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Abstract: Using classic differential quadrature formulae and uniform grids, this paper systematically
constructs a variety of high-order finite difference schemes, and some of these schemes are consistent
with the so-called boundary value methods. The derived difference schemes enjoy the same stability
and accuracy properties with correspondent differential quadrature methods but have a simpler form
of calculation; thus, they can be seen as a compact format of classic differential quadrature methods.
Through systematic Fourier stability analysis, the characteristics such as the dissipation, dispersion
and resolution of the different schemes were studied and compared.
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1. Introduction

Many physical phenomena possess a range of space and time scales, and direct numerical
simulations of these processes require all the relevant scales to be properly represented in the numerical
model. These requirements have led to the development of the so-called compact finite difference
scheme [1]. Usually, the compact schemes have much smaller numerical dispersion and dissipation
errors than traditional finite difference schemes of the same order of accuracy on the same mesh. So far,
researchers have developed a variety of compact difference schemes [2–6].

This paper presents a simple way for constructing the compact finite difference schemes by the use
of the differential quadrature method (DQM). The DQM was firstly proposed by Bellman and Casti in
the early 1970s [7,8]. The basic idea of DQM is to extend analogously the numerical integration rule to
the numerical differentiation, where the derivative of a function on a coordinate direction is expressed
as the weighted linear combination of function values for all discrete points along this direction.

At present, the differential quadrature method has been widely developed. According to the used
trial or test function, the differential quadrature method generally includes the classical differential
quadrature method, harmonic differential quadrature method, Fourier differential quadrature method,
and so on. The classic differential quadrature method mainly uses the general polynomial or
Lagrangian interpolation function as a test function, the harmonic differential quadrature method
uses the trigonometric function as the trial function, while the Fourier differential quadrature
method uses Fourier series expansion as the trial function [9,10]. Theoretically, the above differential
quadrature rules can be used either for spatial discretization or for time discretization. In other words,
the differential quadrature method can be used for the solution of both the partial differential equation
and the ordinary differential initial problem [11–15]. In summary, differential quadrature methods
have the advantages of high precision, good numerical stability and convenient programming, and
have been successfully applied in many fields [16,17].
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Using classic differential quadrature formulae and uniform grids, we systematically constructed a
variety of finite difference schemes, and some of these schemes are consistent with the boundary value
methods (BVM) proposed by Brugnano et al. [18,19]. Considering that the derived difference schemes
enjoy the same stability and accuracy properties with correspondent DQM but have a simpler form of
calculation, the derived difference schemes can be regarded as the compact expression of classic DQM.
Naturally, these compact difference methods could be used instead of classic differential quadrature
methods for engineering applications [20].

2. The Classic Differential Quadrature Methods

Suppose function f (x) is sufficiently smooth in the considered interval, and the first-order
derivative of f (x) at each grid point cp, p ∈ (1, s) is approximated by a linear sum of all the function
values in the whole domain, that is

∂ f (x)
∂x

∣∣∣∣
x=cp

≡ f (1)(cp) =
s

∑
q=0

gpq f
(
cq
)

(1)

The above Equation (1) is simply the basic expression of DQM, within which gpq represents the
weighting coefficient of DQM; s is the grid number of the partition of each interval; and cp, p ∈ (0, s)
represent the grid points.

The weighting coefficients of DQM only depend on the trial function and the discrete sample
points, namely, the distribution of grid points, and have nothing to do with a specific problem.
Usually, we would like to choose the general polynomial or Lagrange interpolation polynomial as
the trial function, and use these functions to approximate the value of f (1)(x) at each grid points,
which is defined as the classic DQM in this paper. The researchers have proved that the weighting
coefficients derived by these two trial functions are consistent [17]. The concrete calculation expression
of weighting coefficients for classic DQM can be described as follows:

gpq =
M(1)(cp)

(cp−cq)M(1)(cq)
, p 6= q

gpp = −
s
∑

q=1;q 6=p
gpq

, p, q ∈ (0, s) (2)

where,

M(1)(cz) ≡
s

∏
q=1;q 6=z

(
cz − cq

)
, z ∈ (0, s) (3)

