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Abstract: The design of vibration control systems for the seismic protection of closely adjacent
buildings is a complex and challenging problem. In this paper, we consider distributed
multi-actuation schemes that combine interbuilding linking elements and interstory actuation
devices. Using an advanced static output-feedback H∞ approach, active and passive vibration
control systems are designed for a multi-story two-building structure equipped with a selected
set of linked and unlinked actuation schemes. To validate the effectiveness of the obtained
controllers, the corresponding frequency responses are investigated and a proper set of numerical
simulations is conducted using the full scale North–South El Centro 1940 seismic record as ground
acceleration disturbance. The observed results indicate that using combined interstory-interbuilding
multi-actuation schemes is an effective means of mitigating the vibrational response of the
individual buildings and, simultaneously, reducing the risk of interbuilding pounding. These results
also point out that passive control systems with high-performance characteristics can be designed
using damping elements.

Keywords: structural vibration control; multi-building systems; output-feedback control; seismic
protection; passive control; pounding

1. Introduction

In the design of vibration control systems for the seismic protection of closely adjacent
buildings, a twofold objective has to be considered: (i) to mitigate the vibrational response of
the individual structures and (ii) to provide a proper protection against interbuilding impacts
(pounding) [1]. A common strategy to meet these objectives consists in connecting the adjacent
buildings by linking elements, which can help both to dissipate the structural vibration energy
and to keep the interbuilding gap within safe limits. Over the last years, a significant research
effort has been made in this field. Recent works on the seismic response of adjacent structures
include nonlinear dynamical models for pounding events [2–5], stochastic assessment of pounding
risk [6], structural analysis of large buildings connected by sky-bridge links [7], seismic response
of adjacent nonstructural components [8], and reduced-order models for the study of the analytical
characteristics of linked structures [9–12]. Also, a wide variety of control strategies has been
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recently proposed, including passive linking systems with viscous and viscoelastic elements [13–18],
nonlinear linking dampers [19,20], semiactive magnetorheological linking dampers [21–23], shared
Tuned-Mass-Dampers [24–26], and active linking devices [27,28]. Improved performance and
robustness can be attained by hybrid control schemes that make a combined use of interbuilding
linking elements and vibration control systems implemented in the individual buildings. Positive
results are reported by recent works in this line, which combine the connected control method
with base-isolation systems [29–33], multi-isolation systems [34], and interstory multi-actuation
systems [35–37].

Encouraged by the aforementioned statements, in this paper two different kinds of force
actuation devices are considered: interstory actuators, which are implemented between consecutive
stories of the same building and exert structural forces restricted to this building, and interbuilding
actuators, which are implemented between stories located at the same level of adjacent buildings and
produce structural forces affecting both buildings (see Figure 1b). The main objective is to design
effective vibration control systems with hybrid interstory-interbuilding multi-actuation schemes.
More specifically, we are interested in designing: (i) active control systems with reduced and realistic
feedback information, and (ii) passive control systems with high-performance characteristics. To meet
the former objective, we assume that the relative velocities associated to the actuation devices are
measurable and compute static velocity-feedback H∞ controllers following an advanced linear matrix
inequality (LMI) approach [38,39]. While, in the latter, the actuation devices are assumed to be
passive viscous dampers and the corresponding damping capacities are computed by designing a
fully decentralized velocity-feedback H∞ controller [40]. The main problem is described by means
of a particular two-building system equipped with different linked and unlinked actuation schemes.
To assess the effectiveness of the proposed active and passive control strategies, the corresponding
frequency responses are investigated. Also, a proper set of numerical simulations is conducted using
the full scale North–South El Centro 1940 seismic record as ground acceleration disturbance.
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Figure 1. Two-building model: (a) Uncontrolled configuration. (b) Linked actuation scheme formed
by two interstory actuators (d1 and d2) and one interbuilding actuator (d3).
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The rest of the paper is organized as follows: In Section 2, state-space models for the uncontrolled
two-building system and the different linked and unlinked controlled configurations are provided.
In Section 3, the centralized and decentralized static velocity-feedback H∞ controllers are designed
and the characteristics of the corresponding frequency responses are discussed. In Section 4,
numerical simulations of the time responses are conducted and illustrative peak-value plots of
the interstory drifts, interbuilding approaches and control efforts are provided and compared.
In Section 5, some conclusions and future research directions are briefly presented. Additionally,
the particular parameter values of the two-building system used in the controller designs and
numerical simulations are included in Appendix A, and the main elements of the LMI-based static
output-feedback H∞ controller design methodology are summarized in Appendix B.

2. Two-Building Mathematical Models

2.1. Uncontrolled Configuration

Let us consider a two-building system formed by a four-story building adjacent to a five-story
building as schematically depicted in Figure 1a. In this uncontrolled configuration, the lateral motion
of the buildings can be described by the second-order differential equation

M q̈(t) + Cd q̇(t) + Ks q(t) = Tw w(t), (1)

where q(t) is the vector of story displacements with respect to the ground, M is the mass matrix, Cd
is the damping matrix, Ks is the stiffness matrix, w(t) is the ground acceleration disturbance and Tw

is the disturbance input matrix. The vector of story displacements can be written in the form

q(t) =
[
q1

1(t), q1
2(t), q1

3(t), q1
4(t), q2

1(t), q2
2(t), q2

3(t), q2
4(t), q2

5(t)
]T

, (2)

where qj
i(t) represents the displacement of the ith story in the building B(j) (denoted as sj

i in Figure 1)

with respect to the building’s ground level sj
0. The mass matrix is a diagonal matrix

M = diag(m1
1, m1

2, m1
3, m1

4, m2
1, m2

2, m2
3, m2

4, m2
5), (3)

where mj
i denotes the mass of the ith story in the building B(j). The damping and stiffness matrices

have a similar block diagonal structure

Ks =

[
K(1)

s [0]4×5

[0]5×4 K(2)
s

]
, Cd =

[
C(1)

d [0]4×5

[0]5×4 C(2)
d

]
, (4)

where C(j)
d and K(j)

s represent the local damping and stiffness matrices, respectively, corresponding to
the building B(j), and [0]r×s is a zero matrix of dimensions r× s. Typically, the local stiffness matrices
have the following tridiagonal structure:

