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Abstract: In human hearing, frequency resolution is a term used to determine how well the ear
can separate and distinguish two sounds that are close in frequency. This capability of breaking
speech sounds into various frequency components plays a key role in processing and understanding
speech information. In this paper, a piecewise-linear frequency shifting algorithm for digital hearing
aids is proposed. The algorithm specifically aims at improving the frequency resolution capability.
In the first step, frequency discrimination thresholds are processed by a computer testing software.
Then, the input signal is parsed through the proposed piecewise-linear frequency shifting algorithm,
which comprises of linearly stretching and compressing the frequency content at different frequency
ranges. Experimental results showed that by using the proposed frequency shifting algorithm, the
separation of formant tracks was increased in the stretching region and slightly squeezed in the
adjacent compression region. Subjective assessment on six hearing-impaired persons with V-shaped
audiograms demonstrated that nearly a 10% improvement of speech discrimination score was
achieved for monosyllabic word lists tested in a quiet acoustic setting. In addition, the speech
reception threshold was also improved by 2~8 dB when disyllabic word listswere tested in a noisy
acoustic scenario.

Keywords: hearing aids; frequency discrimination threshold; piecewise-linear frequency shifting
algorithm; speech discrimination score; speech reception threshold

1. Introduction

Currently, signal processing research in digital hearing aids is mainly focused on improving
“audibility” of acoustic signals, which is typically attempted to achieve loudness compensation and
dynamic range compression of input sound in different frequency and sound pressure levels. These
methods essentially are aimed to achieve a certain intensity of output sound in the digital hearing aids
which will fit the characteristics of hearing-impaired patients. It is known that hearing impairment
affects auditory threshold, sound analysis ability, and temporal gap discrimination. Therefore, even
when they are able to hear the sound, they may not understand the meanings [1]. This situation occurs
particularly when the hearing-impaired patients lose the ability to analyze the sounds. In general,
a cochlea in a normal ear is able to distinguish various frequency components in speech sounds by
producing vibration in different locations within the cochlea. In contrast, an impaired cochlea is
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unable to properly differentiate frequencies, which leads to frequency confusion and the inability to
understand the speech sounds [2–5]. This situation is further exacerbated when the speech sounds are
submerged in a noisy or disturbing environment [6].

In recent years, some acoustic signal processing algorithms have been proposed by researchers to
improve the frequency resolution of hearing-impaired patients. A compression method was proposed
by Kulkarni and Pandey [7], in which the input audio signal is divided into several sub-bands and then
compressed to the center frequency within each band. Using this method, the frequency difference
between the signal components is widened, and the aforementioned frequency confusion is alleviated.
In previous studies [8,9], the cause and effect of frequency resolution decrease has been considered.
It has been shown that when the response curve of the cochlear filter is widened, the peak-valley
difference of the spectrum is decreased, which makes it difficult to perceive the formants of the speech.
The Spectral Contrast Enhancement (SCE) algorithm is proposed which enhances the spectrum of the
original speech signal by increasing the amplitude difference while maintaining the original sound
pressure level. Previous experimental results [8,9] showed that a certain degree of improvement was
provided by this method in speech recognition.

There are also some prior works on improving audibleness for severely hearing-impaired
patients [10]. These patients usually suffer from deafness or partial deafness because of severe loss
of listening capability in the high frequency region. A frequency-lowering algorithm which moves
high frequency components of the input audio signals into lower frequency regions was proposed
in [10,11]. By using this algorithm, the severely hearing-impaired persons can then perceive the
previously lost high frequency components sounds as they have been shifted into a lower frequency
range that is audible for the patients. However, high frequency hearing loss is only one of the
symptoms of neurosensory deafness. There are other typical audiograms of neurosensory deafness,
such as flat-shaped, slow descending-shaped, V-shaped (which is also called notched), island-shaped,
and many others [12]. Different types of hearing loss usually have been faced with various difficulties
in frequency resolution, for which the frequency-lowering algorithm is not able to accommodate. In a
study by Bohnert et al. [13], advantages of frequency compression in noisy environment are researched.

