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Abstract: We propose a practical Convolution Neural Network (CNN) model termed the CNN for
Semantic Segmentation for driver Assistance system (CSSA). It is a novel semantic segmentation
model for probabilistic pixel-wise segmentation, which is able to predict pixel-wise class labels
of a given input image. Recently, scene understanding has turned out to be one of the emerging
areas of research, and pixel-wise semantic segmentation is a key tool for visual scene understanding.
Among future intelligent systems, the Advanced Driver Assistance System (ADAS) is one of the
most favorite research topic. The CSSA is a road scene understanding CNN that could be a useful
constituent of the ADAS toolkit. The proposed CNN network is an encoder-decoder model, which
is built on convolutional encoder layers adopted from the Visual Geometry Group’s VGG-16 net,
whereas the decoder is inspired by segmentation network (SegNet). The proposed architecture
mitigates the limitations of the existing methods based on state-of-the-art encoder-decoder design.
The encoder performs convolution, while the decoder is responsible for deconvolution and
un-pooling/up-sampling to predict pixel-wise class labels. The key idea is to apply the up-sampling
decoder network, which maps the low-resolution encoder feature maps. This architecture
substantially reduces the number of trainable parameters and reuses the encoder’s pooling indices to
up-sample to map pixel-wise classification and segmentation. We have experimented with different
activation functions, pooling methods, dropout units and architectures to design an efficient CNN
architecture. The proposed network offers a significant improvement in performance in segmentation
results while reducing the number of trainable parameters. Moreover, there is a considerable
improvement in performance in comparison to the benchmark results over PASCAL VOC-12 and
the CamVid.

Keywords: Convolutional Neural Network (CNN); ADAS; PReLU; Maxout; Caffe; pooling;
upsampling; dropout

1. Introduction

Deep Neural Networks (DNNs) have shown major state-of-the-art developments in several
technology domains, especially speech recognition [1] and computer vision, specifically in image-based
object recognition [2,3]. Convolutional neural networks have shown an outstanding performance and
reliable results on object detection and recognition, which are beneficial in real-world applications.
Simultaneously, there is a great deal of progress in visual recognition tasks, which leads to remarkable
advancements in virtual reality (VR by Oculus) [4], augmented reality (AR by HoloLens) [5] and smart
wearable devices. We urge that it is the right time to put these two pieces together and empower the
smart portable devices with modern recognition systems.
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Currently, machine learning methods have [6] turned out to be a core solution to understand the
scenes. Most importantly, deep learning has set a benchmark on numerous popular datasets [7,8]. Earlier
methods have employed convolution networks (CNN/convnets) for semantic segmentation [9,10]
in which every pixel is labeled with a class of its enclosing region or object. Some of semantic
segmentation methods [11–15] turned out to be a significant tool for image recognition and scene
understanding. It offers a great deal of support for understanding the scenes that frequently vary
in appearance and pose. Scene understanding becomes an important research problem, as it can be
employed to assess scene geometry and object support relationships, as well. It also has a wide range
of applications, varying from autonomous driving to robotic interaction.

Earlier approaches of semantic segmentation are based on Fully-Convolution Neural Networks
(FCNs) [16,17] and have a number of critical limitations. The first issue is the inconsistent labeling,
which emerges from the network’s predefined fixed-size receptive field. In such a situation, the label
prediction is carried out only with local information for large objects that leads to an inconsistent
labeling for some objects. Furthermore, small objects are often ignored and classified as background.
Secondly, the object details are either lost or smooth due to too coarse feature maps while inputting
to the deconvolution (De-Conv) layer. The scene understanding methods [18], which employed the
low-level visual features maps, did not offer a substantial performance. Third, the fully-connected
layers of the traditional VGG-16 network hold about 90 percent of the parameters of the entire
network. This situation leads to a huge number of trainable parameters that requires extra storage and
training time. Our motivation for this research is to design a CNN architecture with skip-architecture
(mitigating the first problem) and low resolution features mapping (mitigating the second problem) for
pixel-wise classification. This architecture will offer an accurate boundary localization and delineation.
The next key idea behind this research is to design an efficient architecture that is both space and time
efficient. For this purpose, we have discarded the fully-connected layers of the VGG-16 in the encoder
architecture of the CNN design. It enables us to train the CNN using the relevant training set and
Stochastic Gradient Descent (SGD) [19] optimization. With a negligible performance loss, we have
significantly dropped a number of trainable parameters (mitigating the third problem). The CSSA is
a core segmentation engine, which is intended to perform the pixel-wise semantic segmentation for
road scene understanding applications like ADAS. The proposed design is intended to have the ability
to model appearance (road, building), shape (cars, pedestrians) and recognizing the spatial-relationship
(context) among different classes, such as roads and side walks.

Recently, ADAS turned out to be one of the key research areas in visual recognition, which
demands various methods and tools to improve and enhance the driving experience. A key aspect
of ADAS is to facilitate the driver with the latest surrounding information. These days, critical
sensors for production-grade ADAS include sonar, radar and cameras. For long-range detection,
ADAS typically utilizes radar, whereas nearby detection is performed through sonar. Recently,
computer vision- and CNN-based systems can play a significant role in the pedestrian detection,
lane detection and redundant object detection at moderate distances. The radar technology has
performed significantly well for detecting vehicles with a deficiency in differentiating between different
metal objects. This can register false positives on any metal objects, such as a small tin can. Moreover,
sharp bends can make localization difficult for the radar technology. On the other hand, the sonar
utility is compromised at high and slow speed, as well as it has a limited working distance of about two
meters. In contrast to sonar and radar, cameras offer a richer set of features at lower costs. With a great
deal of advancements in computer vision and deep learning, cameras could replace the other sensors
for the driving assistance system. Video-based ADAS is intended to provide assistance to drivers
in different road conditions [20]. In typical road scenes, most of the input pixels belong to large
classes, such as buildings and roads, and thus, the network must generate a smooth segmentations.
Designing a DNN engine that has the capability to delineate and segment moving and other objects
based on their shapes despite their small sizes is needed. Therefore, it is significant to keep boundary
details in the extracted image representation. From a computational perspective, it is essential for the
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network to be effective in terms of both computation time and memory during inference. The CSSA is
aimed at offering an enhanced performance for the driving assistance system in different road and
light conditions. By offering an improved boundary delineation and fast visual segmentation results,
the proposed design could be an efficient choice for visual ADAS. The proposed system is trained and
tested for the performance of road scene segmentation into 11 classes of interest for the road driving
scenario.