K(1)
s =


k1

1 + k1
2 −k1

2 0 0
−k1

2 k1
2 + k1

3 −k1
3 0

0 −k1
3 k1

3 + k1
4 −k1

4
0 0 −k1

4 k1
4

, K(2)
s =


k2

1 + k2
2 −k2

2 0 0 0
−k2

2 k2
2 + k2

3 −k2
3 0 0

0 −k2
3 k2

3 + k2
4 −k2

4 0
0 0 −k2

4 k2
4 + k2

5 −k2
5

0 0 0 −k2
5 k2

5

, (5)

where kj
i denotes the stiffness coefficient of the ith story in the building B(j) (see Figure 1a). When

the values of the damping coefficients cj
i are known, the local damping matrices C(j)

d can be obtained

by replacing the stiffness coefficients kj
i in Equation (5) by the corresponding damping coefficients.

Frequently, however, the values of the damping coefficients cannot be properly determined and other
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computational methods are used to obtain the matrices C(j)
d [41]. Finally, the disturbance input matrix

has the following form:

Tw = −M [1]9×1 (6)

where [1]n×1 is a vector of dimension n with all its entries equal to one.
In order to describe the vibrational response of the two-building system, we consider two

different types of output variables: interstory drifts and interbuilding approaches. The interstory drift
rj

i(t) is the relative displacement between the consecutive stories sj
i and sj

i−1 of the building B(j), and
can be defined as  rj

1(t) = qj
1(t),

rj
i(t) = qj

i(t)− qj
i−1(t), 1 < i ≤ nj,

(7)

where nj represents the number of stories of the building B(j). The overall vector of interstory drifts

r(t) =
[
r1

1(t), r1
2(t), r1

3(t), r1
4(t), r2

1(t), r2
2(t), r2

3(t), r2
4(t), r2

5(t)
]T

(8)

can be computed as

r(t) = C̃r q(t), (9)

with

C̃r =

[
C(1)

r [0]4×5

[0]5×4 C(2)
r

]
, C(1)

r =


1 0 0 0
−1 1 0 0

0 −1 1 0
0 0 −1 1

, C(2)
r =


1 0 0 0 0
−1 1 0 0 0

0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

 . (10)

The interbuilding approach ai(t) describes the approaching between the stories s1
i and s2

i placed
at the same level in the adjacent buildings, and can be defined as

ai(t) = −
(

q2
i (t)− q1

i (t)
)

, 1 ≤ i ≤ min(n1, n2). (11)

For the considered two-building system, the vector of interbuilding approaches

a(t) = [a1(t), a2(t), a3(t), a4(t)]
T (12)

can be computed as

a(t) = C̃a q(t), (13)

with

C̃a =
[

I 4 −I 4 [0]4×1

]
. (14)

Next, by introducing the state vector

x(t) =

[
q(t)
q̇(t)

]
, (15)

we obtain a first-order state-space model
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ẋ(t) = A x(t) + E w(t), (16)

with system matrices

A =

[
[0]9×9 I 9

−M−1K −M−1C

]
, E =

[
[0]9×1

−[1]9×1

]
, (17)

where In denotes an identity matrix of dimension n. The vectors of interstory drifts and interbuilding
approaches can be computed in the form

r(t) = Cr x(t), a(t) = Ca x(t), (18)

using the output matrices

Cr =
[

C̃r [0]9×9

]
, Ca =

[
C̃a [0]4×9

]
. (19)

2.2. Controlled Configurations

In order to mitigate the vibrational response of the adjacent buildings, we consider two different
kinds of force actuation devices: (i) interstory actuators, which are implemented between consecutive
stories of the same building, and (ii) interbuilding actuators, which are implemented between stories
located at the same level in the adjacent buildings. In both cases, the actuation device produces
a pair of opposite structural forces on the corresponding stories. An actuation scheme with two
interstory actuators (d1 and d2) located at the buildings’ lowest level, and one interbuilding actuator
(d3) implemented at the fourth-story level is schematically depicted in Figure 1b, where uj(t) denotes
the actuation force produced by the actuation device dj. For this control configuration, the lateral
motion of the buildings can be described by the second-order differential equation

M q̈(t) + Cd q̇(t) + Ks q(t) = Tu u(t) + Tw w(t), (20)

where

u(t) =
[
u1(t), . . . , und(t)

]T (21)

is the vector of control forces, nd is the total number of actuation devices and Tu is the control location
matrix, which models the overall effect of the actuation system. By considering the state vector x(t),
we obtain the state-space model

ẋ(t) = A x(t) + B u(t) + E w(t), (22)

with the control input matrix

B =

[
[0]9×1

M−1Tu

]
. (23)

For the control configuration presented in Figure 1b, the control location matrix is
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Tu =



1 0 0
0 0 0
0 0 0
0 0 −1
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0


. (24)

In this work, we consider a set of six different control configurations, defined by a particular
actuation scheme. The configurations that contain interbuilding actuation devices are called linked,
and those that only contain interstory actuators are called unlinked. The control configuration I (CC1),
presented in Figure 2a, is an unlinked configuration that includes two interstory actuators (d1 and d2)
located at the buildings’ lowest level. The control configuration II (CC2), presented in Figure 2b, is a
linked configuration that includes an interstory actuator (d1) located at the lowest level of the building
B(2), and an interbuilding actuator (d2), located at the fourth-story level. Control configurations with
three and four actuation devices are presented in Figures 3 and 4, respectively. The control location
matrices corresponding to the configurations CC1, CC2 and CC3 are, respectively,

TI
u =



1 0
0 0
0 0
0 0
0 1
0 0
0 0
0 0
0 0


, TII

u =



0 0
0 0
0 0
0 −1
1 0
0 0
0 0
0 1
0 0


, TIII

u =



1 0 0
0 0 0
0 0 0
0 0 0
0 1 −1
0 0 1
0 0 0
0 0 0
0 0 0


, (25)

the matrix TIV
u corresponding to the configuration CC4 has been previously presented in

Equation (24), and the control location matrices corresponding to the configurations CC5 and CC6
are, respectively,

TV
u =



1 −1 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 −1
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


, TVI

u =



1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1
0 1 −1 0
0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0


. (26)
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Figure 2. Actuation schemes with two actuation devices. (a) Unlinked configuration CC1, with two
interstory actuators (d1 and d2). (b) Linked configuration CC2, with an interstory actuator (d1) and an
interbuilding actuator (d2).