Originating from the frequency lowering algorithm, a piecewise-linear frequency shifting
algorithm for digital hearing aids is proposed to tackle deteriorated frequency resolution of V-shaped
hearing loss patients. Different from the frequency lowering algorithm, which improves high frequency
resolution only, the proposed algorithm has the ability to improve the frequency resolution of
the patient in any frequency range. Also, the speech intelligibility for speech buried in noise is
improved. Different from the previous SCE algorithm, the proposed scheme is to improve the frequency
resolution not by changing the peak-valley difference of the amplitude spectrum, but by executing
piecewise-linear frequency shift of the input signals. Parameters of the proposed algorithm can be
adjusted easily to facilitate hearing aid personalization by simply changing frequency stretching and
compression ratios. The proposed algorithm was implemented in a system. Six hearing-impaired
persons (subjects) with V-shaped audiograms were tested. Experimental results indicated that the
proposed piecewise-linear frequency shifting algorithm effectively improved the speech discrimination
scores and decreased the speech reception thresholds of the tested subjects. The overall speech
discrimination score of monosyllabic vocabulary in pure speech was improved by nearly 10%, while
the speech reception threshold of disyllabic spondaic vocabulary in a noisy setting was reduced by
2~8 dB.

This paper is organized as follows. Firstly, the piecewise-linear frequency shifting algorithm is
introduced in Section 2. Subsequently, implementation of the algorithm in a hearing aid system is
explained in Section 3, and the experimental results are shown and discussed in Section 4. Finally,
a conclusion is presented in Section 5.
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2. Piecewise-Linear Frequency Shifting Algorithm

In traditional digital hearing aid algorithms, the audio signal is usually enhanced by a sound
compensation scheme at certain frequencies according to pure tone hearing thresholds. However,
such a scheme does not consider the loss of frequency discrimination. In order to deal with the
deteriorated frequency resolution of hearing-impaired patients, a piecewise-linear frequency shifting
algorithm for digital hearing aids is proposed. This algorithm is designed with the aim of improving
the frequency resolution of the patient in a certain frequency range and at the same time enhancing
speech intelligibility of speech sounds buried in noise. The relationship between frequencies before
and after piecewise-linear frequency shifting is shown in Figure 1. Here, for the enhanced center
frequency f0 = 4 kHz in frequency region [B, C] where the ear is less sensitive, the original frequency
components are stretched, from [ fl , fh] to

[
f ′l , f ′h

]
, as shown in Figure 1. This step attempts to move the

components out of the insensitive region. The scale of stretching is defined as Equation (1) and can be
adjusted according to different application situations.
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To avoid overlapping frequency components, the adjacent frequency ranges are compressed with
parameters that are adjustable. As shown in Figure 1, segment AB defines a frequency region from fa

to fl and is compressed by a compressing ratio β1 in accordance with Equation (2). Similarly, segment
CD defines a frequency region from fh to fd which is compressed by a compressing ratio β2, as shown
in Equation (3) below.

γ =
f ′h − f ′l
fh − fl

(1)

β1 =
f ′l − f ′a
fl − fa

(2)

β2 =
f ′d − f ′h
fd − fh

(3)

The range of frequency stretching [B, C] is decided according to the results of the frequency
discrimination test. In order to control the distortion of the output signal, the value of the stretching
ratio γ is justified. The bigger γ is, the worse the distortion is. The values of β1 and β2 are set according
to the compression fields and γ. In speech recognition, speech sounds are recognized according to
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the relative positions of frequency components. Because the frequency distance among the frequency
components is not changed by the frequency shifting algorithm, the components identification is not
influenced. Although the waveform could eventually be distorted to some extent, the distortion level
on speech recognition is considered acceptable.

3. Implementation of the Piecewise-Linear Frequency Shifting Algorithm

The proposed piecewise-linear frequency shifting algorithm can be implemented in the sub-bands
of digital hearing aids. Figure 2 is a system block diagram showing the implementation of the proposed
frequency shifting algorithm. The input signal from the microphone passes through a pre-filter before
going through an analog to digital converter (ADC) and is analyzed to sub-bands by fast Fourier
transform (FFT). These sub-bands are divided into N channels. The channels that contain the targeted
frequency bands are first passed through non-linear compensation units which have transfer functions
of wide dynamic range compression (WDRC). The outputs of the non-linear compensation units are
then processed using the proposed piecewise-linear frequency shifting algorithm. The outputs are then
combined using inverse fast Fourier transform (IFFT) before passing through a post filter, automatic
gain control (AGC), and a digital to analog converter (DAC). Finally, they are passed to the receiving
end. Specifically, within the channels that contain the targeted frequency bands, the frequencies
are interpolated according to the stretching ratio and sampled according to the compressing ratio
described earlier in Equations (1)–(3).
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IFFT, inverse fast Fourier transform.

