random demand over a finite time horizon and
considering a given service rate.

Thus, to deal with this issue, and opting for a sequential resolution method, we start at first by
proposing an approximate solution which minimizes the production costs under constraints related
especially to service rate and equipment availability. Secondly, the obtained optimal production plan
was considered as input data to perform the individual maintenance plan. To do this, we proposed an
algorithm which allows organizing maintenance actions over the finite time horizon taking into account
the degradation of each leased machine according to its production rate. A correlated group preventive
maintenance policy based on the Center-of-Gravity approach is then developed and integrated to
the algorithm in order to find a new optimal interval of group maintenance which allows the firm
minimizing both maintenance and total costs. To further validate the model, a sensitivity analysis
has been performed considering two case studies in which we vary the distribution of the random
demand in order to study its impact in the developed approach.
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Tarek ASKRI developed the approaches and the algorithms; Zied HAJEJ and Nidhal REZG evaluated the results;
Nidhal REZG supervised the work and Tarek ASKRI wrote the paper.
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Used Notations

The following notations are used throughout the paper:

Parameter Explanation
H Number of production periods
∆k Duration of each production period (months)
dk Random demand for period k (k = 1, 2, . . . , H);
µd

k Mean of the Gaussian demand during period k (k = 1, 2, . . . , H);
σ2

d Variance of the Gaussian demand
Ik Inventory at the end of period k (k = 1, 2, . . . , H)
β Service level to be satisfied at each period
pik Quantity produced by machine i (i = 1, . . . , Mt) in period k (k = 1, 2, . . . , H)
pk Total production quantity during period k (k = 1, 2, . . . , H)
λik(t) Failure rate of a machine i during a production period k
λn(t) Nominal failure rate for maximal production level
An Average number of failures of the system
Ai Average number of failures of a machine i
Tr Repair time (preventive maintenance) (hours)
Decision Variables
Mk Number of machines during period k (k = 1, 2, . . . , H)

XN
ik

Number of time units (hours) that machine i (i = 1, . . . , Mk) works during period k (as
normal time) (k = 1, 2, . . . , H)

XS
ik

Number of time units (hours) that machine i (i = 1, . . . , Mk) works during period k (as
overtime) (k = 1, 2, . . . , H)

Ni Number of individual preventive maintenances to be performed in a machine i
N Number of group preventive maintenance actions during time horizon
Ti Interval between two successive individual preventive maintenances
Tn Interval between two successive group preventive maintenances
Boundaries Variables
M Upper boundary of machines number
m Lower boundary of machines number

u
Number of pieces that a machine can produce per time unit (hour); (the same for
all machines)

XN
max

Maximum of time units (hours) that a machine could be operated during a period as
regular time

XS
max

Maximum of time units (hours) that a machine could be operated during a period
as overtime

Production Costs
c1 Average cost of leasing a machine
c2 Fixed costs of leasing (e.g,: administration costs)
c3 Cost of installation/removal of a machine from period k − 1 to period k
c4 Constant of asymmetry in costs
co Operating cost per overtime hour
cn Operating cost per normal hour
ch Cost to be paid to hold a produced unit in stock
(a1 + a2 × dk) Optimal net stock
Maintenance costs
Γ(t) Total maintenance cost
Mp Unit preventive maintenance cost
Mc Unit corrective maintenance cost
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Appendix A

Net Inventory Transformation

We recall that:

Pk = u×
Mk

∑
i=1

(
XN

ik + XS
ik

)
E(Ik) = Îk; E(dk) = µd

k ; E(Mk) = Mk; E(Pk) = Pk;

V(dk) = σ2
d .