The key objective of this research is to propose a more enhanced and efficient CNN model.
We have experimented with a number of activation functions (e.g., ReLU, Exponential Linear Units
(ELU), PReLU, Maxout, Tanh), pooling methods (e.g., Avg, Max, stochastic), Batch Normalization
(BN) methods and dropout units. We have also experimented with a reduced version of the proposed
network. After a detailed analysis, the well-performing units are implemented in our final larger
version of the proposed network, which is trained over road scene datasets. The proposed network
architecture is stable, easy to manage and performs efficiently over all pervious benchmark results.
We evaluate the performance of the CSSA on both CamVid and the Pascal VOC-12 datasets.

The remainder of the paper is organized as follows. The first part of this paper presents the related
work and an overview of the proposed architecture. The next section is about the system’s working
algorithm and architecture. Later, we present the experimentation and related training details. The last
section is dedicated to the results and their analysis for the proposed system.

2. Related Work

Convolutional networks have been employed successfully for object detection and classification [3,21].
Current models offer methods to classify either a single object’s label for a bounding box of a few
objects or a whole input window in each scene. The CNNs have also been applied to a wide diversity
of other tasks, e.g., stereo-depth [22], pose estimation [23], instance segmentation [24], and much
more [25,26]. In such research methodologies, CNNs are either applied to discover local features or to
produce descriptors of discrete proposal regions.

Recently, the Fully-Convolutional Network (FCN) [17] has brought a breakthrough to semantic
segmentation. It has offered a powerful approach to enhance the power of CNNs by offering inputs
of arbitrary size. The proposed network demonstrates remarkable performance on the PASCAL
VOC-12 benchmark dataset. A number of outstanding approaches have been presented to enhance
and improve the overall efficiency and performance of CNNs. Initially, this idea was used to extend
the classic LeNet [27] for digit string recognition. Matan et al. [28] employed Viterbi decoding methods
to extract outputs from limited one-dimensional input strings. Later, Wolf and Platt [29] improved
this idea to expand CNN outputs with a new model of two-dimensional maps. This model was used
to detect the four corners of a postal address block. These outstanding developments in FCN have
established the strong base for future developments in CNNs for detection. Ning et al. [30] offered
a coarse multiclass segmentation CNN for C-Elegans tissues having FCN inference. The proposed
network by Chen et al. [16] attains denser score maps within the FCN architecture to predict pixel-wise
labels, as well as refine the label map by means of the fully-connected Conditional Random Field
(CRF) [31]. Later developments in FCN involve semantic pixel labeling that was initially proposed by
Shotton et al. named TextonForest [18] and random forest-based classifiers [6]. Emerging progress in
FCN and pixel-wise segmentation has offered a huge success in object recognition for an entire image.

There are numerous semantic segmentation techniques that are based on classification such
as [12,32], which offered methods to classify multi-scale superpixels into predefined categories.
These studies have also combined the classification results for pixel-wise labeling. A number
of algorithms [10,33,34] classify the region proposals and improve the labels in the image-level
segmentation map to attain the absolute segmentation. In semantic pixel-wise segmentation [35] or SfM
appearance [36], feature extraction has been explored for the CamVid [37] road scene understanding
test. In order to improve the accuracy of the network, the classifier’s per-pixel noise predictions were
smoothed by pair-wise or higher order CRF [38].
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Using the encoder and decoder to enhance the performance is now a key trend in designing the
CNN architectures. The idea was initially presented by Ranzato et al. [39] with an unsupervised
feature learning architecture. Noh et al. [15] proposed a deconvolution network, which is composed of
deconvolution and un-pooling layers, that offers segmentation masks and pixel-wise class labels for
the PASCAL VOC-12 dataset [7]. This work has offered one of the initial successful implementations
of deconvolution and un-pooling. With a significant success with encoder-decoder architectures
so far, recent CNNs, like SegNet [40] and Bayesian-SegNet [41], have been proposed with a core
segmentation engine for whole image pixel-wise segmentation. These are initial models that can be
trained end-to-end in one step because of their low parameterization.

Recently, ADAS has turned out to be one of the key research areas and demands various methods
and tools to improve and enhance the driving experience. Using computer vision and neural networks
in ADAS, we can enhance the performance of the auto driving system to a great extent. CSSA is
an attempt to harness the CNN power for ADAS, and it offers a more reliable and cost-effective
solution. Recently, a number of research works [42–44] has offered outstanding solutions, as well as
set a baseline for our proposed system.

3. Algorithm Overview

The proposed FCN model is based on the encoder and decoder network, which is inspired
from VGG-16 FCN and is based on the initial 13 convolution layers. The decoder is inspired from
SegNet [40], which is used to up-sample every input by the encoder network through pooling layers.
Each decoder carries out a non-linear up-sampling to construct complete feature maps from sparse
max-pooling indices produced at each pooling layer in the encoder network. The proposed network
is a combination of two decoupled FCN networks, which perform their respective jobs individually.
The encoder takes image inputs from the training set, while the decoder takes sparse max-pooling
indices from encoder pooling layers.

