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Abstract: A new elastoplastic J2-flow models with thermal effects is proposed toward simulating
thermo-coupled finite deformation behaviors of shape memory polymers. In this new model,
an elastic potential evolving with development of plastic flow is incorporated to characterize the
stress-softening effect at unloading and, moreover, thermo-induced plastic flow is introduced to
represent the strain recovery effect at heating. It is shown that any given test data for both effects
may be accurately simulated by means of direct and explicit procedures. Numerical examples for
model predictions compare well with test data in literature.
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1. Motivation and Introduction

In recent years, much attention has been directed to smart materials such as shape memory
alloys (SMAs) and shape memory polymers (SMPs) (cf., e.g., [1,2]). It is of great interest to simulate
thermo-coupled deformation behaviors of such materials under both loading and heating. Unlike
deformation behavior of SMAs with very small elastic deformations, however, SMPs exhibit
complicated thermo-mechanical deformation effects coupled with both temperature and large
recoverable deformations. Typical representatives of such effects are the stress softening effect at
unloading in the isothermal case and the strain recovery effect at pure heating. The former is
characteristic of all kinds of polymers and associated with a number of unloading stress-strain
curves of complex shapes that differ from one another and result in different permanent sets, while
the latter is unique to SMPs and related to the recovery of a large pre-strain at heating. Usually,
recoverable strains of SMPs both at unloading and at heating may be several hundred percents. As such,
large thermo-coupled inelastic deformations incorporating large recoverable deformations should
be treated toward modeling thermo-mechanical behavior of SMPs, in particular, in simulating both
the stress-softening effect at unloading and the large strain recovery effect at heating (i.e., the shape
memory effect).

Many efforts have been made to establish constitutive models for the purpose of incorporating the
above two effects. As a typical isothermal deformation feature for various kinds of polymers, the stress
softening effect at unloading was observed earlier and has been simulated for some time. Results in
this respect have been given based either on phenomenological models with damage-like variables
or micro-mechanical models with macromolecular mechanisms. Representatives in these respects
may be found, e.g., earlier in [3] and later in [4–14] for phenomenological models, and in [15–25] for
micro-mechanical models. On the other side, the modeling of the shape memory effect for SMPs is
relatively recent. Results in this respect and, generally, in the thermo-mechanical behavior of SMPs
may be found, e.g., in [26–39] and many others.
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In the existing models, usually a large number of parameters should be introduced from various
standpoints. For a given material sample, in order to find out suitable values of these parameters,
complicated numerical procedures should be iteratively carried out to obtain model predictions for
stress, strain and temperature from a constitutive model consisting of several nonlinear differential
equations, until such parameter values are found that the model predictions with these values fit test
data given for this sample as closely as possible. Undue complexities would be expected in identifying
a large number of parameters coupled with one another. In particular, that may be the case in fitting
a number of unloading curves of different shapes. Even if the model applicability is validated for
a material sample, it may not be clear that that will be the case for another material sample. Moreover,
both the stress softening effect and the shape memory effect are usually treated separately and could
not be simultaneously simulated in a unified and accurate sense.

In this contribution, we are going to propose an explicit, direct approach toward modeling
thermo-mechanical behavior of SMPs. It is shown that finite thermo-coupled inelastic deformation
behavior of SMPs may be simulated by establishing new finite elastoplastic J2-flow models with
thermo-coupled effects. In particular, both the stress softening effect at unloading and the shape
memory effect at heating may be derived from the proposed model. The main idea is incorporation of
an elastic potential evolving with development of plastic flow and introduction of thermo-induced
plastic flow, as suggested in a previous study for polymeric solids [40]. New results will be presented
in four respects, namely, (i) any ad hoc variables associated with micro-structural mechanisms are not
involved; (ii) any given number of unloading curves of any given shapes in the softening effect may be
accurately simulated; (iii) any given shape of temperature-strain curve in the strain recovery at heating
may also be accurately simulated by means of explicit, direct procedures; and (iv) the parameter values
may be identified in decoupled manner.

The main context of this article is organized as follows. In Section 2, a thermo-coupled elastoplastic
J2-flow model will be proposed, with incompressible elastic behavior evolving with development
of plastic flow. In Section 3, the evolving elastic potential and the yield limit incorporated in the
proposed model will be determined from any given sets of data for the stress softening in the uniaxial
unloading case, in a sense that such data may be automatically, accurately fitted. In Section 4, simple
forms of the shape functions representing the loading and unloading curves in the uniaxial case are
presented. In Section 5, large strain recovery effect at heating is treated by means of explicit procedures.
In Section 6, numerical examples will be presented to fit test data for both the stress-softening effect at
unloading and the strain recovery effect at heating. Finally, remarks for further studies will be given in
Section 7.

2. Thermo-Coupled J2-Flow Model with Evolving Elastic Potential

In this section, a new elastoplastic J2-flow model with evolving elastic behavior is proposed with
particular reference to thermo-mechanical behavior of SMPs, which is a reduced form of the previous
model [40] for polymeric solids in a broad case.