Obviously, if the distribution of grid points is centro-symmetric in the normalized interval [0, 1],
it can be deduced that

cs−z = 1− cz, M(1)(cs−z) = −M(1)(cz), z ∈ (0, s) (4)

gs−p,s−q = −gpq, p, q ∈ (0, s) (5)

Defining
G =

(
gpq
)
∈ R(s+1)×(s+1), p, q ∈ (0, s) (6)

it can be known from Equation (5) that the weighting coefficient matrix G is centro-antisymmetric.
Regarding the selection of grid points, there are some commonly used approaches, including the

uniform grids, Chebyshev grids, Chebyshev-Gauss-Lobatto grids, and Legendre grids. These types of
grids can be concretely described as follows.

1. The uniform grids

cz =
z
s

, z ∈ (0, s) (7)
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2. The Chebyshev grids

c0 = 0; cz =
1
2

(
1− cos

(
2z− 1
2s− 2

π

))
, z ∈ (1, s− 1); cs = 1 (8)

3. The Chebyshev-Gauss-Lobatto grids

cz =
1
2

(
1− cos

( z
s

π
))

, z ∈ (0, s) (9)

4. The Legendre grids

c0 = 0; cz, z ∈ (1, s) are the zero points of ds

dxs

(
xs(x− 1)s) = 0; and cs+1 = 1.

Take the following ordinary differentia initial value problem as an example{
d

dx y ≡ .
y = f (x, y)

y(x = 0) = y0
(10)

Supposing xn and xn+1 represent respectively the starting point and ending point of an arbitrary
interval, h = xn+1 − xn is the interval length or the so-called stencil length. Let c = (x− xn)/h and
make the interval x ∈ [xn, xn+1] normalized as c ∈ [0, 1], then the Equation (10) can be converted into

d
dc

y = h f (xn + ch, y(xn + ch)) (11)

On this basis, we can apply the s-stage differential quadrature method (1) to Equation (11), and
deduce that [15,16]

G̃

 yn+1
...

yn+s

+ G0yn = h

 f (x̃1, yn+1)
...

f (x̃s, yn+s)

 (12)

in which yn+z = y(xn + czh), z ∈ (0, s), x̃z = xn + czh, z ∈ (1, s),

G̃ =

 g11 · · · g1s
...

. . .
...

gs1 · · · gss

, G0 =

 g10
...

gs0

 (13)

If the initial value of yn is given, the value of state variable y at different grid points, that is
yn+z ∈ (1, s), can be obtained by solving the aforementioned nonlinear Equation (12).

It should be noted that, although the ordinary differential Equation (10) is used as a trial case,
the variable x in this equation can either represent the space or the time, and naturally the stencil
length h can be either a spatial discrete step size or a time discrete step. For ordinary differential
initial value problems, it has been proven in reference [15] that, when using uniform grids, Chebyshev
grids and Chebyshev-Gauss-Lobatto grids, the classical DQM—i.e., Equation (12)—are all s-stage
s-order methods with A-stability, while the classic DQM combined with Legendre grids can achieve
the accuracy of 2s-2 order.

3. Construction of Compact Difference Schemes by DQM

3.1. The Generalized Backward Differential Formulae

As shown in Figure 1, we divide the interval x ∈ [xn, xn+1] into s segments, namely the grids,
in which h = xn+1 − xn, x(xn + c0h) ≡ xn, x(xn + csh) ≡ xn+1.
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Figure 1. Schematic diagram of the grid points for generalized backward difference formulae (GBDF).