In [39], an up-sampling architecture is proposed, which provides a base for our FCN decoder
for unsupervised feature learning. The decoding process is the key aspect of the proposed model,
which offers a number of practical benefits regarding enhancement of boundary delineation and
minimization. It also offers a great deal of improvement regarding reducing the amount of trainable
parameters to enable end-to-end training. The main aspect of our proposed decoupled architecture is
the easy modification and simple training with different environment variables. The encoder produces
low-resolution feature maps for pixel-wise classification, while the decoder up-samples them by
convolving the trainable filters to harvest dense feature maps.

The key distinctive features of the proposed CCN model are:

• It is a novel encoder-decoder-based semantic pixel-wise segmentation engine.
• It offers a simple training process, which simultaneously trains encoder and decoder networks.
• It significantly reduces the memory consumption due to the smart decoder architecture.
• It employs the latest activation function to improve the potential performance.
• This offers a flexible architecture to tune any size of input images.

Algorithms 1 and 2 are proposed respectively for the encoder and decoder of CSSA, respectively.
These algorithms are outlined below for the detailed overview of the proposed CNN network
operations. Algorithm 3 presents the batch normalization function.
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Algorithm 1 Training a CNN encoder: The network will accept input Fi having a volume of size
X1 × H1 × D1. It requires hypermeters, K number of filters, SE spatial extent, S stride rate and P
amount of zero padding. The size of output volume is X2 × H2 × D2. Here, C denotes the cost
function for mini-batch. The learning rate decay factor is denoted by λ, and the numbers of layers
are represented as L. BatchNorm() denotes the batch-normalize activations on given parameters.
The ELU() performs the exponential linear units’ activation of the given input. The next function
Conv() performs the convolution operations with a constant rate of kernelsize = 3, S = 1(striderate)
and P = 1(zeropadding). The Pool() performs the pooling operation with Max pooling filter and
a constant rate of kernelsize = 2, S = 2(striderate) and P = 0(zero padding).

Require: a mini-batch of inputs and targets (a0, a∗), previous weights W, previous BatchNorm
parameters θ, weights initialization coefficients from γ, and previous learning rate η.
Employed the He et al.’s [45] proposed method for network initialization weight parameters.

Ensure: updated weights Wt+1, updated BatchNorm parameters θt+1 and updated learning rate ηt+1.
1. Encoder Computations :
1.1. Producing Feature Maps:

Input X1 × H1 × D1 image

Initialize bu f f []

for k = 1 to L do
Fbk ← BatchNorm(Fk)

Fek ← ELU(Fk)

Fck ← Conv(Fek, Fbk)

Poolkmask, Poolk ← Pool(Fck)

bu f f .append[Poolkmask]

if k < L then
Fk+1 ← Poolk

else
return Poolk, bu f f []

end if

end for
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Algorithm 2 Training a CNN decoder: The network will accept input Fi having a volume of size
X2 × H2 × D2 pooling mask and pooling indices from encoder network. It requires hypermeters,
K number of filters, F spatial extent, S stride rate and P amount of zero padding. The output volume is
a size of XD × HD × DD. Here, C denotes the cost function for mini-batch. The learning rate decay
factor is denoted by λ, and the numbers of layers are represented as L. Upsample() denotes the
function that up-samples the given inputs. This operation is similar to un-pooling, where the given
input is merged to produce an extended-sized feature map. The ELU() and Conv() will perform the
same as the encoder configurations. So f tMax() is a multi-class soft-max classifier to output the class
probabilities intended for every pixel.

Require: a mini-batch of feature maps extracted from encoder network X2 × H2 × D2. Previous
weights W, previous BatchNorm parameters θ, weights initialization coefficients from γ, and
previous learning rate η. The network initialization weight parameters specified using the
He et al.’s [45] proposed method.

Ensure: updated weights Wt+1, updated BatchNorm parameters θt+1 and updated learning rate ηt+1.
2. Decoder Computations:
2.1. Up-sampling Feature Maps:

Input Poolkmask, Poolk

for k = L to 1 do
Fdk ← Upsample(bu f f [k], Poolk)

Fdbk ← BatchNorm(Fdk)

Fdek ← ELU(Fdk)

Fdck ← Conv(Fdek, Fdbk)

if k > 1 then
Poolk−1 ← Fdck

else
return So f tMax(Fdck)

end if

end for

Algorithm 3 Batch normalization [46]: Let x̂1...m be the normalized values and y1...m be their linear
transformations. The transformation is referred to as: BNγ,β : x1...m → y1...m. In this algorithm, ε is
a constant added to the mini-batch variance for numerical stability.

Require: Values of x over a mini-batch: B = x1...m; Parameters to be learned: γ, β

Ensure: yi = BN(xi, γ, β)

µB ← 1
m

m
∑

i=1
xi //mini-batch mean

σ2
B ←

1
m

m
∑

i=1
(xi − µB)

2 //mini-batch variance

x̂i ←
xi−µB√

σ2
B+ε

//normalize

yi ← γx̂i + β ≡ BN(xi, γ, β) //scale and shift

4. CSSA Architecture

To devise an enhanced and improved architecture, we have initially proposed a smaller version
of the original network. This small version is a complete working model with a reduced number of
layers. The idea is to perform experiments on the reduced version and to transfer high performance
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units (pooling methods, activation techniques) to the extended version. Figure 1 shows the initial
base model (reduced version) of the proposed architecture. It is named the Basic Testing CNN Model
(BTCM). It is based on encoder-decoder networks, which are presented separately with an image input
and a corresponding image output with pixel-wise semantic segmentation.