We direct attention to the consistent Eulerian rate formulation of finite elastoplasticity based on
the corotational logarithmic rate. Detail in this respect may be found in, e.g., [41–43]. Let F and FT be
the deformation gradient and its transposition and let h and D be Hencky’s logarithmic strain and the
stretching. Moreover, let τ and τ̃ be the Kirchhoff stress and its deviatoric part, namely, τ = Jσ and
τ̃ = Jσ̃, where the σ and σ̃ are the Cauchy stress (true stress) and its deviatoric part, respectively.

2.1. Additive Decomposition of Stretching

The starting point is the additive decomposition of the stretching D into an elastic part, De,
and a plastic part, Dp, as given below:

D = De + Dp . (1)
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An objective rate equation should be given for the elastic part De, which governs finite hyperelastic
behavior of SMPs. Moreover, a flow rule should be given for the plastic part Dp, which governs
dissipated inelastic behavior of SMPs. These two equations will be given below, separately.

2.2. Thermo-Elastic Rate Equation with Evolving Potential

The thermo-elastic behavior is characterized by a strain energy function, also known as elastic
potential. Usually, this potential keeps unchanged under the assumption that any process of inelastic
deformations has no effects on the elastic behavior. As a departure from usual treatment, here an
evolving elastic potential is introduced. This idea will prove essential in simulating the stress softening
behavior at unloading, as has been shown in a previous study [40].

For our purpose, a complementary elastic potential characterizing thermo-elastic behavior of
SMPs is introduced as follows:

Ŵ = W(τ̃, κ̃, T) + (trτ)Θ(T) , (2)

where the T is the absolute temperature and the κ̃ is the effective plastic work and will be given
slightly later by Equation (11). In the above, the second term represents the volumetric expansion
effect arising from temperature change, while the first term implies the incompressibility effect in
the isothermal case. Note here that the thermal expansion parameter Θ(T) is usually very small, but
becomes appreciable in a thermal process through the glass transition.

Then, the elastic part De is determined by an objective Eulerian rate equation below [40]:

De =
∂2W
∂τ̃2 :

o
τ̃ log +

∂2W
∂τ̃∂κ

κ̇ +
∂2W
∂τ̃∂T

Ṫ + Θ′(T)ṪI , (3)

where I is the 2nd-order identity tensor and
o
τ̃ log is the logarithmic rate of the deviatoric Kirchhoff

stress τ̃. Here and henceforth, the notation Ȧ designates the material time rate of the time-varying
quantity A.

Following the procedures in [43], it may be demonstrated that, prior to the initial yielding with
De = D, the elastic rate Equation (3) is exactly integrable to deliver a finite hyperelastic relation,
namely,

h =
∂W
∂τ

. (4)

This explains the meaning of the complementary elastic potential W. Since the latter evolves with
the effective plastic work κ (cf., Equation (11) below), it may be clear that the elastic behavior will be
different for different cases of unloading.

2.3. Normality Rule with Thermo-Induced Plastic Flow

The plastic part Dp in the decomposition Equation (1) is prescribed by the following normality
rule [43–45]:

Dp =
ξ

ĥ

(
∂ f
∂τ̃

:
o
τ̃ log +

∂ f
∂T

Ṫ
)

∂ f
∂τ̃

, (5)

where the yield function f is of von Mises type:

f =
1
2
|τ̃−α|2 − 1

3
r2 . (6)
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In the above, the back stress α is traceless and introduced to characterize the anisotropic or
kinematic hardening induced by plastic flow and the stress limit r represents the isotropic hardening
behavior and, generally, relies on both the effective plastic work κ̃ and the temperature T, viz.,

r = r(κ̃, T) . (7)

In addition, the plastic indicator ξ takes values 1 and 0 for the loading and unloading
cases [43–45], namely,

ξ =


1 for

[
f = 0, 1

ĥ

(
∂ f
∂τ̃ :

o
τ̃ log + ∂ f

∂T Ṫ
)
≥ 0

]
,

0 for f < 0 or
[

f = 0, ∂ f
∂τ̃ :

o
τ̃ log + ∂ f

∂T Ṫ ≤ 0
]

.
(8)

The plastic modulus ĥ will be given later on.
The back stress α is governed by the evolution equation below:{ o

α log = cDp ,

c = c(ϕ, κ̃, T) .
(9)

In the above, ϕ is the magnitude of the deviatoric stress, i.e.,

ϕ =
√

1.5trτ̃2 . (10)

Throughout, the effective plastic work κ̃ is given by

˙̃κ = (τ̃−α) : Dp . (11)

The flow rule Equation (5) with the loading-unloading conditions Equation (8) introduces plastic
flow induced by changing temperature and, in particular, this is the case in the absence of stress.
This fact will play an essential role in modeling the strain recovery effect at heating, as will be
explained in Section 5.