Defining

υ =

{
(s + 2)/2, for even s
(s + 1)/2, for odd s

(14)

and taking the υ-th equation from Equation (12), we can obtain

h f (x̃υ, yn+υ) ≡ h fn+υ =
s

∑
z=0

αzyn+z (15)

in which,
αz = gυz, z ∈ (0, s) (16)

It can be shown that the above numerical method (15) has the accuracy of s-order.
The numerical method (15) has a similar form to the traditional backward difference formulae

(BDF), but we will later show that this method has the better numerical stability then traditional
BDF. Thus, for the sake of simplicity, we define this numerical method as the generalized backward
difference formulae (GBDF).

When selecting the uniform grids, the coefficient values (αz) of GBDF are shown in the following
Tables 1 and 2.

Table 1. The coefficients of generalized backward difference formulae (GBDF) using uniform grids (for
even s).

s v α0 α1 α2 α3 α4 α5 α6 α7 α8

2 2 1 −4 3
4 3 − 1

3 2 −6 10
3 1

6 4 1
10 − 4

5 3 −8 7
2

12
5 − 1

5
8 5 − 1

35
2
7 − 4

3 4 −10 18
5 4 − 4

7
1
21

Table 2. The coefficients of GBDF using uniform grids (for odd s).

s v α0 α1 α2 α3 α4 α5 α6 α7

1 1 −1 1
3 2 1

2 −3 3
2 1

5 3 − 1
6

5
4 −5 5

3
5
2 − 1

4
7 4 1

20 − 7
15

21
10 −7 7

4
21
5 − 7

10
1

15

For the uniform grids, we can define that

h = (xn+1 − xn)/s = h/s (17)

therefore, the Equation (15) can be rewritten as the following formula

h fn+υ =
s

∑
z=0

(αz

s

)
yn+z (18)
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It can be verified from Tables 1 and 2 that, the numerical method (18) is consistent with the GBDF
proposed by Brugnano et al. [19]. In reference [21], it has been shown that the methods (18) are both
A-stable numerical methods for time-domain numerical integration.

3.2. The Central Compact Difference Schemes

As is shown in Figure 1, let s be an even number. By defining

υ = s/2 (19)

and selecting the υ-th equation in Equation (12), it follows that

h fn+υ =
s

∑
z=0

αzyn+z (20)

in which,
αz = gυz, z ∈ (0, s) (21)

It can be shown that the above numerical method (20) has the accuracy of s-order. Furthermore,
it can be verified that the coefficients αz, z ∈ (0, s) are centro-antisymmetrical about αυ. If the
distribution of grid points is centro-symmetrical in the normalized interval [0, 1]. So, the numerical
method (20) can be called the central difference scheme.

When selecting the uniform grids, the coefficient values (αz) of the method (20) are shown in the
following Table 3.

Table 3. The coefficients of central difference schemes using uniform grids.

s v α0 α1 α2 α3 α4 α5 α6 α7 α8

2 1 −1 0 1
4 2 1

3 − 8
3 0 8

3 − 1
3

6 3 − 1
10

9
10 − 9

2 0 9
2 − 9

10
1
10

8 4 1
35 − 32

105
8
5 − 32

5 0 32
5 − 8

5
32
105 − 1

35

3.3. The Generalized Adams Methods

As is shown in Figure 2, let xn−1 < x̃ < xn, and divide the interval x ∈ [x̃, xn+1] into s + 1
segments, in which h = xn+1 − x̃, x(x̃ + c0h) ≡ x̃, x(x̃ + csh) ≡ x1, x(x̃ + cs+1h) ≡ xn+1.

Define

υ =

{
s/2, for even s
(s + 1)/2, for odd s

(22)

then we can obtain the following formula according to Equation (12)

G̃



yn
...

yn+υ−1
yn+υ

...
yn+s


+ G0y(x̃) = h



fn
...

fn+υ−1
fn+υ

...
fn+s


(23)

in which G̃ ∈ R(s+1)×(s+1), G0 ∈ R(s+1)×1; yn+z = y(x̃ + cz+1h), z ∈ (0, s).
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In additional, define
Ã = G̃

−1 ≡
[
ãpq
]
, p, q ∈ (1, s + 1) (24)

Since it has been proved that [12,15]

