Next Article in Journal
Using Text Mining Techniques to Identify Research Trends: A Case Study of Design Research
Previous Article in Journal
A Three-Dimensional Resonant Triggering Probe for Micro-CMM
Previous Article in Special Issue
Increasing the Performance of Vacuum Membrane Distillation Using Micro-Structured Hydrophobic Aluminum Hollow Fiber Membranes
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessArticle
Appl. Sci. 2017, 7(4), 402; doi:10.3390/app7040402

Hydrophobic Ceramic Membranes for Water Desalination

1
Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina St., 87-100 Torun, Poland
2
Institut Europeen des Membranes, UMR 5635, Place Eugene Bataillon, 34095 Montpellier CEDEX 5, France
*
Author to whom correspondence should be addressed.
Academic Editor: Enrico Drioli
Received: 26 January 2017 / Revised: 12 April 2017 / Accepted: 13 April 2017 / Published: 15 April 2017
(This article belongs to the Special Issue Membrane Distillation)
View Full-Text   |   Download PDF [1268 KB, uploaded 19 April 2017]   |  

Abstract

Hydrophilic ceramic membranes (tubular and planar) made of TiO2 and Al2O3 were efficiently modified with non-fluorinated hydrophobic grafting molecules. As a result of condensation reaction between hydroxyl groups on the membrane and reactive groups of modifiers, the hydrophobic surfaces were obtained. Ceramic materials were chemically modified using three various non-fluorinated grafting agents. In the present work, the influence of grafting time and type of grafting molecule on the modification efficiency was evaluated. The changes of physicochemical properties of obtained hydrophobic surfaces were determined by measuring the contact angle (CA), roughness (RMS), and surface free energy (SFE). The modified surfaces were characterized by contact angle in the range of 111–132°. Moreover, hydrophobic tubular membranes were utilized in air-gap membrane distillation to desalination of sodium chloride aqueous solutions. The observed permeate fluxes were in the range of 0.7–4.8 kg·m−2·h−1 for tests with pure water. The values of permeate fluxes for membranes in contact with NaCl solutions were smaller, within the range of 0.4–2.8 kg·m−2·h−1. The retention of NaCl in AGMD process using hydrophobized ceramic membranes was close to unity for all investigated membranes. View Full-Text
Keywords: ceramic membranes; non-fluorinated alkylsilanes; air-gap membrane distillation ceramic membranes; non-fluorinated alkylsilanes; air-gap membrane distillation
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Kujawa, J.; Cerneaux, S.; Kujawski, W.; Knozowska, K. Hydrophobic Ceramic Membranes for Water Desalination. Appl. Sci. 2017, 7, 402.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Appl. Sci. EISSN 2076-3417 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top