2.4. On the Thermodynamic Consistency

In a sense of thermodynamic consistency, a constitutive model should fulfill the second
law formulated by the Clausius-Duhem inequality. It may be straightforward to demonstrate
the thermodynamic consistency of the proposed model following the procedures in previous
works [40,43,46–48] in an explicit sense of presenting both the specific free energy function and the
specific entropy function. Detail is not pursued here and may be referred to the foregoing references.

2.5. The Meanings of Constitutive Quantities

The finite elastoplastic J2-flow model established in the above are represented by three constitutive
quantities, namely, the evolving elastic potential W (cf., Equation (2)) and the yield limit r (cf., Equation (7))
as well as the Prager modulus c (cf., Equation (10)). Of them, the former characterizes nonlinear elastic
behavior evolving with plastic flow and hence the stress-softening behavior at unloading, while
the latter two characterize features of plastic flow. As has been known in theory of elastoplasticty,
the strain-induced anisotropy may be represented by the von Mises function Equation (6) with the
evolution of the back stress α (cf., Equation (9)). Perhaps more essentially, both the back stress α

and the temperature-dependent yield limit r will give rise to thermo-induced plastic flow leading to
the shape memory effect, as will be seen in Section 5. The form of the potential W should be well
chosen, so that unloading stress-strain curves may be simulated. Furthermore, the yield limit r and the
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Prager modulus c should be such that they joins the potential W to characterize the development of
plastic flow.

In the succeeding sections, both the stress softening effect at unloading and the shape memory
effect at heating will be derived from the proposed model. Toward this objective, we are going to show
that the constitutive quantities in the foregoing may be determined from suitable uniaxial data for the
stress-softening effect at unloading and for the strain recovery effect at heating, in such a sense that the
predictions from the proposed model can exactly reproduce these data.

3. Stress-Softening Effect at Unloading

In this section, we first take the isothermal case into account. In this case, the temperature T is
not involved. For a SMP sample, test data for uniaxial responses are given both for the monotone
loading case and for various cases of unloading, as shown in Figure 1. For usual models with certain
parameters to be identified, model predictions for given trial values of parameters should be compared
with test data for the purpose of model validation. For a reasonable model, by means of trial-and-error
procedures of searching for suitable forms of the constitutive functions and parameters, agreement
with test data should be eventually achieved after iterative numerical procedures. Since both the
loading curve and each unloading curve display complicated nonlinearities coupled with large strain
and, in particular, a number of unloading curves should be taken into consideration and any two of
them may be of different shapes, as shown in Figure 1, usual implicit procedures for both searching
for reasonable forms of constitutive functions and identifying a set of unknown parameters would be
unduly complicated.

Figure 1. Stress softening with unloading curves of different shapes.

We are going to demonstrate that, toward representing the stress-softening behavior of SMPs,
explicit procedures may be introduced to obtain the three constitutive quantities in the proposed
model, in such a sense that the model predictions can automatically, accurately fit any given sets of
data both for the uniaxial monotone loading case and for various unloading cases.

3.1. Uniaxial Loading and Unloading Curves

Figure 1 shows the stress-softening effect at unloading, i.e., the well known Mullins effect. When
a sample is loaded to a certain point (h∗, τ∗) and then unloaded, there emerges the stress-softening
effect as described below:
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(i) After the unloading is completed, a residual strain (permanent set) may be induced. The stress-strain
curve in an unloading process may appreciably deviate from the monotone loading curve up to
the unloading point (h∗, τ∗) at the onset of unloading;

(ii) for each strain h ∈ [0, h∗), the stress on the unloading curve is always lower than the stress on the
monotone loading curve, referred to as stress softening at unloading;

(iii) when reloading is introduced, the part of the reloading curve till the point (h∗, τ∗) is nearly
coincident with the unloading curve in the foregoing, but the part of the reloading curve after the
point (h∗, τ∗) follows the monotone loading curve after a transition at the point (h∗, τ∗).

For a SMP sample of interest, test data are given for the loading curve and for a certain number of
unloading curves. Consider M data sets for the unloading curves associated with M unloading stresses

τ∗1 < τ∗2 < · · · < τ∗M ,

which correspond to M values of the effective plastic work below:

κ̃1 < κ̃2 < · · · < κ̃M .

Specifically, for the unloading curve associated with the unloading stress τ∗s or the effective plastic
work κs for each s ∈ {0, 1, · · · , M}, a set of strain-stress data is given below:

(h(s)0 , τ(s)0 ), (h(s)1 , τ(s)1 ), · · · , (h(s)Ns
, τ(s)Ns

) . (12)

In the above, the first point (h(s)0 , τ(s)0 ) is just given by the strain h∗s and the stress τ∗s at the onset of
unloading, and, moreover, the residual strain (permanent set) at vanishing stress, i.e., the point (hp

s , 0),
should be incorporated in the above set of data.