As shown in Figure 3, k indicates the FFT spectrum series of the original input audio signal, and k′

indicates the FFT spectrum series of the processed signal.
[

nl nh

]
indicates the spectrum region

before stretching in k series, and
[

n′l n′h
]

indicates the corresponding processed spectrum region in

k′ series where

n′l = nl −
(γ− 1)

2
(nh − nl), n′h = nh +

(γ− 1)
2

(nh − nl) (4)
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Here
[

nl nh

]
is mapped to

[
n′l n′h

]
, with (γ− 1)(nh − nl) frequency points interpolated,

and
[

na nl

]
is compressed to

[
n′a n′l

]
,
[

nh nd

]
is compressed to

[
n′h n′d

]
with

(γ− 1)(nh − nl) frequency points removed totally. Specifically,

n′a = na = nl −
1
2
· γ− 1

1− β1
· (nh − nl), n′d = nd = nh +

1
2
· (γ− 1)
(1− β2)

· (nh − nl) (5)

So,
[

n0 na

]
in sequence k is directly mapped to

[
n′0 n′a

]
in sequence k′, and

[
nd nNw

]
is directly mapped to

[
n′d n′Nw

]
. After the proposed frequency shifting process, the length of the

sequence is unchanged and the overlap is thus avoided. It should be noted that for the stretching
part, the amplitude and phase value of the interpolated points are calculated by magnitude and phase
spectrums separately. Therefore, the amplitude and phase values of the original points are preserved.
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Figure 3. Frequency interpolation and sampling.

4. Experimental Results

4.1. Subjects and Their Pure Tone Audiograms

The system depicted in Figure 2 was realized in a prototype hearing aids software in a
computer and used for the following experimental tests. Six hearing-impaired patients with V-shaped
audiograms were tested in the experiments. The general information of the patients is shown in Table 1.
All of the patients had the experience of wearing hearing aids for more than three months. All of the
hearing aids had the functions of loudness compensation and wide dynamic range compression. There
was not any frequency-shifting processing in their hearing aids. Pure tone hearing thresholds of the
patients without wearing hearing aids were measured and the results of audiograms are shown in
Figure 4 for both left and right ears.

Table 1. General information of the subjects.

Subject Age Gender Cause of
Deafness Duration Deafness

Degree
Wearing

Experience
Wearing Hours

Everyday

S1 42 Male Noise-induced 2 years Moderate 12 months ≥8 h
S2 25 Male Hereditary 1 year Moderate 3 months 2~8 h
S3 47 Male Noise-induced 4 years Moderate 12 months ≥8 h
S4 60 Female Mixed 5 years Severe 28 months ≥8 h
S5 38 Female Noise-induced 4 years Severe 20 months ≥8 h
S6 40 Female Noise-induced 4 years Moderate 24 months 4~8 h
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4.2. Measurements of the Frequency Discrimination

Before processing frequency shifting, frequency resolution of the hearing-impaired person
needs to be measured. Traditionally, Brian C. J. Moore proposed the psychophysical tuning curves
(PTCs) method to obtain the frequency selectivity using a narrowband noise masker that sweeps in
frequency [14,15]. Rapid methods for PTCs measurement to improve the maneuverability, thereby
saving measuring time and reducing complexity, have also been proposed [16,17]. The Q10dB calculated
by the curve indirectly reflects the frequency resolution of the subject at a certain frequency [18,19].
However, for sensorineural hearing-impaired patients, the measured Q10dB will fail when the minimum
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sound level is not recorded at which the patient is able to discriminate the probe signal from masker,
or the bandwidth corresponding to 10dB above the minimum level is wider than the measuring field.

In our experiments, an alternative subjective listening test is conducted to obtain the frequency
discrimination thresholds in different frequencies. Two pure tone signals (the probe signal and the offset
signal) controlled and generated by computer software are emitted sequentially in a non-overlapping
manner with 100 ms interval between them. The sound level is set to the most comfortable level (MCL)
of the subject. Subjects are required to give indication when they are able to hear the two distinct
sounds. According to the indication by the subject, the software adjusts the frequency offset until the
subject reaches the discrimination threshold for which he/she is unable to identify [20]. The main
steps of the proposed frequency discrimination measurement are as follows:

Step 1 The software plays an audio sequence at the testing frequency. The sequence consists of
two 1-second pure tone signals with a 100 ms interval between them, namely “pure tone
1—pause—pure tone 2”. In the sequence, pure tone 1 is the probe signal at the testing
frequency, and pure tone 2 is the offset frequency signal or the same probe signal.