-u1(t)

u1(t)

d1

u3(t)

-u3(t)

d3

u1(t) u2(t)

d2

s11

s12

s13

s21

s22

s23

s24

s25

B(1)

B(2)

s14

s10

-u1(t) -u2(t)

d1

s20

(a) Control configuration III

u2(t)

u3(t)

d2

s11

s12

s13

s21

s22

s23

s24

s25

B(1)

s14

d3-u3(t)

s10

-u2(t)

s20

(b) Control configuration IV

B(2)

Figure 3. Actuation schemes with three actuation devices. (a) Unlinked configuration CC3, with
three interstory actuators (d1, d2 and d3). (b) Linked configuration CC4, with two interstory actuators
(d1 and d2) and an interbuilding actuator (d3).
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Figure 4. Actuation schemes with four actuation devices. (a) Unlinked configuration CC5, with four
interstory actuators (d1, d2, d3 and d4). (b) Linked configuration CC6, with three interstory actuators
(d1, d2 and d3) and an interbuilding actuator (d4).

3. Controllers Design

3.1. Static Output-Feedback H∞ Centralized Controllers

Static output-feedback controllers can be designed to perform a fast and effective computation
of the control actions from the available feedback information. Typically, these kind of controllers can
be written in the form

u(t) = Ky(t), (27)

where u(t) is the vector of control actions, K is a constant control gain matrix and y(t) is a vector
of measured outputs. According to the results summarized in Appendix B, a suboptimal static
output-feedback H∞ controller can be computed for the linear system in Equation (22) by solving
the LMI optimization P given in Equation (A8). The design procedure involves a measured-output
vector of the form

y(t) = Cyx(t), (28)

that models the available feedback information, and a vector of controlled outputs

z(t) = Cz x(t) + Dz u(t), (29)

that allows computing the overall cost of the system response and the control action. In this work,
we assume that the relative velocities associated to the actuation devices are measurable and consider
the vector of measured outputs:

y(t) = [y1(t), . . . , ynd(t)]
T, (30)

where nd is the total number of actuation devices and yj(t) represents the relative velocity
corresponding to the actuation device dj. For the control configuration `, the vector of measured
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outputs can be written as a linear combination of the state variables defined in Equation (15) using
the measured-output matrix

C`
y =

[
[0]nd×9

(
T`

u

)T
]

, (31)

where T`
u is the corresponding control location matrix. Thus, for the configuration CC6 displayed

in Figure 4b, the number of actuation devices is nd = 4 and the measured-output vector has the
form y(t) = [y1(t), y2(t), y3(t), y4(t)]T , where y1(t) is the interstory velocity at the first-story level
in building B(1), y2(t) and y3(t) denote the interstory velocity at the first and second story levels in
building B(2), respectively, and y4(t) is the interbuilding velocity at the four-story level. In this case,
by considering the matrix TVI

u given in Equation (26), we obtain the measured-output matrix

CVI
y =


0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0

 . (32)

To define the controlled-output vector z(t), it should be noted that large interstory drifts and
interbuilding approaches must both be avoided in order to prevent buildings’ structural damage and
interbuilding collisions. Additionally, moderate control efforts are also convenient. To this end, we
consider the controlled-output matrices

Cz =

 αrCr

αaCa

[0]nd×18

 , Dz =

[
[0]13×nd

αu Ind

]
, (33)

where αr, αa and αu are scaling coefficients that compensate the different magnitude of interstory
drifts, interbuilding approaches and control forces, respectively, Cr and Ca are the matrices given in
Equation (19), and nd is the total number of actuation devices of the considered control configuration.
With this choice, the controlled-output vector satisfies

‖z(t)‖2
2 = α2

r ‖r(t)‖2
2 + α2

a ‖a(t)‖2
2 + α2

u ‖u(t)‖2
2 . (34)

To obtain a velocity-feedback H∞ controller for the control configuration `, we consider the
system matrices A, B and E corresponding to the control location matrix T`

u, the mass and stiffness
values given in Table A1 (see Appendix A) and the damping matrices in Equations (A1) and (A2);
the measured-output matrix C`

y in Equation (31); and the controlled-output matrices Cz and Dz in
Equation (33) defined by the corresponding control dimension nd and the scaling coefficients

αr = 5, αa = 1, αu = 10−7.4. (35)

Next, by applying the computational procedure described in Appendix B, we obtain a
velocity-feedback control gain matrix K` and an upper bound γ̃̀ of the corresponding H∞-norm γ̀ ,
which can be computed by considering the closed-loop transfer function TK`(2π f j) in Equation (A17)
and solving the optimization problem given in Equation (A16). For the control configurations CC1
and CC2, we obtain the following velocity-feedback control gain matrices

KI = 107×
[
−0.7525 0.0142
−0.8003 −1.1890

]
, KII = 107×

[
−1.0176 0.0748

0.1392 −0.4387

]
, (36)

and the γ-value upper bounds

γ̃I = 0.5973, γ̃II = 0.8851. (37)
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The actual γ-values are

γI = 0.4967, γII = 0.7833. (38)