For any given data for the loading curve and any given sets of data for a certain number
of unloading curves, as described in the above, it needs to find out such three quantities W
(cf., Equation (3)) and r (cf., Equation (7)) and c (cf., Equation (9)) that the predictions from the
model established in Section 2 fit these data as closely as possible. In what follows, we are going to
show that explicit procedures may be introduced to obtain these constitutive quantities in a sense of
accurately matching test data for any given shapes of loading and unloading curves.

3.2. The Evolving Elastic Potential

We first present the evolving elastic potential W. The main procedures will follow those suggested
in a previous study [40]. Details will be omitted below and may be referred to this reference.

A single-variable function for the unloading curve starting at the unloading point (h∗s , τ∗s ) may be
obtained in a sense of accurately fitting any given date set as shown in Equation (12). Indeed, it may
be given by an interpolating function, such as a Lagrange interpolant and an other form of function.
Let such a function be designated by

h = gs(τ) for unloading curves s = 1, · · · , M , (13)

with 
gs(0) = hp

s ,

gs(τα) = hα ,

α = 0, 1, · · · , Ns .

In the uniaxial case, it may readily be shown that the evolving potential Equation (2) reduces to
a function of the axial Kirchhoff stress τ and the effective plastic work κ̃, denoted

w = w(τ, κ̃) . (14)
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For the unloading curve starting at the unloading point (h∗s , τ∗s ), the elastic rate Equation (3) with
Ṫ = 0 yields

ḣ =
˙(

∂w
∂τ

)
.

For the unloading curve at issue, the effective plastic work is held fixed and given by κ̃s. Then,
the integration of this equation from the point (hp

s , 0) to the point (h, τ) in an unloading process gives
rise to

h− hp
s =

dws

dτ
, (15)

where ws = w(τ, κ̃s). In deriving Equation (15), the following initial condition is used:

∂w
∂τ

∣∣∣∣
τ=0

= 0 . (16)

From Equation (15) and h = gs(τ) we deduce

dws

dτ
= gs(τ)− hp

s . (17)

This produces

ws = ws(τ) =
∫ τ

0

(
gs(τ)− hp

s

)
dτ . (18)

From the above procedures we obtain M uniaxial potentials w1, · · · , wM for the M unloading
curves at issue. However, each of them is restricted to the uniaxial case. The potential for general
multiaxial deformations is obtainable from these uniaxial potentials by means of direct procedures.
In fact, replacement of the axial Cauchy stress τ in each potential w(τ) with the invariant ϕ
(cf., Equation (10)) multiplied by the mode invariant γ (cf., [49]) yields a multi-axial potential below:{

Ws = ws (γϕ) ,

γ = 4.5trτ̃3/ϕ3 .
(19)

It may be verified that, in the uniaxial case, each function Ws for general multi-axial deformations,
given by Equation (19), exactly supplies its uniaxial counterpart ws. We seek for a multi-axial potential
W(τ̃, κ̃) which exactly gives the M multi-axial potentials W1, · · · , WM for κ̃ = κ̃1, · · · , κ̃M. Such a
potential may be given by an interpolating function with the M interpolating nodes (κs, Ws) for
s = 1, · · · , M. For instance, it may be given by a Lagrange interpolant below:

W = W(τ̃, κ̃) =
M

∑
s=1

Ws Ls(κ̃) (20)

with the Lagrangian base functions

Ls(κ̃) =
P(κ̃)

(κ̃ − κ̃s)P′(κ̃s)
, s = 1, · · · , M , (21)

P(κ̃) =
M

∏
s=1

(κ̃ − κ̃s) . (22)

It may be a straightforward matter to show that, in the uniaxial case, the multi-axial potential
Equation (20) exactly supplies the M uniaxial potentials w1(τ), · · · , wM(τ) given by Equation (18) and,
therefore, exactly fit any given M sets of data for M unloading curves (cf., Equation (13)).
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With sufficient test data for a certain number of unloading curves, a single-variable function
representing each unloading curve may be directly given either by an interpolating function or by
choosing an other suitable form of function (see Section 4) .

3.3. Stress Limit and Prager Modulus

We next determine the stress limit r and the Prager modulus c. Let a set of data be given
for a monotone stress-strain curve starting at the initial yield point (h0, τ0) (cf., Figure 1). Then,
a single-variable function representing this curve may also be directly given either by an interpolating
function or an other form of function, as shown below:{

h = f (τ) for the loading curve ,

h0 = f (τ0), τ ≥ τ0 ,
(23)

For the monotone loading in the uniaxial case, from the J2-flow model in Section 2 the four reduced
equations below may be derived:

τ− α = r,

ḣ =
˙(

∂w
∂τ

)
+

4
9

r2ĥ−1τ̇ ,

˙̃κ =
4
9

r3ĥ−1τ̇,

ĥ =
2
3

cr2 +
4
9

r3r′ .