We have:
Ik = Ik−1 + pk − dk

So, E(Ik) = Îk = Îk−1 + pk − µd
k

( Îk − Ik)
2
= (( Îk−1 − Ik−1)− (µd

k − dk))
2

E( Îk − Ik)
2
= E(( Îk−1 − Ik−1)− (µd

k − dk))
2

E( Îk − Ik)
2
= E(( Îk−1 − Ik−1)

2
) + E((µd

k − dk)
2
)− 2× E( Îk−1 − Ik−1)× E(µd

k − dk)

E( Îk − Ik)
2
= E( Îk−1 − Ik−1)

2
+ E(µd

k − dk)
2

Since:
E( Îk−1 − Ik−1) = E( Îk)− E(Ik) = 0

E(µd
k − dk) = µd

k − E(dk) = 0

Thus, using the variance expression, we obtain:

V(Ik) = V(I0) + σ2
d

Assuming that V(I0) = 0 and using this equality and by iterations, we can easily proof that:

V(Ik) = k · σ2
d

Since the variance expression of Ik can be written as follows:

V(Ik) = E
(

I2
k

)
− [E(Ik)]

2

So, we obtain:
E
(

I2
k

)
= V(I0) + k · σ2

d + Î2
k

On the other hand, we have

Ik = Ik−1 + pk − dk is equivalent to dk = Ik−1 − Ik + pk

So,
Ik − a1 − a2 · dk = (1 + a2) · Ik − a1 − a2 · Ik−1 − a2 · pk

And
Îk − a1 − a2.µd

k = (1 + a2). Îk − a1 − a2. Îk−1 − a2.pk

Using both equalities above, we can conclude the following expected expression:

E[(( Îk − a1 − a2.µd
k)− (Ik − a1 − a2.dk))

2
]

= (1 + a2)
2.E[( Îk − Ik)

2
] + a2

2.E[( Îk−1 − Ik−1)
2
]

= (1 + a2)
2.(V(I0) + k.σ2

d ) + a2
2.(V(I0) + (k− 1).σ2

d )

Also, we can write:

E
[((

Îk − a1 − a2 · µd
k

)
− (Ik − a1 − a2 · dk)

)2
]

= V(Ik − a1 − a2 · dk)

= E
[
(Ik − a1 − a2 · dk)

2
]
− (E[Ik − a1 − a2 · dk])

2
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Regarding the two above equations, we obtain:

E
[
(Ik − a1 − a2 · dk)

2
]

=
(

Îk − a1 − a2 · µd
k

)2
+ (1 + a2)

2 ·
(
V(I0) + k · σ2

d
)
+ a2

2 ·
(
V(I0) + (k− 1) · σ2

d
)

We assume that V(I0) = 0, therefore in the objective function we can make the following transformation:

H
∑

k=1
E
[
(Ik − a1 − a2 · dk)

2
]
=

H
∑

k=1

(
Îk − a1 − a2 · µd

t

)2
+ (1 + a2)

2 · σ2
D ·

H
∑

k=1
k + a2

2 · σ2
d ·

H
∑

k=1
(k− 1)

=
H
∑

k=1

(
Îk − a1 − a2 · µd

k

)2
+ (1 + a2)

2 · σ2
d ·

H
2 · (H + 1)+a2

2 · σ2
d ·

H
2 · (H − 1)

Appendix B

Service rate Constraint Transformation

From the previous proof, the variance of inventory variable is defined by V(Ik) = k · σ2
d . This inventory

variable depends linearly on the random demand variation. It is possible to consider the inventory variable as a
random variable following a normal distribution defined by:

Ik = Îk + Xk ×
√

V(Ik)⇔ Ik = Îk + Xk ×
√

k× σd

with Xk ∝ N(0, 1) is a standard Gaussian deviate.

Prob(Ik ≥ 0) ≥ β

Prob
[

Îk + Xk ×
√

k× σd ≥ 0
]
≥ β

Prob
[

Îk−1 + Xk ×
√

k× σd + pk − µd
k ≥ 0

]
≥ β

Prob
[

Xk ×
√

k× σd ≥ − Îk−1 − pk + µd
k

]
≥ β

Prob

[
Xk ≥

− Îk−1 − pk + µd
k√

k× σd

]
≥ β

1− Prob

[
Xk ≤

− Îk−1 − pk + µd
k√

k× σd

]
≥ β

Assuming that ϕ is the repartition function of this variable X.
ϕ is strictly increasing, indefinitely differentiable and therefore we conclude that ϕ is invertible:

1− ϕ

[
− Îk−1−pk+µd

k√
k×σd

]
≥ β

Îk−1 + pk − µd
k ≥
√

k× σd × ϕ−1(β)

pk ≥
√

k× σd × ϕ−1(β) + µd
k − Îk−1
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