Figure 1. Basic Testing CNN Model (BTCM).

The proposed architecture is a pixel-wise semantic segmentation engine, which is based on
two decoupled encoding and decoding FCNs. The aforementioned encoder is based on the initial
13 convolution layers of the VGG-16 [47] network followed by the batch normalized [46] layer,
an activation function, the pooling layer and dropout [48] units. Each layer in the proposed CNN
is represented by a triplet (I, W, ∗), where I is a set of tensors, and each element I = Il(l=1,...,L) is the
input tensor for the l-th layer of CNN. W represents the set of tensors, where each element in this
set W = Wlk(k=1,...,Kl) is the k-th weight filter in the l-th CNN layer. Additionally, Kl is the number of
weight filters in the l-th layer of the proposed CNN. Here, ∗ represents a convolutional operation
with its operands I and W, where I ∈ Rc×win×hin in which c, win and hin represent channels, width
and height, respectively. W ∈ Rc×w×h, where w ≤ win and h ≤ hin. The decoder network is based
on up-sampling layers, de-convolution layers, activation functions, batch normalized layers, dropout
layers and a multi-class soft-max classifier layer. The whole architecture is based on an encoder-decoder
relation where every decoder corresponds to a pooling unit of the encoder. Thus, the decoder CNN
possesses 13 de-convolution layers. The decoder feeds its computations to a multi-class soft-max
classifier to output the class probabilities intended for every pixel independently.

The network starts its training with an input image and proceeds through the network to final
layers. The encoder performs convolution with a set filter banks to yield feature maps, and then,
the batch normalization operation is performed. Later, Exponential Linear Units (ELU) [49] carry out
activations. Then, the max-pooling operation is performed with a 2× 2 window size and stride-rate of
two. In this way, the resultant image is sub-sampled by a factor of two. Whereas numerous pooling
layers can offer more translation invariance for robust classification tasks, there is an unnecessary
loss of spatial resolution of the feature maps. An image with increasingly lossy boundary details is
not useful for segmentation tasks. Therefore, for semantic segmentation, boundary delineation is so
important. Hence, there is a need for capturing and storing the boundary information in the encoder
feature maps prior to the sub-sampling operation. However, due to memory constraints, it is not
possible to store all encoder feature maps. The ultimate solution is to store only the max-pooling
indices. The locations of every max-pooling feature-map are memorized using two bits for every 2× 2
pooling window. It is a very efficient solution to keep a large amount of feature maps. This solution
offers a great deal of storage efficiency for the encoder, and we can get rid of the f c6 and f c7 layers.

Next, the decoder up-samples or un-pools the input feature map(s) in the decoder network.
It utilizes the memorized max-pooling indices from the corresponding encoder’s feature map(s).
This step generates sparse feature maps, which are later convolved with a trainable decoder filter
bank to generate dense feature maps. The batch normalization is also applied over those maps. Finely,
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the high dimensional feature map(s) representation is fed to a trainable soft-max classifier that classifies
every pixel independently. It outputs a K (number of classes) channel of image probabilities.

5. Experiments

5.1. Implementation Details

In order to test the performance of different CNN units, we initially tested a miniature version,
i.e., BTCM. It is small, easy-to-train and convenient to change for different CNN’s units. It is inspired
by SegNet-Basic and based on four encoder and decoder units. Each unit is composed of convolution
layers, batch normalization layers, pooling layers and activation functions.

Test Model 1: The initial test was performed to choose the most appropriate activation function.
For this purpose, we have tested the Tanh [50], Rectified Linear Unit (ReLU), Parametric Rectifier
Linear Unit (PReLU) [45], Exponential Linear Units (ELU) [49] and Maxout [51]. We tried to assess the
performance of all aforementioned activation functions on the proposed network and choose one with
the best performance.

Test Model 2: The second test was performed to assess the best performing pooling method.
We have tested the average, stochastic [52] and Max pooling methodologies. For this purpose,
we trained the network with each of these pooling methods one-by-one and obtained the better
performing units.

Test Model 3: The next experiment was performed to train the network without Batch
Normalization (BN) layers. The key idea was to reduce the number of trainable parameters and
the training time for the overall network. According to Schilling [53], batch normalization adds a
certain amount of computational complexity that results in slightly higher training time. It is also
assessed that batch normalization adds relatively more overhead by increasing the batch size. Therefore,
we intend to train the network with less complexity and training time.

Test Model 4: Another experiment is performed to take out all pooling layers and the training
network only with convolution layers. This idea is inspired by Springenberg et al. [54]. It is proposed
that the pooling layer could be replaced with a normal convolution layer with a stride larger than
one (i.e., for a pooling layer with k = 3 and r = 2, it would be replaced with a convolution layer with
a simpler stride rate and kernel size, where the number of output channels will be equal to the number
of input channels). This experiment increases the number of trainable parameters, though the resultant
network is much simplified as compared to the traditional CNN pipeline.