G0 = −G̃e (25)

where, e is the unit column vector, therefore, the Equation (23) can be rewritten as

yn
...

yn+υ−1
yn+υ

...
yn+s


= y(x̃)e + hÃ



fn
...

fn+υ−1
fn+υ

...
fn+s


(26)

Subtracting the υ-th equation from the (υ + 1)-th equation in the matrix Equation (26) yields the
following equation

yn+υ − yn+υ−1 = h
s

∑
z=0

βz fn+z (27)

where,
βz = ãυ+1,z+1 − ãυ,z+1, z ∈ (0, s) (28)

It can be shown that the above numerical method (27) has the accuracy of (s + 1)-order.
The numerical method (27) has a similar form to the traditional Adams methods, but we will later

show that this method has the better numerical stability then traditional Adams methods. We call this
numerical method the generalized Adams methods (GAMs).

When selecting the uniform grids, the coefficient values (βz) of GAMs are shown in the following
Tables 4 and 5 respectively.

For the uniform grids, we can define that

h = (xn+1 − x̃)/(s + 1
)
= h/(s + 1 ) (29)

therefore, the method (27) could be rewritten as

yn+υ − yn+υ−1 = h
s

∑
z=0

(
βz

s + 1
) fn+z (30)

According to Tables 4 and 5, we can verify that the proposed method (30) is consistent with the
GAMs proposed by Brugnano et al. [19]. In reference [21], it has been shown that, for even s, the
methods (30) are both A-stable, and for odd s the methods (30) are also A-stable while the stability
region is just the complete left half plane.
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Table 4. Coefficients of generalized Adams methods (GAMs) using uniform grids (for even s).

s v β0 β1 β2 β3 β4 β5 β6

2 1 5
36

2
9 − 1

36
4 2 − 19

3600
173

1800
19

150 − 37
1800

11
3600

6 3 271
423,360 − 23

3528
10,273

141,120
586

6615 − 2257
141,120

67
17,640 − 191

423,360

Table 5. Coefficients of GAMs using uniform grids (for odd s).

s v β0 β1 β2 β3 β4 β5 β6 β7

1 1 1
4

1
4

3 2 − 1
96

13
96

13
96 − 1

96
5 3 11

8640 − 31
2880

401
4320

401
4320 − 31

2880
11

8640
7 4 − 191

967,680
1879

967,680 − 353
35,840

68,323
967,680

68,323
967,680 − 353

35,840
1879

967,680 − 191
967,680

3.4. The Extended Trapezoidal Rules

3.4.1. Extended Trapezoidal Rules of the First Kind

As is shown in Figure 1, and let s be an odd number. Define

υ = (s + 1)/2 (31)

then we can obtain the following formula via DQM

G



yn
...

yn+υ−1

yn+υ

...
yn+s


= h



fn
...

fn+υ−1

fn+υ

...
fn+s


, G ∈ R(s+1)×(s+1) (32)

The same as Equation (12), Equation (32) is also the basic calculation scheme of DQM, however,
the scheme of Equation (12) is more widely used in engineering application. In general, the matrix G
in Equation (32) is not a full rank matrix, so its inverse matrix does not exist.

If the distribution of grid points is centro-symmetrical in the normalized interval [0, 1], the matrix
G in Equation (32) will be a centro-antisymmetrical matrix. Since the inverse matrix of G does not
exist, it is natural to consider its generalized inverse matrix. As is well known, the generalized inverse

matrix—namely, the pseudo-inverse matrix G+ =
(

GTG
)−1

GT of centro-antisymmetrical matrix with
even order—will also be a centro-antisymmetrical matrix.