Step 2 Each sequence is played once or twice. The second play is optional and activated by the
listener. The listener needs to decide whether the two signals are identical.

Step 3 The software adaptively adjusts the frequency offset according to the correctness of
the subject’s indication for the tone. The frequency offset values ∆ f can be set as[

1
2

1
4

1
8

1
16

1
32

1
64

1
128

1
256

1
512

]
× f , with initial frequency offset ∆ f = 1

2 f , where
f is the frequency of the probe pure tone.

Step 4 When the subject gives N (N can be set by the software) times correct indications, then
the frequency offset ∆ f is halved. When the subject hits N times incorrect indications, the
frequency offset ∆ f is doubled. Otherwise the frequency offset is held constant and the
testing continues.

Step 5 When the offset is switched back and forth between the adjacent [∆f 1 ∆f 2]·M times, or the
offset ∆ f2 is already tested M times, the frequency discrimination threshold at the probe
frequency is considered to be the geometric average of the last two adjacent frequencies[

∆ f1 ∆ f2

]
. The measurement moves to the next frequency and then returns to step 1.

Coefficients of M and N can be set by the computer software to meet the application requirements,
generally for 3~8 times. The larger the values of N and M, the more accurate the result will be, but at
the expense of longer time consumption for the measurement. In our experiment, the values of N and
M were set to 4 and 6, respectively. The results of the experiment of six subjects at the frequencies of
the highest hearing thresholds are tabulated in Table 2.

Table 2. The results of six subjects at the frequencies of the highest hearing thresholds.

S1 S2 S3 S4 S5 S6

probe frequency/Hz 4000 3000 4000 6000 4000 3000
frequency discrimination threshold ±1.6% ±3.2% ±3.2% ±6.3% ±6.3% ±1.6%

To improve reliability of the results, the test is usually repeated over a period of time. In audiology
research, frequency discrimination threshold of normal adults is about 0.1% to 0.45%, and decreases
along with frequency of the probe signal. When the discrimination threshold is worse than the
normal range, it may lead to difficulty indistinguishing speech in a noisy environment. This leads to
deterioration of speech intelligibility for the patient [5].

4.3. The Performance of the Frequency Shifting Algorithm

In order to verify the effect of the proposed frequency shifting algorithm on the six subjects with
V-shaped audiograms, subject evaluation tasks for speech discrimination score (SDS) and speech
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reception threshold (SRT) were performed. Speech discrimination score is the percentage of the
speech words that a subject identifies correctly. The speech pressure level of 50% recognition score
is defined as the speech reception threshold. For the choice of corpus, monosyllabic vocabulary,
disyllabic vocabulary, and sentences were selected. Since a syllable is the smallest unit of Chinese
language, monosyllabic lists are usually chosen for speech discrimination score tests. However,
monosyllabic words cannot express complete semantics, coarticulation, allophone, and other
phenomena in the language, so disyllabic spondaic words are commonly used for additional speech
audiometry. The materials of the experiment were selected from the monosyllabic vocabulary and
the disyllabic vocabulary in the Chinese Mandarin Speech Audiometry CD published by People’s
Medical Publishing House. The corpus meets the national standard GB/T15508 with reference to
“Acoustics Manual” for word selecting and recording. The audiometry procedure was performed
according to references [21,22], and the software platform was established according to reference [23].
In the experiment, the materials were processed by the piecewise-linear frequency shifting algorithm.

The range of frequency stretching was decided according to the results obtained from the
frequency discrimination test and the value of stretching ratio γ was determined by Equation
(1). The range of frequency compressing, the compressing ratios β1 and β2 were determined by
Equations (2)–(3). In order to control distortion of the output signal, the value of the stretching ratio
γ was set between 2 to 5, and the values of β1 and β2 were set between 0.9 to 1. Table 3 shows the
stretching ratios and the compressing ratios of the six subjects. As shown in Figure 1, fa and fd can be
set freely according to the channel edge frequencies. In this paper, we used fa = 0 and fd = 8000 Hz in
all experiments to avoid the influence of the different channel widths.

Table 3. The parameters of the piecewise-linear frequency shifting algorithm.