The procedure of replacing the pooling layers from the CNN network with standard convolutional
layers having a higher stride rate can be explained by the standard formulation of defining convolution
and pooling operations in CNNs. For example, f signifies a feature map produced by a particular
layer of a CNN. It can be shown as a three-dimensional array of size, W × H × N where W and H are
the height and width, respectively, whereas N is the amount of given channels (in the case when f
is the result of a convolutional layer, N is the amount of filters in this convolution layer) [54]. Then,
p-norm subsampling (or pooling) having a pooling dimension k (or half-length k/2) and stride of r
is implemented on the given feature map f with a three-dimensional array s( f ) represented by the
following entries:

si,j,u( f ) =
( bk/2c

∑
h=−bk/2c

bk/2c

∑
w=−bk/2c

‖ fg(h, w, i, j, u)‖p
)1/p

, (1)

where g(h, w, i, j, u) = (r.i+ h, r.j+w, u) is a function mapping from positions in s to positions in f with
stride rate r and p denotes the order of p-norm (for p→ ∞, it turns out to be the commonly-employed
max pooling). If r > k and pooling regions do not overlap, the present CNN network normally consists
of an overlapping pooling by k = 3 and r = 2.
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The pooling operation stated in Equation (1) could be compared with the standard definition of
a convolutional layer c applied to feature map f given as in Equation (3):

ci,j,o( f ) = σ

( bk/2c

∑
h=−bk/2c

bk/2c

∑
w=−bk/2c

N

∑
u=1

θh,w,u,o. fg(h, w, i, j, u)
)

, (2)

where θ is the convolutional layer weight (or the kernel weight, or the filter), σ(.) is the activation
function, σ(x) = max(x, 0) is an activation function and o ∈ [1, M] is the amount of output features
(or channels) of the convolutional layer. Through this analysis, it can be seen clearly that both
operations rely on the similar elements of the previous network layer’s feature map [55]. The pooling
layer could also be seen as a feature-wise convolution (where θh,w,u,o = 1 if u equals o and zero
otherwise) in which we can replace the activation function with the p-norm. It is a perplexing question
of whether and why such kinds of layers could be introduced. According to Springenberg et al. [54],
the pooling layers contribute to the CNN architecture as follows: (1) the p-norm facilitates the network
representation in a more invariant way; (2) the pooling layer’s spatial dimensionality reduction feature
offers covering for large parts of the input image in higher layers; (3) the pooling layer’s feature-wise
operation nature could help in making optimization easier as opposed to the convolutional layer
operation where features get mixed. By taking the second point into consideration, the pooling layer
dimensionality reduction is crucial for achieving good performance. Thus, this is a key hypothesis that
we are going to test in this experiment.

Test Model 5: After the deep and detailed analysis of different BTCMs, final tests will be conducted
over the final version of our proposed network that will incorporate all best-performing components of
the BTCM tests. Later, this model will be trained, and final assessments will be presented in the Results
section. The illustration of the proposed CSSA architecture in shown in Figure 2. Apart from some
differences, the proposed final model shares a similar architecture to a deconvolution network [15] and
SegNet [40]. The deconvolution network by Noh et al. is based on 13 complete layers of VGG-16, which
introduces much larger parameterization that leads to more computational resources. It is also difficult
to train it end-to-end because of keeping the f c6 and f c7 layers, which leads to a huge number of
trainable parameters to the decoder of the network. The CSSA proposed encoder excludes the f c6 and
f c7 layers, which leads to less trainable parameters for the decoder. In this way, the proposed decoder
needs less space and computational resources. SegNet is based on the ReLU activation function
with no dropout units. ReLU is fast, non-saturating and shows very impressive results. However,
in some situations, where it is not possible for ReLUs to saturate, it will turn units “dead” consequently.
Moreover, they will never be activated because of the negative pre-activation value. In this situation,
no gradient will flow through the network. Furthermore, ReLU is always non-negative; this means
activation is always positive. The solution is ELU [49]; for positive values, it acts like ReLU, but in the
case of negative values, it is a function bounded by a fixed value −1. In this way, it helps to push the
neuron’s mean-activation closer to zero. It is quite beneficial for learning, and it facilitates learning for
representations, which are more robust to noise. As a result, our proposed network will attain better
speed-up learning via avoiding a bias shift. Furthermore, Srivastava et al. [48] proposed dropout
units that will offer us a reduced chance of overfitting to the training data in comparison to SegNet.
In fact, the proposed network will become less sensitive to the specific neuron’s weights. Consequently,
the network will be able to better generalize and less likely to be overfitted.

The proposed final version for segmentation network is initiated with a class-specific activation
map gl

i with a given input image xi. The input image is extracted from input layers and processed
by convolution and pooling layers. Finally, from the decoder unit, it is passed to the class-specific
segmentation map M(gl

i ; θs) after applying the softmax function (where θs is the model parameter of
the segmentation network). Here, M(gl

i ; θs) has a background and foreground channels, which are
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denoted by Mb(gl
i ; θs) and M f (gl

i ; θs), respectively. Later, the segmentation job is formulated as the
per-pixel regression to the ground-truth segmentation, which minimizes:

min
θs

∑
i

es(zl
i , M(gl

i ; θs)), (3)

where zl
i is taken as the binary ground-truth segmentation mask for category l of the i-th image xi

and es(zi, M(gl
i ; θs) is the segmentation loss of M f (gl

i ; θs), or equivalently, the segmentation loss of
Mb(gl

i ; θs), with respect to zl
i .

Figure 2. An illustration of the proposed CSSA architecture.

A channel-shared variant is considered as f (yi) = max(0, yi) + a min(0, yi), where the coefficient
is shared by all processing channels of the specific layer. In this way, this variant simply introduces
a single extra parameter into every layer [56].

5.2. Training

The Caffe Berkeley Vision library [57] is used to develop and train the whole network. Caffe
offers a great deal of freedom to write network layers and train the network according to the proposed
requirements. Therefore, the network is trained once it converges, and no significant reduction in
training loss is observed. Finally, the overall results are assessed, analyzed and later compared to the
established benchmark results.