In the above, w = w(τ, κ̃) is the reduced form of the elastic potential Equation (20) in the uniaxial
case and given by

w =
M

∑
s=1

ws(τ)Ls(κ̃) , (24)

where ws(τ) and Ls(κ̃) are given by Equations (18), (22) and (23).
In the monotone loading case, the axial stress τmay be reformulated as a function of the effective

plastic work κ̃, namely, τ = q(κ̃) . As such, from the last three of the foregoing four equations the
following two equations may be derived:τ′ = r′ + 1.5 c

r ,
d

dκ̃

(
f (τ)− ∂w

∂τ

)
= 1

r ,
(25)

The stress limit r may be given as follows [40,46–48]:

r = r∞ + (τ0 − r∞)e−βκ̃ , (26)

where r∞ > 0 is a constant and β > 0 is a large dimensionless parameter. For a large β > 0,
the exponential function in Equation (26) rapidly goes to vanish for κ̃ > δ and the stress limit above
is almost constant, i.e., r˙= r∞ for κ̃ > δ. Here δ is very small. The localized property just mentioned
means that, after the initial yielding, the stress limit r may be taken to be constant and given just by r∞,
as will be done below.

By setting r = r∞, the integration of Equation (25)2 from the initial yield point (h0, τ0) to a point
(h, τ) along the monotone curve in Figure 1 yields

κ̃ = r∞

(
f (τ)− ∂w

∂τ

)
. (27)
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At each unloading point (h∗s , τ∗s ), the derivative ∂w/∂τ is just given by Equation (15) with τ = τ∗s .
From this and Equation (17) and f (τ∗s ) = gs(τ∗s ) we obtain the effective plastic works at the M
unloading points as follows:

κ̃s = r∞ hp
s , s = 1, 2, · · · , M , (28)

where hp
s and κ̃s are the plastic strain and the effective plastic work associated with the s-th

unloading curve.
Next, Equation (25)2 with r = r∞ may be converted to(

d f
dτ
− ∂2w

∂τ2

)
τ′ =

∂2w
∂τ∂κ̃

+
1

r∞
. (29)

From this and Equation (25)1, an expression for the Prager modulus c in the uniaxial case may be
obtained in terms of the axial stress τ and the κ̃. Replacing τ by the invariant ϕ in Equation (19) we
eventually obtain Prager’s modulus for general multi-axial cases as follows:

c =
2
3

1 + r∞φ(ϕ, κ̃)

f ′(ϕ)− ζ(ϕ, κ̃)
, (30)

where φ(τ, κ̃) = ∂2w
∂τ∂κ̃ = ∑M

s=1

(
gs(τ)− hp

s

)
L′s(κ̃) ,

ζ(τ, κ̃) = ∂2w
∂τ2 = ∑M

s=1 gs
′(τ)Ls(κ̃) ,

(31)

where Ls(κ̃) is given by Equations (22) and (23).

4. Shape Functions for Uniaxial Loading and Unloading Curves

With the evolving elastic potential W, the stress limit r and the Prager modulus c given in
the last section, the elastoplastic J2-flow model established in Section 2 exactly reproduces the
monotone loading curve h = f (τ) and any given number of unloading curves, h = gs(τ). It may be
straightforward to find out suitable forms of such single-variable functions fitting any given data for
the monotone loading case and for various unloading cases, without involving usual complicated
procedures of treating several nonlinear differential equations incorporating a number of parameters
to be identified. The foregoing two kinds of single-variable functions, referred to as the shape functions
for loading und unloading curves, may be given directly by usual interpolating functions fitting any
given data without error. Alternatively, these shape functions may also be given by other forms of
functions. In particular, it is of interest to have simple forms of shape functions with parameters of
direct physical meanings. Such forms of shape functions are given below.

Firstly, below a simple form of the shape function is given to represent each unloading curve:

τ =
(1− γ)E(h− hp)

1− h−hp

u
+ γ E(h− hp) for h− hp ≥ 0 , (32)

and its inverted form is as follows:

h = g(τ) = hp +
2uσ

τ+ Eu +
√
(τ+ Eu)2 − 4γ+Euσ

. (33)

In the above, hp is the plastic strain after unloading, E is the Young’s modulus at infinitesimal
strain, u is the strain limit and γ < 1 is dimensionless parameter characterizing the growth degree of
stress as the strain is approaching the strain limit u. In general, each of these parameters may rely on
the effective plastic work κ̃, namely,

E = E(κ̃), u = u(κ̃), γ = γ(κ̃) . (34)
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For each unloading curve associated with a value of the effective plastic work, values of the
above parameters may be determined by fitting the above shape function to given data. As such, a set
of parameter values may be obtained for a family of unloading curves. Then, each of the foregoing
κ̃-dependent parameter may also be given directly by an interpolating function. It may be noted that
the parameters introduced directly represent the very features of each elastic unloading curve at issue
and, accordingly, are determinable from each unloading curve in a decoupled manner.