To illustrate the frequency behavior of the velocity-feedback controllers defined by the gain
matrices KI and KII, the maximum singular values of the closed-loop transfer functions TKI(2π f j),
TKII(2π f j) and the open-loop transfer function

T(2π f j) = Cz(2π f jI−A)−1E (39)

are presented in Figure 5. In this figure, the thin black solid line displays the maximum singular
values of the open-loop transfer function and shows the frequency response characteristics of the
uncontrolled two-building structure. The peaks in this plot are associated to the natural resonant
frequencies of the individual buildings, which are presented in Table 1. The main peak-value is
associated to the frequency 1.0082 Hz and has a magnitude

γ0 = 2.0479, (40)

which corresponds to the H∞-norm of the uncontrolled configuration. The thick blue solid line
presents the frequency response of the configuration CC1 with the velocity-feedback control gain
matrix KI, and the red dash-dotted line shows the frequency response of the configuration CC2 with
the velocity-feedback control gain matrix KII. As indicated in Equation (A16), the largest peak-values
in these plots correspond to the controllers H∞-norms given in Equation (38). Following the same
design procedure, we obtain the velocity-feedback control gain matrices

KIII =107×

 −1.4671 0.3369 0.5595
0.0936 −0.6758 −0.4428
0.1090 −0.5970 −0.5382

, KIV =106×

 −6.8093 −3.7631 −0.3129
−1.2553 −8.6084 0.3653

0.5425 0.9675 −2.9665

 , (41)

for the control configurations CC3 and CC4, respectively, the control gain matrix

KV =107×


−1.0323 0.4066 0.2143 −0.4538
−0.3656 −0.5823 −0.3065 −0.0591

0.9548 −1.7601 −1.5193 0.2758
0.3918 0.3666 −0.5359 −0.6302

 (42)

for the configuration CC5, and finally, the control gain matrix

KVI = 106 ×


−4.7133 −4.9748 −3.9433 1.9188
−4.1747 −5.9723 −2.0281 −1.4118
−1.6926 −4.8034 −4.5185 0.1502
−4.2366 3.2550 6.0731 −6.8744

 (43)

for the control configuration CC6. The corresponding γ-values and upper bounds γ̃̀ are collected
in Table 2. The frequency responses are presented in Figures 6 and 7, using a blue solid line for the
unlinked configurations (CC3 and CC5), and a red dash-dotted line for the linked configurations (CC4
and CC6). According to the γ-values in Table 2 and the value γ0 in Equation (40), three facts can be
noted: (i) all the controllers obtained with the proposed design methodology provide a good level
of reduction in the H∞-norm value, (ii) an increasing effectiveness is attained with a larger number
of actuation devices, and (iii) smaller γ-values are obtained by the unlinked control configurations.
All these facts can also be clearly appreciated by observing the peak-values in the frequency plots
presented in Figures 5–7. These frequency plots also show that, in all the cases, a significant reduction
of the vibrational response is additionally attained in the secondary resonant peaks.
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Figure 5. Frequency response corresponding to the centralized velocity-feedback H∞ controllers with
active implementation defined by the control gain matrices KI and KII. Maximum singular values of
the closed-loop transfer function TKI (2π f j) (thick blue solid line), the closed-loop transfer function
TKII (2π f j) (red dash-dotted line) and the open-loop transfer function T(2π f j) (thin black solid line).

Table 1. Resonant natural frequencies of the unlinked buildings.

Frequency (Hz)

Building B(1) 1.2404 3.4161 5.3160 6.7227
Building B(2) 1.0082 2.8246 4.4929 5.7974 6.7735

Table 2. Active configurations: Actual γ-values and γ-value upper bounds corresponding to the
centralized velocity-feedback controllers defined by the gain matrices K`.

CC1 CC2 CC3 CC4 CC5 CC6

Upper bound γ̃ 0.5973 0.8851 0.3856 0.6528 0.3396 0.4333
γ-value 0.4967 0.7833 0.3395 0.5037 0.2855 0.3277
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Figure 6. Frequency response corresponding to the centralized velocity-feedback H∞ controllers with
active implementation defined by the control gain matrices KIII and KIV. Maximum singular values of
the closed-loop transfer function TKIII (2π f j) (thick blue solid line), the closed-loop transfer function
TKIV (2π f j) (red dash-dotted line) and the open-loop transfer function T(2π f j) (thin black solid line).
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Figure 7. Frequency response corresponding to the centralized velocity-feedback H∞ controllers with
active implementation defined by the control gain matrices KV and KVI. Maximum singular values of
the closed-loop transfer function TKV (2π f j) (thick blue solid line), the closed-loop transfer function
TKVI (2π f j) (red dash-dotted line) and the open-loop transfer function T(2π f j) (thin black solid line).

3.2. Static Velocity-Feedback H∞ Decentralized Controllers

From a practical point of view, the controllers defined by the velocity-feedback gain matrices
K` computed in the previous section have the important advantage of using a reduced system
of sensors which are naturally associated to the actuation devices. However, they also present
two serious drawbacks. Firstly, the complete vector of measured outputs is used to compute the
control actions and, consequently, a wide communication system would be necessary in the controller
implementation. Secondly, producing the corresponding actuation forces would require active
devices with a large power consumption and potential reliability issues. These two disadvantages,
typically present in active vibration control of large structures, can be properly overcome by
considering fully decentralized velocity-feedback controllers with control gain matrices of the form

K̂` = diag(k̂`1, . . . , k̂`nd
), (44)

which can be obtained by solving the LMI optimization problem P in Equation (A8) with the same
matrices used in the previous controller designs and constraining the LMI variable matrices XR and
YR to a diagonal form. As indicated in [17,40], if the gain matrix elements k̂`i are all negative, then this
kind of controllers admit a passive implementation using linear viscous dampers. Thus, for instance,
by applying this design methodology to the control configuration CC1, we obtain the following
diagonal gain matrix:

K̂I =107×
[
−0.8543 0

0 −1.2968

]
. (45)

Hence, the decentralized velocity-feedback controller defined by the diagonal gain matrix K̂I

can be implemented using two interstory linear damping devices d1 and d2 with respective damping
constants 0.8543× 107 Ns/m and 1.2968× 107 Ns/m. The frequency response characteristics of this
passive control system are displayed in Figure 8 using a red dash-dotted line. The frequency response
corresponding to the uncontrolled configuration (thin black solid line) and the centralized controller
defined by the gain matrix KI (thick blue solid line) are also included as a reference. The plots in the
figure clearly show the good behavior of the obtained passive controller, which practically matches
the performance of the active centralized controller over most of the frequency range, and produces
a small increment (of about 10%) in the peak-value corresponding to the main resonant frequency.
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Figure 8. Frequency response corresponding to the decentralized velocity-feedback H∞ controller
with passive implementation defined by the diagonal control gain matrix K̂I. Maximum singular
values of the closed-loop transfer function TK̂I (2πf j) (red dash-dotted line), the closed-loop transfer
function TKI (2π f j) (thick blue solid line) and the open-loop transfer function T(2π f j) (thin black
solid line).

Using the same design strategy to compute decentralized velocity-feedback controllers for the
other control configurations considered in this paper, we have obtained diagonal gain matrices with
the values presented in Table 3. Comparing the corresponding γ-values collected in Table 4 and the
value γ0 in Equation (40), it can be appreciated that the same three facts observed in the centralized
controller designs also apply to the decentralized controllers: (i) all the controllers obtained with
the proposed design methodology provide a good level of reduction in the H∞-norm value, (ii) an
increasing effectiveness is attained with a larger number of actuation devices, and (iii) smaller
γ-values are obtained by the unlinked control configurations. However, two new elements appear
in the decentralized design: (iv) the risk of failure of the controller design procedure is higher in the
decentralized designs, and (v) the γ-value attained by some decentralized controllers is lower than
the one obtained by the associated centralized controller.

Table 3. Coefficients of the passive controllers K̂` = diag
(

k̂`1, . . . , k̂`nd

)
obtained for the different

control configurations (×107 Ns/m). The values corresponding to the configuration CC5 are missing
due to the feasibility issues encountered in the associated LMI optimization problem.

CC1 CC2 CC3 CC4 CC5 CC6

k̂`1 −0.8543 −0.9442 −1.5106 −0.6138 – −2.2631
k̂`2 −1.2968 −0.2483 −0.7879 −0.9207 – −2.2309
k̂`3 −1.1282 −0.3257 – −0.9255
k̂`4 – −0.3883

Table 4. Passive configurations: Actual γ-values and γ-value upper bounds corresponding to the
decentralized velocity-feedback controllers defined by the diagonal gain matrices K̂`. The values of
the control configuration CC5 are missing due to the feasibility issues encountered in the associated
linear matrix inequality (LMI) optimization problem.

CC1 CC2 CC3 CC4 CC5 CC6

Upper bound γ̃ 0.6537 0.8865 0.5745 0.7657 – 0.6079
γ-value 0.5500 0.7646 0.3241 0.5987 – 0.3058
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The increased risk of failure in the decentralized design procedure can be explained by the
additional structure constraints introduced in the LMI optimization problem, which can produce
feasibility issues. This kind of numerical problems are poorly understood and sometimes depend
on the particular numerical solver and the options used in the LMI optimization procedure. In our
case, the feasibility issues have only been encountered in the design of a diagonal gain matrix for
the control configuration CC5. Regarding the γ-value produced by some decentralized controllers,
by comparing the γ-values in Tables 2 and 4, it can be seen that a lower γ-value is attained by
the decentralized controllers for the control configurations CC2, CC3 and CC6. A clear view of
this situation can be obtained in Figure 9, which presents the frequency response corresponding to
the passive control system defined by the diagonal gain matrix K̂VI (red dash-dotted line) and the
corresponding centralized controller defined by the gain matrix KVI given in Equation (43) (thick blue
solid line). To explain this unexpected fact, it should be noted that the LMI optimization procedure
is based on the upper bound γ̃ and produces a suboptimal H∞ controller. Obviously, the upper
bound γ̃(K`) corresponding to the unstructured gain matrix K` must be inferior to the upper bound
γ̃(K̂`) obtained for the diagonal gain matrix K̂`, which has been computed by solving a constrained
version of the same LMI optimization problem. Looking at the data in Tables 2 and 4, we can see
that the inequality γ̃(K`) ≤ γ̃(K̂`) certainly holds for all the control configurations. Additionally,
the actual γ-values γ(K`) and γ(K̂`) must satisfy γ(K`) ≤ γ̃(K`) and γ(K̂`) ≤ γ̃(K̂`). However,
these inequalities do not exclude the observed fact that γ(K̂`) < γ(K`). That is, they do not
exclude the unexpected possibility of obtaining a passive controller with a better performance than
the corresponding active controller.

Remark 1. In this paper, all the computations have been carried out using Matlab c© R2015b on a regular
laptop with an Intel c© CoreTM i7-2640M processor at 2.80 GHz. The LMI optimization problems corresponding
to the different controller designs have been solved with the function mincx() included in the Robust Control
ToolboxTM. A relative accuracy of 10−7 has been set in the solver options.
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Figure 9. Frequency response corresponding to the decentralized velocity-feedback H∞ controller
with passive implementation defined by the diagonal control gain matrix K̂VI. Maximum singular
values of the closed-loop transfer function TK̂VI (2πf j) (red dash-dotted line), the closed-loop transfer
function TKVI (2π f j) (thick blue solid line) and the open-loop transfer function T(2π f j) (thin black
solid line).