5.2.1. Datasets

We have used two well-known segmentation datasets (CamVid, PASCAL VOC-12) for overall
experimentation. The aforementioned CamVid [37] dataset is used for overall training and testing of
the proposed CNN architecture. It is composed of road scenes (day and dusk scenes) RGB images of
a 360× 480 resolution. Our proposed network is designed to classify and segment 11 classes (e.g., cars,
people, roads, buildings, poles, signs, trees, etc.). Local contrast normalization [58] is performed for
each input image prior to training the network. There are testing, training and validation datasets for
the overall CNN assessment.

The PASCAL VOC-12 segmentation dataset [7] is also employed for overall CNN training and
testing. Pascal VOC-12 is an RGB dataset for segmentation. It contains training and validation images
of indoor and outdoor scenes. The total number of images is 12,031. In the overall experimentation
with CSSA, images are scaled to 224× 224 resolution for training and testing.

5.2.2. Optimization

All proposed CNN models are developed, trained and tested through the Berkeley-Vision deep
learning framework Caffe. The proposed network is trained on a single NVIDIA Tesla K40c GPU with
12 G of memory. Training for reduced BTCM models takes approximately six hours. The training of
network is performed until the loss is converged, and there is no considerable increase or decrease in
loss and accuracy.
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He et al.’s [45] proposed method for network initialization is used for the proposed encoder-decoder
networks. Stochastic Gradient Descent (SGD) with the momentum of 0.9 is employed to initiate the
training of network. The network is trained with a fixed learning rate of 0.1 [19], while the weight
decay is 0.0005. BTCM is trained for 10,000 iterations. Whereas the CSSA network is fixed to train
no more than 40,000 iterations, as this limit is set to ensure that the network is trained enough and
training loss is converging. To avoid the memory overflow problems while training, the training batch
is set to 12 images. In each epoch, the image set is shuffled to ensure that no image is used more than
once in any epoch.

The cross-entropy loss [59] is employed as the objective function for training the whole network.
It sums up the overall loss of the pixels in a mini-batch and helps to assess the final loss.

6. Results and Analysis

This section will present the overall assessment for trained models and testing results by
well-known segmentation and classification performance training measures, such as Global Accuracy
(GA) and Class Average Accuracy (CAA). The GA offers an overall percentage of pixels properly
classified in the dataset, while CAA is used to assess the predictive accuracy mean of the entire classes.
Proposed tests were performed on BTCM with comparatively less training iterations. The proposed
network is limited to run for a maximum of 10,000 training transactions to test the ultimate reduction
in loss and enhancement in accuracy; whereas the final version of the proposed CNN is trained for
40,000 iterations.

Test 1: Different kinds of tests are performed on BTCM. The proposed model is used for the
training efficiency of different activation functions. We have tested for ReLU, ELU, PReLU, Maxout
and Tanh. The final outcomes showed that ELU and PReLU are performing better and offer enhanced
outcomes. It is assessed that the PReLU performs well throughout the training process, but accuracy
declines at the end of the training process, as shown in Figure 3. The ELU converged to the ultimate
peak till the end of the training process.

The Exponential Linear Unit (ELU) with 0 < α is:

f (x) =

{
x if x > 0
α(exp(x)− 1) if x ≤ 0

, (4)

f ′(x) =

{
1 if x > 0
f (x) + α if x ≤ 0

.

Figure 3. Comparison of different activation functions.
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The ELU hyperparameter α manages the given value to which an ELU saturates for negative
net-inputs. ELUs reduce the chances of vanishing gradient effect as Leaky ReLUs (LReLUs) and ReLUs
do. The problem of the vanishing gradient is eased because the positive part of these functions is the
identity; hence, their derivative is one and not contractive. However, sigmoid and tanh activation
functions are contractive nearly everywhere. Contrary to ReLUs, ELUs offer negative values, which
can push the mean of the activations very near to zero. The closer to zero, the faster the learning by
the activation function, as this brings the gradient closer to the natural gradient. ELUs saturate to
a negative value when the argument value gets smaller. Saturation means a small derivative that
decreases the variation, as well as the information that is transferred to the next layer. Consequently,
the representation is both of low-complexity and noise-robust.

Test 2: In Test 2, the BTCM is tested for different pooling techniques (average, max and stochastic).
The final outcomes have shown that the max pooling method is outperforming all existing methods.
Figure 4 shows that the max pooling training accuracy is converging quickly as compared to other
methods. The CSSA final version will be trained with the max pooling units.

Figure 4. Pooling methods’ accuracy curves.

Test 3: Batch normalization layers offer us a higher accuracy and faster learning at the expense
of additional computations and trainable parameters. This leads the learning process to become
slower. To assess network performance and train it in a faster way, we have removed BN layers and
try to train the network; though, the outcomes are not really encouraging. Figure 5 shows the final
outcomes of the proposed model. The initial loss is too high, and it reduces down too slowly; whereas,
the accuracy is improving slowly, and there is no considerable increase in it after a number of training
iterations. According to Schilling [53], besides a certain amount of computational complexity, there are
out-weighed benefits attained by introducing the batch normalization unit. It is further mentioned that
by reducing the batch size, we can efficiently reduce the batch normalization-associated overheads.
It can also be achieved by sparsely distributing normalization layers throughout the CNN architecture.
Therefore, the final version of CSSA is trained with sparse BN layers and a small batch size. We set the
batch size limit to 12 to avoid BN-associated overheads.

Test 4: To simplify the CNN pipeline, we propose Springenberg et al.’s [54] inspired BTCM and
train it. The results are shown in Figure 6. It shows a very poor training outcome, where the accuracy
remains close to zero, and loss stays higher than one. The outcomes are really discouraging, so this
BTCM design is discarded from further analysis. The hypothesis to eliminate the pooling layer for
the sake of network simplicity is not successful due to the whole network getting degraded through
consecutive convolutions. Therefore, for the final CSSA experimentation, we eliminate the current
BTCM and continue with max pooling units.
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Figure 5. CNN network results without Batch Normalization (BN) layers.