In particular, the unloading curve starting at the initial yield points (h0, τ0) is associated with
κ̃ = 0 and coincident exactly with the initial elastic curve from the origin to the initial yield point
(cf., Figure 1). This curve may be given simply by a linear relation between the axial stress τ and the
axial Hencky strain h, namely, {

h = g0(τ) =
τ
E0

(0 ≤ τ ≤ τ0) ,

κ̃ = 0 ,
(35)

where E0 = E(0) is the initial Young’s modulus.
On the other hand, the shape function for the monotone loading curve starting at the initial yield

points (h0, τ0) may be given by (c.f., [46–48]){
h = f (τ) = τ0

E + ξ0(τ− τ0) +

+ 1
2 (ξ1(τ− τ0 − s) + a0) (tanh(m(τ− τ0 − s)) + tanh(ms)) .

(36)

The meanings of the parameters incorporated may be found in previous works [46–48].
The above shape functions for the monotone loading curve and the unloading curves of SMPs are

new and much simpler, as compared with the counterparts in a most recent study [40]. With these new
shape functions, accurate accord with test data may be achieved, as will be shown in Section 6.1.

5. Large Strain Recovery Effect at Heating

In this section, large strain recovery effect in a thermo-mechanical process consisting of
an isothermal loading-unloading process and then a heating process will be derived from the proposed
model. It will be shown that the proposed model predicts a pre-strain induced in the isothermal
loading -unloading process and then a plastic flow induced in the heating process. It will further be
shown that such thermo-induced plastic flow may be responsible for the recovery of the pre-strain
induced in the isothermal loading-unloading process. This represents the very feature of the shape
memory effect of SMPs. It will also be shown that, from the proposed model, simple and exact results
may be derived for a general multiaxial case.

5.1. Pre-Strain Induced at Isothermal Loading-Unloading

We first consider an isothermal loading-unloading process. Let the temperature be held fixed
and given by T0. In this case, a polymer sample is monotonically loaded to a certain stress level and
then unloaded to zero stress. The stress and strain responses at both loading and unloading may be
determined from the proposed model with the isothermal constitutive quantities obtained in Section 3.
For the uniaxial case, in particular, the response at loading is given by Equation (23) and the response
at unloading by one of those in Equation (13).

After unloading at temperature T0, a pre-strain or permanent set, denoted h0, is induced, namely,{
h0 = 1

2 ln(F0FT
0 ) ,

F0 = F|T=T0 ,
(37)
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and, besides, the effective plastic work and the back stress are designated by κ̃0 and α0, viz.,

κ̃|T=T0 = κ̃0, α|T=T0 = α0 . (38)

Note here that a general multi-axial case is taken into account.

5.2. Thermo-Induced Plastic Flow at Heating

We next treat a process of pure heating with the temperature T changing from T0 to T∗. In this
case, the stress limit r relies merely on the temperature T. Usually, r should decrease with increasing
temperature. Namely,

r′(T) =
dr
dT

< 0 . (39)

With an initial temperature T0 held fixed, a pre-strain or plastic strain is induced in a SMP sample
via a loading-unloading process at constant temperature T0, as indicated in Section 5.1. Let

f (T) =
1
2
|α0|2 −

1
3
(r(T))2 . (40)

The unloading at T = T0 leads to

f (T0) =
1
2
|α0|2 −

1
3
(r(T0))

2 < 0 . (41)

Consider a heating process with Ṫ > 0. On account of Equation (39), the f (T) increases with
increasing temperature and hence it may increase from the initial value f (T0) < 0 at T0 to zero at
a certain temperature T∗0 , namely,

f (T∗0 ) =
1
2
|α0|2 −

1
3
(r(T∗0 ))

2 = 0 . (42)

Moreover, with τ̃ = O and Ṫ > 0 as well as Equation (40) we deduce that

1
ĥ

(
∂ f
∂τ̃

:
o
τ̃ log +

∂ f
∂T

Ṫ
)
= −(cr)−1r′(T)Ṫ > 0 . (43)

Hence, from Equation (8)1 it follows that the loading condition is met. Thus, plastic flow may be
induced at pure heating and emerges for T ≥ T∗0 .

By setting τ = O in the rate equations given in Section 2, the governing equations for the
thermo-induced plastic flow as indicated above may be derived as follows:

D = De + Dp , (44)

De = Θ′(T)ṪI , (45)

Dp = r′(T)
Ṫ
cr

α , (46)

o
α log =

1
r

f ′(T)Ṫ α , (47)

˙̃κ =
2
3

c−1rr′(T)Ṫ , (48)

with the initial conditions at T = T∗0 given below:{
F|T=T∗0

= eΘ∗0−Θ0 F0, Θ∗0 = Θ(T∗0 ), Θ0 = Θ(T0) ,

α|T=T∗0
= α0, κ̃|T=T∗0

= κ̃0, r|T=T∗0
=
√

1.5|α0| .
(49)
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In deriving Equation (49), the following fact has been used: only thermo-elastic volumetric
deformation is induced from T0 to T∗0 .