Define
G+ = A ≡

[
apq
]
, p, q ∈ (1, s + 1) (33)

then the Equation (32) can be written as

yn
...

yn+υ−1

yn+υ

...
yn+s


= hA



fn
...

fn+υ−1

fn+υ

...
fn+s


(34)
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Subtracting the υ-th equation from the (υ + 1)-th equation in the matrix Equation (34), we can
obtain the following equation

yn+υ − yn+υ−1 = h
s

∑
z=0

ρz fn+z (35)

It is obvious that the aforementioned Equation (35) is the GAMs with (s + 1)-order, in which

ρz = aυ+1,z+1 − aυ,z+1, z ∈ (0, s) (36)

Considering that s = 2υ− 1 and A defined in Equation (33) is a centro-antisymmetrical matrix
with even dimension, it can be easily proved that ρz in Equation (36) is centro-symmetrical. Therefore,
Equation (35) can be further written as

yn+υ+1 − yn+υ = h
υ−1

∑
z=0

ρz( fn+z + fn+s−z) (37)

When selecting the uniform grids, the values ρz are listed in the following Table 6.

Table 6. Coefficients of extended trapezoidal rules of the first kind (ETR1) using uniform grids.

s v ρ0 ρ1 ρ2 ρ3 ρ4

1 1 1
2

3 2 − 1
72

13
72

5 3 11
7200 − 31

2400
401

3600
7 4 − 191

846,720
1,879

846,720 − 353
31,360

68,323
846,720

9 5 2497
65,318,400 − 28939

65,318,400
581

233,280 − 40,111
4,082,400

2,067,169
32,659,200

Obviously, when s = 1, the aforementioned Equation (37) is just the classic implicit trapezoidal
rule, so, we call this numerical method the extended trapezoidal rules of the first kind (ETR1).

Although ETR1 are simply the GAMs, the deduction method of these two methods is slightly
different. Therefore, comparing Table 6 with Table 4, it can be clearly seen that the concrete results—i.e.,
the coefficients—are different.

It has been shown in reference [21] that the stability regions of ETR1 methods are the same as that
of the classic implicit trapezoidal integration rule, and they are all A-stable methods.

3.4.2. Extended Trapezoidal Rules of the Second Kind

Let s be an odd number, and the expression of υ is also the same with Equation (31). According to
matrix Equation (12), it can be drawn that

G̃



yn+1
...

yn+υ−1

yn+υ

...
yn+s


+ G0yn = h



fn+1
...

fn+υ−1

fn+υ

...
fn+s


(38)

In the above matrix equation, add (υ− 1)-th equation to the υ-th equation, we can get

s

∑
z=0

αzyn+z = h( fn+υ−1 + fn+υ) (39)
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where,
αz = gυ−1,z + gυ,z, z ∈ (0, s) (40)

Considering that s = 2υ− 1, as well as the weighting coefficient gpq is centro-antisymmetrical and
αz is centro-antisymmetrical, the Equation (39) could lastly be written as

υ−1

∑
z=0

ωz(x̃n+z − x̃n+s−z) =
h
2
( fn+υ−1 + fn+υ) (41)

where,
ωz = αz/2 = (gυ−1,z + gυ,z)/2, z ∈ (0, υ− 1) (42)

When selecting the uniform grids, the coefficient values (ωz) in Equation (41) are shown in the
following Table 7.

Table 7. Coefficients of extended trapezoidal rules of the second kind (ETR2) using uniform grids.

s v ω0 ω1 ω2 ω3 ω4

1 1 −1
3 2 − 1

4 − 9
4

5 3 1
24 − 5

8 − 10
3

7 4 − 1
120

7
60 − 21

20 − 35
8

9 5 1
560 − 3

112
3

14 − 3
2 − 27

5

Obviously, when s = 1, the aforementioned method is just the implicit trapezoidal method; thus,
this numerical method can be named the extended trapezoidal rules of the second kind (ETR2).

According to Table 7, it can be verified that the method (41) is consistent with ETR2 methods that
proposed by Brugnano et al. [19]. The stability regions of ETR2 methods are the same with that of
classic implicit trapezoidal integration rule, and they are all A-stable methods.