Figure 6. Analysis of CNN by skipping pooling layers.

Test 5: The CSSA is a VGG-16-based model. Its architecture is shown in Table 1. It is composed of
the best performing ELU activation function, the max pooling unit and BN layer. The aforementioned
whole network is based on an encoder-decoder arrangement, which is trained end-to-end over the
Pascal VOC-12 and CamVid datasets.

Table 1. CSSA’s encoder and decoder layer architecture.

Encoder Decoder

Input 360 × 480 + Norm Output, Soft-max-with-Loss, Accuracy

Conv1 3 × 3, 64 BN, ELU, Pooling De-Conv 3 × 3, 64 Up-sample, BN, ELU
3 × 3, 64 3 × 3, 64

Conv2 3 × 3, 128 BN, ELU, Pooling De-Conv 3 × 3, 128 Up-sample, BN, ELU
3 × 3, 128 3 × 3, 128

Conv3 3 × 3, 256 BN, ELU, Pooling, Dropout De-Conv 3 × 3, 256 Up-sample, BN, ELU, Dropout
3 × 3, 256 3 × 3, 256
3 × 3, 256 3 × 3, 256

Conv4 3 × 3, 512 BN, ELU, Pooling, Dropout De-Conv 3 × 3, 512 Up-sample, BN, ELU, Dropout
3 × 3, 512 3 × 3, 512
3 × 3, 512 3 × 3, 512

Conv5 3 × 3, 512 BN, ELU, Pooling, Dropout De-Conv 3 × 3, 512 Up-sample, BN, ELU, Dropout
3 × 3, 512 3 × 3, 512
3 × 3, 512 3 × 3, 512

Encoder feed Pooling Indices to Decoder
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The final results are assessed with benchmark results, and it is noticed that the proposed network
out-performer with an improved ELU activation function and other units. Figure 7 shows the accuracy
vs. loss comparison of our proposed network. The “x-axis” shows the number of training iterations,
while the “y-axis” shows the training accuracy and loss. We set a low learning rate that helps us to
reduce training loss very slowly. After analyzing the curves, it can be claimed that our proposed
network achieves a good learning rate, as the “red” accuracy curve moves smoothly, and finally,
it attains the best performance. A similar smoothness is achieved with the “green” loss curve. It can be
observed that the loss is gradually decreasing and accuracy is improving alongside, until they become
constant. It is the ultimate performance of the CSSA network. “A” is the proposed network, while
“B” is SegNet, which is used as the benchmark result for analysis. It can be clearly observed that the
proposed network is performing well with perfect converging loss and accuracy curves as compared
to its counterpart.

Figure 7. CSSA vs. SegNet.

Figure 8 shows different road-scene training and testing set images and their corresponding
results. The resultant images show clear boundary delineation among different object. It also shows
a significantly efficient result regarding the detection of objects in a given image.

Figure 8. CSSA image dataset results.
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Table 2 shows quantitative results on the CamVid dataset. Our proposed CSSA results are
compared with other popular benchmark results. The road scene detection process comprises 11 road
scene categories. The proposed CSSA outperforms over all other methods. There is a great deal of
improvement in class average accuracy and global accuracy for the smaller classes.

Table 2. Comparison of quantitative results on the CamVid dataset.
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Local Label Descriptors [60] 80.7 61.5 88.8 16.4 n/a 98.0 1.09 0.05 4.13 12.4 0.07 36.3 73.6

SfM + Appearance [61] 46.2 61.9 89.7 68.6 42.9 89.5 53.6 46.6 0.7 60.5 22.5 53.0 69.1

Boosting [36] 61.9 67.3 91.1 71.1 58.5 92.9 49.5 37.6 25.8 77.8 24.7 59.8 76.4

Dense Depth Maps [62] 85.3 57.3 95.4 69.2 46.5 98.5 23.8 44.3 22.0 38.1 28.7 55.4 82.1

Structured Random Forests [63] n/a 51.4 72.5

Neural Decision Forests [64] n/a 56.1 82.1

Super Parsing [65] 87.0 67.1 96.9 62.7 30.1 95.9 14.7 17.9 1.7 70.0 19.4 51.2 83.3

Boosting + pairwise CRF [36] 70.7 70.8 94.7 74.4 55.9 94.1 45.7 37.2 13.0 79.3 23.1 59.9 79.8

Boosting+Higher order [36] 84.5 72.6 97.5 72.7 34.1 95.3 34.2 45.7 8.1 77.6 28.5 59.2 83.8

Boosting+Detectors + CRF [38] 81.5 76.6 96.2 78.7 40.2 93.9 43.0 47.6 14.3 81.5 33.9 62.5 83.8

ReSeg [14] 86.8 84.7 93.0 87.3 48.6 98.0 63.3 20.9 35.6 87.3 43.5 68.1 88.7

SegNet-Basic (layer-wise training)
[41]

75.0 84.6 91.2 82.7 36.9 93.3 55.0 37.5 44.8 74.1 16.0 62.9 84.3

SegNet-Basic [40] 80.6 72.0 93.0 78.5 21.0 94.0 62.5 31.4 36.6 74.0 42.5 62.3 82.8

SegNet [40] 88.0 87.3 92.3 80.0 29.5 97.6 57.2 49.4 27.8 84.8 30.7 65.9 88.6

Ravi et al. [13] 49.1 77.1 93.5 80.8 63.9 88.0 75.0 76.2 28.6 88.5 76.1 72.4 76.3