A closed-form solution may be derived from the above equations. Results are as follows:

α =

√
2
3

α0

|α0|
r(T), T ≥ T∗0 , (50)

for the back stress, andF = eΘ−Θ0 F0 ,

h = (Θ−Θ0) I + h0 +
√

2
3

α0
|α0|

∫ T
T∗0

c−1r′(T)dT, T ≥ T∗0 ,
(51)

for the deformation gradient and Hencky’s logarithmic strain, and, finally,

κ̃ = κ̃0 +
2
3

∫ T

T∗0
c−1rr′(T)dT, T ≥ T∗0 , (52)

for the effective plastic work.

5.3. Strain Recovery Effect

Equation (51) supplies a closed-form solution for the Hencky strain in a thermo-mechanical
process consisting of an isothermal loading-unloading process at constant temperature T0 and then
a pure heating process from T0 to a higher temperature T, in which a thermo-induced plastic flow is
induced from T∗0 to T. This result has been derived for a general multi-axial case. The Hencky strain
given is composed of three parts, namely, the pre-strain h0 at T0, the thermo-elastic volumetric strain
(Θ−Θ0)I, as well as the part from the thermo-induced plastic flow. The thermo-elastic expansion
part is usually very small, but it may become appreciable in a process through the glass transition in
some cases. Generally, the thermo-elastic expansion effect over a temperature range may be simulated
by choosing a suitable form of the temperature-dependent quantity Θ(T).

With negligible thermo-elastic expansion, it may be demonstrated [40] that the minimum of the
magnitude of the strain h as given in Equation (51) is always smaller than the initial value |h0| at T0.
This suggests that generally the thermo-induced plastic flow in a process of pure heating always leads
to a partial recovery of any given pre-strain. As such, the thermal recovery at pure heating is derived
as a direct, natural consequence of the thermo-coupled elastoplasticity model established in Section 2.
In particular, it may be deduced that the complete recovery of any given pre-strain emerges whenever

α0 = c0h0 (53)

with the c0 a constant. In particular, the above co-axiality condition is identically fulfilled in the uniaxial
strain case.

Now, the Prager modulus c is taken to be of the following form [40]:

c =
1
2
(c0 + c∗0)−

1
2
(c0 − c∗0) tanh

[
λ

T − T0

T∗0 − T0

]
.

In the above, c∗0 < c0 and λ > 0 is a large dimensionless parameter. Then, the Hencky strain for
T ≥ T∗0 is given by (c.f., [40]) h =

(
c0
c∗0

r
r∗0
− c0

c∗0
+ 1
)

h0 ,

r∗0 = r|T=T∗0
=
√

1.5c0|h0| .
(54)
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This result applies to a general multiaxial case. Given any form of the uniaxial temperature-strain
relation, h = h(T), the temperature-dependent stress limit r is thus determined, as shown below:

r = c∗0 [h(T)− h0] + c0h0 . (55)

With the above stress limit, the proposed model exactly reproduces the strain-temperature relation
h = h(T) and, accordingly, any given uniaxial data for strain recovery may be automatically, accurately
fitted.

An example for the stress limit r with strain recovery is given as follows:

r = r∗0

[
1−

c∗0
c0

tanh λ
T − T∗0

Tm − T∗0

]
, (56)

where both the temperature T∗0 > T0 at the initial yielding (cf. Equation (42)) and the temperature
Tm > T∗0 may be of any given values. The corresponding strain-temperature function is given by

h = h0

[
1− tanh λ

T − T∗0
Tm − T∗0

]
. (57)

For a fairly large λ, any given large pre-strain, h0, is almost completely recovered at a temperature
slightly higher than Tm, as will be seen in the numerical example in the next section.

6. Numerical Examples

According to the results derived in the preceding sections, the predictions from the proposed
model may automatically, accurately fit any given data for both the stress-softening effect and the
strain recovery effect simply by choosing three shape functions h = f (τ), h = gs(τ), h = h(T) that
accurately fit these data. As indicated before, it may be straightforward to present these three shape
functions by choosing usual interpolating functions. However, they may be given by other forms
of functions. As illustrative examples, in this section the simple forms of shape functions given in
Sections 4 and 5.2 will be used to fit test data in literature.

In what follows, test data will be fitted by using the shape function Equation (36) for the initial
elastic curve, the shape function (37) for the monotone loading curve and the shape function (34) for the
unloading curve, as well as the strain-temperature function Equation (57) for the strain recovery curve.

Below, the model predictions will be compared with two sets of data in literature, separately.

6.1. Data for Stress-Softening Effect at Unloading

We first consider the data from [27]. These data (Figure 8) are concerned with a SMP resin sample
for the monotone loading case till the strain 23% and then for two unloading cases starting at two
strains of 11% and 23%, separately.

The initial elastic curve is given by Equation (36) with

h0 = 0.015, τ0 = 10.30 MPa, E0 = 686.67 MPa.

The shape function for the monotone loading curve is given by Equation (37) with the parameter
values below:

τ0 = 10.30 MPa, E = 680 MPa, ξ0 = 0.001852 MPa−1,

ξ1 = 0.067568 MPa−1, s = 12.5 MPa, m = 0.5, a0 = 0.3.