4. Fourier Stability Analysis for the Derived Compact Difference Schemes

Stability analysis is an important part of the numerical integration approach. In general, we use
linear stability analysis by the use of a standard scalar test equation (

.
x = λx) [21–23]. However, the

linear stability analysis does not provide information about the performance of schemes at different
length scales. Unlike this, the Fourier stability analysis provides an effective way to quantify the
resolution characteristics such as dispersion or phase error of the differencing approximations. In this
section, we analyze the dispersion and dissipation characteristics of the derived difference schemes
using Fourier stability analysis [1,24].

By the Fourier stability analysis, different numerical schemes have different estimates of the
modified scaled wavenumber, and it is in general a complex quantity [25]. It can easily be shown that
the real part of the modified scaled wavenumber tends to amplify/attenuate the corresponding Fourier
mode while the imaginary part introduces a phase error. Thus the deviations of the real and imaginary
parts of the modified scaled wavenumber from the exact scaled wavenumber can be respectively taken
to be the indicators of numerical dissipation and dispersion. Furthermore, for numerical stability of
any scheme, one must look at the imaginary part of the modified scaled wavenumber. The imaginary
part of the modified scaled wavenumber represents numerical dissipation only when it is negative.
Any scheme that produces a positive imaginary part of the modified scaled wavenumber is numerically
unstable because a positive imaginary part is equivalent to adding anti-diffusion [25].

Figure 3 shows the modified scaled wavenumber of GBDF based on uniform grids.
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Based on the above results, we can see that GBDF are all stable numerical methods, and this kind
of method has a strong numerical dissipation and dispersion.

Figure 4 shows the modified scaled wavenumber of central compact difference schemes (CCDS)
based on uniform grids.
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Based on the above results, we can see that CCDS have a strong numerical dispersion but have
almost no numerical dissipation.

Figure 5a,b show the modified scaled wavenumber of GAMs based on uniform grids and
respectively for even s and odd s.
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Figure 6 shows the modified scaled wavenumber of ETR1 based on uniform grids.
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Based on the above results, we can see that the ETR1 are roughly equivalent to the GAMs with odd
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Figure 7 shows the modified scaled wavenumber of ETR2 based on uniform grids.
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Based on the above results, we can see that the ETR2 are roughly equivalent to the ETR1 and
GAMs with odd s in terms of numerical dissipation and dispersion.

To sum up, from the perspective of numerical dissipation, the CCDS, GAMs with odd s, ETR1 and
ETR2 methods perform better than the GAMs with even s and GBDF methods, but from the perspective
of phase dispersion, the high-order GBDF methods behave slightly better than other methods. In the
wavenumber range ωh ≤ 1, the proposed methods both have a high numerical resolution.

From the practical application of the point of view, the above different schemes have different
practical application scenarios. For example, the GBDF method may be a better choice for
electromagnetic transient simulation of electric power systems, because the dissipation of this method
could avoid or effectively dampen fictitious numerical oscillations caused by abrupt phenomena.
However, for electromechanical transient simulation of electric power systems, the GBDF method is
likely to yield the wrong result due to the strong numerical dissipation: a stable system of its own,
the corresponding simulation results may be stable. Based on the above analysis results combined
with our experience, the high-order scheme of GAMs with even s and CCDS could be a better choice
for electromechanical transient simulation of electric power systems.

5. Conclusions

Using the classic differential quadrature formulae while adopting the uniform grid points, this
paper has symmetrically constructed a variety of compact difference schemes. Although some of
the constructed methods in this paper are consistent with the boundary value method proposed by
Brugnano et al., they are completely different in the means of construction. In fact, based on the
methods described in this paper, it is easy to construct the compact difference schemes based on
second-order derivatives.

Using Fourier stability analysis method, the characteristics such as the dissipation, dispersion and
resolution of the different schemes were studied and compared. Based on these results, it is found that
the CCDS, GAMs with odd s, ETR1 and ETR2 have almost no numerical dissipation, and GAMs, ETR1

and ETR2 have a high resolution when the wave number is not very large. In summary, the derived
compact difference schemes in this paper could be used instead of classic differential quadrature
methods for engineering applications.
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