4. Numerical Simulations

In this section, a proper set of numerical simulations is conducted to investigate the vibrational
time-response of the two-building system for the considered control configurations. The simulations
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include the active controllers designed in Section 3.1, the passive controllers computed in Section 3.2
and the response of the uncontrolled buildings, which is taken as a natural reference in the
performance assessment. In all the cases, the full-scale North–South El Centro 1940 ground acceleration
seismic record (see Figure 10) has been used as external disturbance. To describe the vibrational
response of the individual buildings and the buildings interactions, the vectors of interstory drifts
r(t) and interbuilding approaches a(t) have been computed. Additionally, the vector of control
efforts u(t) has also been computed for the controlled configurations. Overall, the simulations
include eleven different control configurations plus the uncontrolled case. To provide an intuitive
and effective summary of this complex set of numerical results, the control configurations have been
grouped by the number of actuation devices. Thus, the peak-values of the absolute interstory drifts
and interbuilding approaches corresponding to the control configurations with two actuation devices
(CC1 and CC2) are presented in Figure 11, where the interstory drift peak-values corresponding to
the four-story building B(1) are presented in the left-hand-side graphic, the interbuilding approach
peak-values are shown in the central graphic, and the interstory drift peak-values corresponding
to the five-story building B(2) are displayed in the right-hand-side graphic. In the graphics of this
section, the following colors and line styles have been used: blue lines present the values of the
unlinked control configurations, red lines represent the linked control configurations, and black
lines correspond to the uncontrolled configuration; additionally, active controllers are represented
by solid lines, and passive controllers by non-solid lines. Detailed legends and captions have also
been included in the figures to facilitate an unambiguous interpretation of the graphics. Specifically,
the following colors, line styles and symbols have been used in the plots of Figure 11: black solid
line with squares for the uncontrolled configuration, blue solid line with circles for the unlinked
control configuration CC1 with the active controller defined by the control gain matrix KI given in
Equation (36), blue dashed line with asterisks for the unlinked control configuration CC1 with the
passive controller defined by the control gain matrix K̂I given in Equation (45), red solid line with
triangles for the linked control configuration CC2 with the active controller defined by the control
gain matrix KII given in Equation (36), and red dotted line with hexagrams for the linked control
configuration CC2 with the passive controller defined by the control gain matrix K̂II given in Table 3.
The peak-values of the corresponding absolute control efforts are presented in Figure 12a. Looking
at graphics in Figures 11 and 12a, the following facts can be clearly appreciated: (i) all the controllers
provide a significant level of reduction in the interstory drift and interbuilding approach peak-values
when compared with the uncontrolled response; (ii) the unlinked control configuration CC1 is more
effective in mitigating the interstory drift response; (iii) the linked control configuration CC2 attains
better results in reducing the interbuilding approaches; (iv) smaller control-effort peak-values are
produced by the linked configuration CC2; and (v) the levels of performance attained by the passive
controllers are quite similar to those achieved by the corresponding active controllers, especially in
the case of the linked control configuration CC2.
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Figure 10. Full-scale North–South El Centro 1940 ground acceleration seismic record.
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Figure 11. Interstory drift and interbuilding approach peak-values for the control configurations CC1 and
CC2. Maximum absolute interstory drifts and maximum interbuilding approaches corresponding to
the uncontrolled configuration (black solid line with squares), the active controller defined by the
control gain matrix KI (blue solid line with circles), the passive controller defined by the control gain
matrix K̂I (blue dashed line with asterisks), the active controller defined by the control gain matrix KII

(red solid line with triangles) and the passive controller defined by the control gain matrix K̂II (red
dotted line with hexagrams).
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Figure 12. Maximum absolute control efforts. (a) Configurations with two actuation devices: CC1
(unlinked) and CC2 (linked). (b) Configurations with three actuation devices: CC3 (unlinked) and
CC4 (linked). (c) Configurations with four actuation devices: CC5 (unlinked) and CC6 (linked).

For the control configurations with three actuation devices CC3 and CC4, the plots of interstory
drift and interbuilding approach peak-values presented in Figure 13 show that the best overall
behavior corresponds to the linked control configuration CC4 with the active controller defined by the
control gain matrix KIV given in Equation (41) (red solid line with triangles). Also remarkable is the
overall performance of the linked control configuration CC4 with the passive controller defined by
the control gain matrix K̂IV given in Table 3 (red dotted line with hexagrams). Moreover, looking at the
plots shown in Figure 12b, it can be appreciated that smaller control-effort peak-values are required by
the controllers corresponding to the linked control configuration CC4. For the control configurations
with four actuation devices CC5 and CC6, the plots of interstory drift and interbuilding approach
peak-values presented in Figure 14 and the control-effort peak-values displayed in Figure 12c indicate
the superior performance of the linked control configuration CC6 with the active controller defined
by the control gain matrix KVI given in Equation (43). The good properties of this linked control
configuration with the passive controller K̂VI can also be clearly appreciated. It should be recalled that
feasibility issues appeared in the design of a fully decentralized velocity-feedback controller for the
unlinked control configuration CC5 and, consequently, no passive controller is available for this case.
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Figure 13. Interstory drift and interbuilding approach peak-values for the control configurations CC3 and
CC4. Maximum absolute interstory drifts and maximum interbuilding approaches corresponding to
the uncontrolled configuration (black solid line with squares), the active controller defined by the
control gain matrix KIII (blue solid line with circles), the passive controller defined by the control gain
matrix K̂III (blue dashed line with asterisks), the active controller defined by the control gain matrix
KIV (red solid line with triangles) and the passive controller defined by the control gain matrix K̂IV

(red dotted line with hexagrams).
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Figure 14. Interstory drift and interbuilding approach peak-values for the control configurations CC5 and
CC6. Maximum absolute interstory drifts and maximum interbuilding approaches corresponding to
the uncontrolled configuration (black solid line with squares), the active controller defined by the
control gain matrix KV (blue solid line with circles), the active controller defined by the control gain
matrix KVI (red solid line with triangles) and the passive controller defined by the control gain matrix
K̂VI (red dotted line with hexagrams).