Subject Frequency Discrimination
Threshold fl/Hz fh/Hz γ β1 β2

The Number of
Interpolated and Sampled

S1 4000× [1± 1.6%]Hz 3936 4064 4 0.95 0.95 24
S2 3000× [1± 3.2%]Hz 2904 3096 3 0.94 0.96 24
S3 4000× [1± 3.2%]Hz 3872 4128 3 0.94 0.94 32
S4 6000× [1± 6.3%]Hz 5625 6375 2 0.93 0.81 48
S5 4000× [1± 6.3%]Hz 3750 4250 2 0.93 0.93 32
S6 3000× [1± 1.6%]Hz 2952 3048 4 0.97 0.98 18

The original sample rate of the vocabularies was 44.1 kHz. This sampling rate was first changed
to 16 kHz before processing. The frame length was 1024 samples with 512 samples overlapped.
Figure 5 shows the spectrograms of the Chinese disyllabic word “Xuduo” (the meaning is “many”)
before and after the proposed algorithm. Here, f0 = 4000 Hz and the frequency stretching range was[
3750 Hz 4250 Hz

]
with the coefficients γ = 2, β1 = 0.93, and β2 = 0.93.
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As shown in Figure 5a,b, the spectrogram of the frequency region
[
3750 Hz 4250 Hz

]
of the

original signal was stretched in the spectrogram of the output signal. The separation of formant tracks
was increased and the energy was diluted. While the spectrograms of the adjacent frequency ranges
were compressed with the formants slightly squeezed. The audition in a silent room by a normal
hearing person showed that the processed word was clear.

4.4. Experiment Results of SDS for Monosyllabic Vocabulary

The speech discrimination scores of the six subjects using monosyllabic vocabulary in
“Mandarin Chinese Speech test CD” were tested. As shown in Table 4, the contribution of the different
frequency components varies in speech recognition [24,25]. In Chinese, energy of the voiceless
consonant is mainly focused on the medium-high frequency range. The loss of medium-high frequency
sensitivity and resolution therefore leads to difficulty for voiceless consonant recognition.

Table 4. The contribution of frequency components for speech recognition.

Frequency Range/Hz Contribution Score %

0∼250 2
250∼500 3

500∼1000 35
1000∼2000 35
2000∼4000 13
4000∼8000 12

The experiments of SDS measurement based on both the original monosyllabic vocabulary and the
processed monosyllabic vocabulary were also performed. Both the vocabularies included 30 equivalent
wordlists. In every wordlist, there were 25 Chinese monosyllabic words. The tested original wordlists
were selected randomly and the processed wordlists were always selected to ensure that they differed
from the original wordlists. In addition, different lists were used in training and testing to ensure that
the subjects were not able to remember the content. All six of the subjects utilized the supra-aural
headphone in the silent room to listen to the words in the list. Equivalent monosyllabic wordlists were
tested in different sound pressure levels from 10 dB to 100 dB with 10 dB steps. Spline interpolation
was performed to acquire smooth performance-intensity curves. For every subject, nearly 100 min
were spent to get performance-intensity (P-I) curves for the original vocabulary wordlists and the
processed vocabulary wordlists.

The curves of performance-intensity (P-I), which depict the relationship between speech
discrimination score and speech intensity, are shown in Figure 6. In the figure, the relationship based
on the original vocabulary is depicted by solid lines, while that based on the processed vocabulary is
depicted by dashed lines. From the figure, it can be concluded that different SDS lines could be achieved
even if the subjects had similar audiograms. For example, S1 and S3 had similar audiograms, but the
maxima speech discrimination score for S1 was 82%, while the maxima score for S3 was 74%. The P-I
curves of S5 reached the maxima SDS when the sound pressure level was 80 dB, and then declined with
an increase of sound pressure level. This indicated that the cause of the deafness may be in the auditory
central nervous system [26]. In general, it can be seen that the proposed piecewise-linear frequency
shifting algorithm had essentially improved the SDS of six subjects in different sound pressure levels
(SPLs) by 4%~10%. Notably, S5 achieved the most significant improvement.
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subjects: (a) S1; (b) S2; (c) S3; (d) S4; (e) S5; (f) S6.

From P-I curves, the speech reception threshold (SRT) is defined, which is the softest intensity
spondee words that an individual can repeat at least 50% of the time. The SRT of the six subjects with
vocabularies before and after processing is listed in Table 5. From Table 5, the SRT of S1, S2, S5, and S6
were reduced by 3~8 dB, where the reduction of S2’s SRT was the largest. It can be concluded that the
enhancement of frequency discrimination in 3000 Hz and 4000 Hz had a good effect on the speech
intelligibility of the subjects. In addition, the subjects had no obvious discomfort with the processed
words and their ability to identify voiceless consonants was improved.
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Table 5. Speech reception threshold (SRT) using the original and the processed vocabularies.