The two unloading curves are fitted by the shape function Equation (34) with

hp = 0.0475, u = 0.154, E = 5.782 MPa, γ = −53.179,
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for the first unloading curve, and

hp = 0.162, u = 0.167, E = 12.361 MPa, γ = −13.218,

for the second unloading curve. Results are shown in Figure 2 by plotting the curves of the axial true
stress against the axial Hencky strain. Good agreement with the given data is achieved.
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Figure 2. Fitting the data in [27] for SMP resin.

6.2. Data for Strain Recovery Effect at Heating

We next consider the data from [26] (Figure 5c), which are concerned with the strain recovery
effect of a SMP sample in a heating process from 320 K to 350 K with the pre-strain 0.164.

The strain-temperature function Equation (57) is used to fit the data at issue, with the parameter
values below:

h0 = 0.164, λ = 1.7, T∗0 = 322 K, Tm = 348 K.

Results are shown in Figure 3 by plotting the curve of the temperature against the axial Hencky strain.
Again, good agreement with the given data is achieved.
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Figure 3. Fitting the data in [26] for the strain recovery effect of a SMP sample.

7. Concluding Remarks

In the preceding sections, a new thermo-coupled elastoplastic J2-flow models with evolving elastic
behavior has been proposed to achieve an explicit, direct simulation of complicated inelastic behavior
of SMPs displaying both the stress softening effect at unloading and the strain recovery effect at heating.
The constitutive quantities incorporated in the proposed model are explicitly determined from suitable
uniaxial data. Extensive test data for any given shapes of loading and unloading curves as well as the
strain-temperature curve may be accurately, automatically fitted by means of single-variable shape
functions. It has been demonstrated that all may be done in the scope of classical elastoplasticity and,
therefore, that no additional variables need be introduced and treated. Usual implicit, complicated
procedures both in searching for suitable forms of constitutive functions and in identifying values of
unknown parameters may be bypassed.

This study represents a development of the model suggested in a most recent study [40]. Results in
this reference are derived for certain usual deformation features of polymeric materials. However, new
treatments need further be introduced for the purpose of simulating thermo-mechanical deformation
features unique to SMPs. In fact, SMPs exhibit thermal effects and loading-unloading response features
that differ in nature from those for usual polymers. As a consequence, the shape functions representing
the loading curve and each unloading curve (cf., Figure 1) need be given in other suitable forms and,
moreover, both thermal expansion and strain recovery need be considered in a unified manner. Here,
new forms of shape functions that apply to deformation features of SMPs are presented in Section 4 and
closed-form results with both thermal expansion and strain recovery effects are derived in Section 5.
Good agreement with test data is achieved.

It should be pointed out that thermo-mechanical deformation features of SMPs may be simulated
from various standpoints, as mentioned in the introduction section. Various constitutive models
may be established based on additional variables associated with micro-structural mechanisms.
Representatives are those based on either transition between micro-structural phases or evolution of
macromolecular networks. For instance, transition between an active and a frozen phase is considered
in [32] with a volume-fraction variable for the frozen phase, while evolution of a reversible and
a permanent network is treated in [36–38]. It may be noted that the volume-fraction variable has been
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fruitfully used in modeling thermo-mechanical behavior of SMAs with the martensite-to-austenite
phase transition mechanism. On the other side, various types of networks are directly related to certain
aspects of cross-links and entanglements of chain-like macromolecules in polymeric materials.

Irrespective of the fact that the proposed model is straightforward in a sense without assuming any
ad hoc variables of micro-structural origins, it may be of significance to explain how it accommodates
itself to relevant underlying micro-mechanisms. For instance, the back stress α, which plays an
essential role in deriving the thermo-induced plastic flow responsible for the strain recovery effect in
Section 5, may be explained based on the notion of a permanent network as introduced in [36–38].
In general, each macroscopic constitutive quantity introduced in the proposed model may be related to
relevant micro-mechanisms via suitable averaged procedures. This respect need be studied in future.

It is known that thermo-mechanical responses of SMPs depend on both strain rate and
thermo-mechanical history. For example, the loading curve and each unloading curve as shown
in Figure 1 will be changed by strain rate and cyclic loading. In particular, cyclic thermo-mechanical
loadings may lead to fatigue failure. Rate effects may be incorporated by introducing a rate-dependent
stress limit in extending the proposed model. Furthermore, fatigue failure behavior may be simulated
by extending the plastic flow Equation (5) to a new, free plastic flow equation without involving the
usual loading-unloading conditions as stipulated in Equation (8). These may be done by a development
of the most recent study [50,51]. Results will be reported elsewhere.

It should be noted that the anisotropy effect induced by plastic strain may be simulated by the
proposed model with evolution of the back stress. For a SMP with initial anisotropy, such as a SMP
composite with preferred directions, the thermo-elastic potential W(τ̃, κ̃, T) in Equation (2) should be
restricted by the form-invariance requirements relative to a symmetry group representing the initial
material symmetry. Detail may be found in [43].
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