To complement the information supplied by the interstory drift and the interbuilding approach
time responses, the absolute acceleration peak-values of the buildings’ top-level stories corresponding
to the proposed active and passive velocity-feedback controllers are presented in Tables 5 and 6,
respectively. Additionally, to provide a wider vision of the acceleration response characteristics,
the story absolute acceleration peak-values corresponding to the uncontrolled configuration and the
active and passive controllers proposed for the control configurations CC3 and CC4 are displayed
in Figure 15. Looking at the values of building B(1) in Table 5, it can be appreciated that better
results are attained by the linked control configurations. In this case, the best performance is
achieved by the linked configuration CC6, which produces a 50.6% of reduction with respect to
the uncontrolled response. In contrast, the values of building B(2) indicate a better behavior of the
unlinked control configurations. For this building, the best performance corresponds to the unlinked
control configuration CC3, which produces a 45.5% of reduction with respect to the uncontrolled
response. Looking at the data in Table 6, a similar pattern can be appreciated in the values produced
by the passive controllers. In this case, the best results are attained by the linked configuration CC4 in
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building B(1), which produces a 39.7% of reduction with respect to the uncontrolled response, and by
the unlinked configuration CC3 in building B(2), with a relative reduction of 43.1%. These acceleration
response characteristics are further illustrated by the plots in Figure 15, where the following facts
can be clearly appreciated: (i) all the proposed controllers produce positive results in reducing the
story absolute acceleration peak-values when compared with the uncontrolled response; (ii) the
unlinked control configuration CC3 is more effective in mitigating the acceleration response of the
taller building B(2); (iii) the linked control configuration CC4 attains better results in reducing the
acceleration response of the shorter building B(1); and (iv) the levels of performance of the passive
controllers are similar to those attained by the corresponding active controllers, especially in the case
of the linked control configuration CC4.

Table 5. Active controllers. Absolute acceleration peak-values (m/s2) of the buildings’ top-level
stories corresponding to the uncontrolled response and the active velocity-feedback controllers
defined by the gain matrices K`.

CC1 CC2 CC3 CC4 CC5 CC6 Uncontrolled

Building B(1) (4th story) 7.5070 6.4787 7.3414 5.7286 6.0715 4.7087 9.5253
Building B(2) (5th story) 5.9233 9.0380 5.2443 7.2716 6.1648 7.3445 9.6258

Table 6. Passive controllers. Absolute acceleration peak-values (m/s2) of the buildings’ top-level
stories corresponding to the uncontrolled response and the passive velocity-feedback controllers
defined by the gain matrices K̂`. The values of the control configuration CC5 are missing due to
the feasibility issues encountered in the associated LMI optimization problem.

CC1 CC2 CC3 CC4 CC5 CC6 Uncontrolled

Building B(1) (4th story) 7.5438 6.7569 7.8870 5.7426 – 5.9200 9.5253
Building B(2) (5th story) 6.7197 8.4009 5.4798 7.6020 – 6.8801 9.6258
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Figure 15. Story absolute acceleration peak-values for the control configurations CC3 and CC4. Maximum
story absolute acceleration corresponding to the uncontrolled configuration (black solid line with
squares), the active controller defined by the control gain matrix KIII (blue solid line with circles),
the passive controller defined by the control gain matrix K̂III (blue dashed line with asterisks), the
active controller defined by the control gain matrix KIV (red solid line with triangles) and the passive
controller defined by the control gain matrix K̂IV (red dotted line with hexagrams).

Remark 2. In order to avoid the modeling and simulation difficulties associated to interbuilding collisions, the
numerical simulations have been carried out assuming that the interbuilding spacing is large enough to prevent
pounding events. In this case, the maximum interbuilding approaches can be understood as lower bounds of
safe interbuilding distances. Thus, for example, the central plots in Figure 14 point out that, for the considered
seismic event, an interbuilding distance of 2.5 cm can be considered safe for the active and passive controllers
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of the linked control configuration CC6 while, in contrast, an interbuilding separation of 5 cm would produce
interbuilding collisions for the active controller of the unlinked control configuration CC5. For the uncontrolled
configuration, a interbuilding gap of more than 25 cm would have been necessary to avoid pounding events.

Remark 3. It should be noted that the linked control configuration CC2 is an incomplete actuation scheme, in
the sense that it does not include any interstory actuation device in buildingB(1). This element can possibly help
to explain its reduced effectiveness in mitigating the interstory drift response. In contrast, all the other control
configurations include a more balanced actuation scheme with interstory actuation devices in both buildings.

Remark 4. Although no general conclusions can be drawn from the considered particular configurations, the
obtained numerical results seem to indicate that the presence of interbuilding actuation devices can produce
opposite effects in the acceleration response of linked buildings with a different height. This fact certainly opens
a number of interesting questions related to the acceleration response characteristics of linked buildings, such
as the relevance of the height difference, the behavior of linked buildings with the same height, and the effect of
multiple linking devices.

5. Conclusions and Future Directions

In this paper, the design of advanced structural vibration control systems for the seismic
protection of adjacent multi-story buildings has been investigated. The proposed approach
considers multi-actuation schemes that combine interstory and interbuilding force actuation devices
implemented at different locations of the structure. Using an advanced static output-feedback H∞

controller design methodology, active and passive vibration control systems have been obtained for
a multi-story two-building structure equipped with a selected set of linked and unlinked actuation
schemes. After studying the corresponding frequency and time responses, the following positive
points can be highlighted: (i) The proposed design methodology allows dealing with a wide variety of
actuation schemes. (ii) The obtained control systems provide a significant reduction of the frequency
response in the main and secondary resonant modes. Moreover, they also produce a significant
reduction of the maximum interbuilding approaches and the absolute interstory drift peak-values in
both buildings. (iii) The obtained control systems produce positive results in reducing the buildings
acceleration responses. (iv) Control configurations with interbuilding linking devices provide a
higher protection against pounding events and produce lower control-effort peak-values. (v) Lower
interstory drift peak-values are attained in buildings equipped with interstory actuation devices.
(vi) A remarkable performance level is achieved by the passive control systems. (vii) In general,
more effective and better balanced results are obtained with a larger number of actuation devices.
Additionally, the following negative aspects can be pointed out: (viii) The design procedure can fail
due to feasibility issues in the associated LMI optimization problem, specially in the constrained
passive designs. (ix) The controller H∞-norm is a suitable index to obtain effective controllers,
but it cannot be used to identify optimal configurations of the actuation system. (x) Due to the
computational cost and complexity, the proposed design methodology is only effective for structures
with a moderate number of stories.