Bayesian SegNet-Basic [41] 75.1 68.8 91.4 77.7 52.0 92.5 71.5 44.9 52.9 79.1 69.6 70.5 81.6

Bayesian SegNet [41] 80.4 85.5 90.1 86.4 67.9 93.8 73.8 64.5 50.8 91.7 54.6 76.3 86.9

CSSA 94.8 83.7 83.6 95.0 92.0 86.9 97.3 87.8 92.1 93.3 90.1 87.3 90.6

The Pascal VOC-12 [7] segmentation dataset is composed of the segmentation of a few salient
object classes with usually a variable background class. It is different from earlier segmentation for road
scene understanding benchmarks, which need to learn both classes and their spatial context. Table 3
presents the Pascal VOC-12 segmentation challenge results in comparison with established benchmark
results. The proposed CSSA is intended for road scene understanding; therefore, we do not intend
to benchmark this experiment to attain the top rank in the Pascal VOC-12 segmentation challenge.
Therefore, the CSSA is not trained by using multi-stage training [17] or post-processing, which uses
CRF-based methods [15,16]. The CSSA network is trained end-to-end without any other assistance, and
Table 3 presents the resultant performance. Early best-performing benchmark networks are either very
large [15] and/or they use a CRF (such as [66] use Recurrent Neural Networks (RNNs)). In contrast,
the key object behind CSSA implementation is to reduce the number of trainable parameters and
improve overall inference time without other aids. We have reported results in terms of class average
accuracy and the size of the network.

There is little loss recorded in the performance due to dropping fully-connected layers. However,
this reduces the size of CSSA and offers us the capability to train the network end-to-end. Although
it may be argued that bigger and denser CNNs can have outstanding performance, it is at the cost
of increased memory requirements and longer inference time. This kind of architecture also leads to
a complex training mechanism. Due to such kinds of bottlenecks, bigger and denser CNNs are not
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appropriate for real-time applications, such as road scene understanding. Therefore, the CSSA could
be a preferred choice for the ADAS architecture.

Table 3. Comparison of quantitative results on the Pascal VOC-12 dataset.

Method CNN Size (M) CAA

DeepLab [16] (validation set) < 134.5 58
FCN-8 [17] (multi-stage training) 134.5 62.6

Hypercolumns [34] (object proposals) > 134.5 62.2
DeconvNet [15] (object proposals) 276.7 69.6

CRF-RNN [66] (multi-stage training) >134.5 69.6
CSSA (no CRF, no multi-stage training) <30 60.2

According to a report by [67], during 1990–2010, 54 million people were injured in roadside
accidents. About 1.4 million deaths occurred since 2013, and in 68,000 cases, the victims were children
less than five years old. In all of these cases, 93 percent of crashes were due to driver error/ human
factors. Thus, to avoid such situations, there is a new technology-based ADAS solution, which is the
ultimate choice. Since the initiation of the autonomous vehicles grand challenges by DARPA [68],
there has been an explosion in research for designing and developing of driving assistance systems.
A number of automakers have initiated vehicle ADAS to mitigate driver stress and fatigue to offer
additional safety features. However, self-driving cars are over promised and under delivered so far.
Society of Automotive Engineers (SAE) [69] has proposed five levels of vehicle automation in which
we still stand on Level 3. The key reason is the lack of efficient technology and expensive solutions.
These days, headway sensors (short range and long radars) are used in cars for ADAS. However,
these solutions are expensive and prone to some of road conditions (corners, narrow turns, etc.).
However, some vision-based applications, such as the “German Traffic Sign Recognition System” by
Stallkamp et al. [70], have attained 99 percent accuracy. These kinds of achievements had opened new
horizons for vision-based applications for road scene understanding and ADAS. From traffic sign
detection [71] to pedestrian detection [72], CNNs are offering a great deal of support and capability to
attain the SAE five-level goals in the near future. The proposed CSSA is a small step toward achieving
this great goal. It offers a higher accuracy rate for 11 road objects. This CNN could be trained and
transformed according to any image size and requirements. It is a low cost and efficient solution
for ADAS, will offer a more efficient performance and could be adopted as the video component
for the ADAS toolkit. To enhance the potential performance of the proposed system, a larger road
scene dataset is needed. By using existing sensors, such as mm-accurate GPS and LiDAR [44], and
calibrating them with cameras, a more comprehensive video dataset could be created. This dataset
will contain the labeled lane-markings and annotated vehicles with location and relative speed. In this
way, a labeled dataset with diverse driving situations (snow, rain, day, night, etc.) could be created.
Training the proposed CNN on such a dataset would offer a robust ADAS support system.

7. Conclusions

This research has offered a novel model of CNN with more enhanced and tested units.
This proposed FCN model is offering high performance and better results in comparison to the
established benchmarks’ results. The proposed system is a semantic pixel-wise segmentation engine.
It offers a unique combination of encoder-decoder networks working together to offer an enhanced
performance and improved outcomes. In this research, we have experimented with a miniature
version of the proposed model and, later, transferred the outperforming units and layers to a larger
CSSA architecture. It has offered us a great deal of efficiency to train and test networks in less time.
The final CSSA model has performed efficiently and offered outstanding results in comparison with
earlier similar approaches. Nowadays, ultrasonic and a few other types of radars are used in smart
automobiles. The ADAS requires such radars and other technologies that can be applicable in all types
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of road and weather conditions. Using the CNN-based road scene detection and understating system
in the automobile, it will be helpful especially in odd road conditions and blind spots where ultrasonic
signals are unable to identify objects. In the future, we intend to improve the performance of the
proposed network by developing and designing a time and space efficient binarized neural network
for road scene understanding. It will be a much faster and efficient architecture to facilitate real-time
decision making for the road scene understanding scenario.
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