Subjects SRT/dB (The Original) SRT/dB (The Processed)

S1 46 42
S2 62 54
S3 57 54
S4 65 62
S5 71 67
S6 49 45

4.5. Speech Reception Threshold (SRT) Measurement Using Disyllabic Vocabulary in a Noisy Environment

Hearing-impaired individuals usually wear digital hearing aids in noisy environments.
The measurement results using pure vocabularies without noise cannot reveal speech intelligibility
of the subjects under real acoustic conditions. In our experiments, a noisy background which was
generated by the SurroundRouter software and superposed disyllabic spondaic words, was used
to test the SRT of the subjects in a noisy environment. SurroundRouter is a virtual acoustic scene
software, published by Otometrics company, Denmark. The software has the capability to simulate
the sounds associated with driving in a car, a marketplace, a meeting, a dinner party, etc. In every
channel, foreground audio source is superposed to the background acoustic scene, with adjusted
SNR and volume. In our experiments, acoustic simulations of riding in a car, a marketplace, and a
dinner party were used as the background noise with a certain noise level. Because SRT measurement
from P-I curves takes a long time, a fast SRT measurement scheme which satisfies the Guidelines for
Determining Threshold Level for Speech [27] and which was recommended by Xi [28] was used. Five
Chinese spondaic words with the same speech level were tested as a group. The experiment started
with a group of words for which all of the words were recognized correctly. Then the speech level of
the tested group was decreased sequentially and the accuracy of the reply was recorded. When all
of the tested words in a group could not be recognized, the test was terminated. The SRT was then
calculated using Equation (6) which was derived by Xi [28]:

SRT = the initial speech level − the number of the correct answers in the test + 2.5 dB (6)

Figure 7 shows the SRT measurement results of the six subjects under the 60 dB car-riding
background scenario superposed with Chinese disyllabic spondaic words. Before the test, the subjects
were trained. Then, six word lists were tested randomly for every subject. According to one-way
Analysis of Variance (ANOVA) with significant level p ≤ 0.05, the testing results of the six subjects
satisfied the hypothesis of normal distribution with homogeneity variances. However, using two-way
ANOVA, there was a significant difference between the results using the original vocabularies and the
processed vocabularies.

The boxplot of SRT results for the six subjects from the 60 dB car-riding scenario is shown in
Figure 7. The hollow boxplot represents the results for the original vocabularies, while the shaded
boxplot represents the results for the processed vocabularies. ‘+’ indicates that abnormal data is
present. From Figure 7, all of the SRT results of the six subjects using the processed vocabularies were
decreased by 2~8 dB compared with those using the original vocabularies. Among which, the SRT of
S5 was decreased by 8 dB, S2 and S6 were decreased by 4 dB, S3 was decreased by 3 dB, and finally S1
and S4 were decreased by 2 dB.

The experimental results showed that the SRT in the noisy environment of the six subjects had
been overall decreased by the piecewise-linear frequency shifting algorithm, and at the same time the
speech intelligibility had been improved. The background scenarios for the market place, dinner party,
and meeting were tested in the SRT measurement and the improvements were achieved under all
background scenes.
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5. Conclusions

In order to improve the frequency resolution of hearing-impaired individuals, a piecewise-linear
frequency shifting algorithm in digital hearing aids was proposed. In this algorithm, the sensitivity of
the hearing-impaired person in the confused frequency range was improved by frequency stretching.
The adjacent frequency ranges were compressed to avoid overlap. The comparison between the original
spectrograms and the processed spectrograms demonstrated that the distortion of the spectrogram in
the compressed region was low. The audition in a silent room by a normal hearing person showed
that the processed words were clear. The SDS for Chinese monosyllabic words and the SRT for
Chinese spondaic disyllabic words were tested for six hearing-impaired subjects with V-shaped
audiograms. The results showed that better SDS and SRT were achieved in the tests using the
processed vocabularies than the original ones. This concluded that the speech recognition of the
subjects in the noisy environment had been effectively improved. The results of this research will
assist with the much needed development and implementation of new signal processing algorithms in
commercially available digital hearing aids that are able to operate in real time within 2~8 ms time
delay, which will lead to new hearing aids being developed with both amplitude compression and
frequency shifting capabilities.
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