In summary, the observed results indicate the convenience of using multi-actuation systems that
combine interbuilding linking devices and interstory actuators implemented in both buildings. The
good behavior exhibited by the obtained passive control systems is a fact of singular relevance, which
certainly deserves a deeper investigation. Further research effort should also be invested in studying
the acceleration response of linked buildings, and in performing more realistic numerical simulations,
which should include the effect of pounding events and other nonlinear aspects. Finally, it is worth
mentioning the important open problem of finding a suitable methodology to determine the optimal
configuration of distributed multi-actuation systems in large-scale structures.
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Appendix A. Buildings Parameters

Table A1. Mass and stiffness coefficient values corresponding to the two-building system.

Building B(1) Building B(2)

Story 1 2 3 4 1 2 3 4 5

mass (×105 Kg) 2.152 2.092 2.070 2.661 2.152 2.092 2.070 2.048 2.661
stiffness (×108 N/m) 1.470 1.130 0.990 0.840 1.470 1.130 0.990 0.890 0.840

In this appendix, the particular parameter values of the two-building system used in the
controller designs and numerical simulations are presented. The mass and stiffness coefficients are
collected in Table A1. These values are similar to those presented in [42]. Approximate damping
matrices C(1)

d and C(2)
d have been computed following a Rayleigh damping approach [41], by setting

a 2% of relative damping on the corresponding smallest and largest modes. The obtained particular
values (in Ns/m) are the following:

C(1)
d =105×


2.6450 −0.9034 0 0
−0.9034 2.2455 −0.7915 0

0 −0.7915 2.0078 −0.6715
0 0 −0.6715 1.3719

 , (A1)

C(2)
d =105×


2.6017 −0.9244 0 0 0
−0.9244 2.1958 −0.8099 0 0

0 −0.8099 1.9946 −0.7281 0
0 0 −0.7281 1.8670 −0.6872
0 0 0 −0.6872 1.2741

 . (A2)

Appendix B. Static Output-Feedback H∞ Controller Design

This appendix provides a brief summary of the static output-feedback H∞ controller design
methodology presented in [38,39]. Let us consider the linear model

ẋ(t) = A x(t) + B u(t) + E w(t)

z(t) = Cz x(t) + Dz u(t)

y(t) = Cyx(t)

(A3)

where x(t) is the state, u(t) is the control action, w(t) is the external disturbance, z(t) is the
controlled output, and y(t) is the measured output. The design objective is to obtain an optimal
static output-feedback H∞ controller

u(t) = Ky(t) (A4)

that produces an asymptotically stable closed-loop matrix

AK = A + BKCy (A5)

and, simultaneously, minimizes the associated H∞-norm
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γK = sup
‖w‖2 6=0

‖z‖2

‖w‖2

, (A6)

where ‖f‖2 =
[∫ ∞

0 fT(t) f(t) dt
]1/2 denotes the usual continuous 2-norm. Computing this kind of

optimal controllers is a challenging problem that still remains open. However, according to the results
in [38,39], a suboptimal static output-feedback H∞ controller

u(t) = K̃y(t) (A7)

can be computed by solving the following LMI optimization problem:

P :

{
maximize η

subject to XQ > 0, XR > 0, η > 0 and the LMI in (A9),
(A8)

[
AQXQQT+ QXQQTAT+ ARXRRT+ RXRRTAT+ BYRRT+ RYT

R BT+ ηEET ∗
CzQXQQT+ CzRXRRT+ DzYRRT −I

]
< 0, (A9)

where ∗ denotes the transpose of the symmetric entry, XQ, XR and YR are the optimization variables,
Q is a matrix whose columns contain a basis of Ker(Cy), and the matrix R has the following form:

R = C†
y + QL̃, L̃ = Q†X̃CT

y
(
CyX̃CT

y
)−1, (A10)

where

C†
y = CT

y
(
Cy CT

y
)−1, Q† =

(
QTQ

)−1QT (A11)

are the Moore-Penrose pseudoinverses of Cy and Q, respectively, and X̃ is the optimal X-matrix of the
auxiliary LMI optimization problem

Pa :

{
maximize ηa

subject to X > 0, ηa > 0 and the LMI in (A13),
(A12)

[
AX + XAT + BY + YTBT + ηaEET ∗

CzX + DzY −I

]
< 0. (A13)

If an optimal value η̃ is attained in P for the triplet
(
X̃Q, X̃R,ỸR

)
, then the output gain matrix K̃

can be written in the form

K̃ = ỸR
(
X̃R
)−1. (A14)

Moreover, the value

γ̃
K̃
=
(
η̃
)−1/2 (A15)

provides an upper bound of the associated H∞-norm γ
K̃

, which can be computed by solving the
optimization problem

γ
K̃
= sup

f
σmax

[
TK̃(2πf j)

]
, (A16)

where j =
√
−1, f is the frequency in hertz, σmax[ · ] denotes the maximum singular value and
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TK̃(s) = CK̃(sI−AK̃)
−1E, (A17)

with

AK̃ = A + BK̃Cy, CK̃ = Cz + DzK̃Cy, (A18)

is the closed-loop transfer function from the disturbance input to the controlled output.
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