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Abstract: Nowadays, many more bridges with extra-width have been needed for vehicle throughput.
In order to obtain a precise finite element (FE) model of those complex bridge structures, the practical
hybrid updating method by integration of Gaussian mutation particle swarm optimization (GMPSO),
Kriging meta-model and Latin hypercube sampling (LHS) was proposed. By demonstrating the
efficiency and accuracy of the hybrid method through the model updating of a damaged simply
supported beam, the proposed method was applied to the model updating of a self-anchored
suspension bridge with extra-width which showed great necessity considering the results of ambient
vibration test. The results of bridge model updating showed that both of the mode frequencies
and shapes had relatively high agreement between the updated model and experimental structure.
The successful model updating of this bridge fills in the blanks of model updating of a complex
self-anchored suspension bridge. Moreover, the updating process enables other model updating
issues for complex bridge structures.

Keywords: self-anchored suspension bridge; FE model updating; Kriging meta-model;
Gaussian mutation; particle swarm optimization

1. Introduction

Self-anchored suspension bridges have attracted lots of attention from bridge engineers in recent
years. Demonstrating both a relatively small size of the substructure and high adaptability to conditions
of the site has resulted in the widespread use of this type of bridge structure [1]. Meanwhile, with
the high increase of the requirement for vehicle throughput of bridge system, many more bridge
structures with extra-width appear. For those large-scale and complex engineering structures, the
evaluations of situation and behavior of bridges are usually based on finite element (FE) analysis [2–6].
FE analysis is one of the most effective methods used to solve those engineering problems, but due to
the complexity of most existing engineering structures, we cannot get a precise model to reflect the
behavior of the physical one [7,8]. Not only uncertainties in material and geometric parameters, but
also stochastic factors in boundary and load conditions improve the inaccuracy between the FE model
and physical one [9–11]. By identifying and modifying the uncertain parameters, model updating
technique provides an effective way of yielding precise FE model to predict performance of physical
structures, to which the engineers have drawn significant attention in recent years.
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Generally, the methods of model updating can be classified into two categories. One is
non-iterative method by directly modifying the element matrices of stiffness and mass with small
perturbation [12,13], but the drawback is that those modified matrices lose their sparse character.
Moreover, this modifying process can even result in negative values in matrices with no physical
meaning. The other is iterative method by modifying the selected parameters after analysis of
sensitivity like material module, density, moment of inertia, area of section, etc. This updating
technique is common practice to transfer a model updating process into a bound-constrained
optimization process. The objective function is set by the errors such as deflections, strains,
accelerations, or mode frequencies between experimental and analytical models. The updating process
is the process of minimizing the objective function by adjusting the selected parameters using the
optimization methods [10,14,15].

Compared to traditional methods like Newton method or quasi-Newton method, which
is easier to fall into local optimal solution in constrained optimization problems, methods
based on artificial intelligence (AI)—such as genetic algorithm, simulated annealing algorithm,
and swarm algorithm—have higher reliability and efficiency for nonlinear constrained optimization
problems [11,16–19]. Among those AI algorithms, particle swarm optimization (PSO), first proposed
by Kennedy and Eberhart [20–22], shows huge potential in solving practical optimization problems
with less number of iteration to converge to the same or better result [23]. The basic idea of PSO is
starting with a swarm of random particles in feasible regions and gradually approaching the optimal
solution by information transferred among both particles and swarms. However, due to the lack of
swarm diversity at the later stage of this algorithm, the ability of global convergence is weak as the
algorithm may end prematurely. Hence, adjustments have been proposed to improve the property of
PSO by some researchers with modifying the velocity and (or) position of particle. Gaussian mutation
PSO (GMPSO), which gives the position of every particle a mutation of Gaussian white noise (GWN)
disturbance to ensure the diversity of particle swarm, is proven to be an useful algorithm for solving
nonlinear constrained optimization problems with rapid and steady global convergence [24].

When using GMPSO as a model updating method, numerous iterations would be performed
during the optimization process. But the reality is that each iteration in GMPSO needs to re-run the FE
package, which obviously increases the cost of computation, let alone the research object is a more
complex or larger scale structure. To alleviate those problems, equivalent model, called the meta-model,
is usually proposed to replace the initial FE model. The most commonly used meta-model method
is response surface methodology (RSM), first proposed by Marwala [17], which establishes explicit
function between selected parameters and eigenvalues whose relationship are properly complicated,
implicit, and difficult to be expressed mathematically. Deng and Cai [11] utilized a second order
polynomial response surface (RS) representing the relationship between selected parameters and
structural responses, then the parameters were updated by genetic algorithm. This method was
applied to model updating of a two-way bridge located in Louisiana. Ren et al. [25] presented an
updating method based on polynomial RSM using uniform design and the proposed method was
verified by a six-girder bridge. However, for higher order nonlinear relationship between parameters
and responses, the polynomial RS cannot be applied. Instead, a more suitable meta-model—i.e., Kriging
meta-model—is proposed. This meta-model, another type of RS, was originally developed by Krige in
1951 [26], which is first applied in area of mining and geo-statistics. After adding a stochastic process
behind the polynomial part, the accuracy of the meta-model is improved significantly.

In this article, realizing the model updating of a self-anchored suspension bridge with extra-width,
a practical model updating hybrid methodology by integration of GMPSO and Kriging meta-model
is proposed and implemented. The architecture of the hybrid method consists of three main stages
of analysis: (1) selecting reasonable samples of random parameters as input datasets using LHS and
performing FE analyses with the input parameters to obtain output datasets; (2) formulating the Kriging
meta-model based on input and output datasets; and (3) applying GMPSO as an optimization technique
with an objective function set as errors between experimental value and Kriging model to yield the
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updated values of selected parameters. The accuracy of this hybrid method is first demonstrated
through the analysis of model updating of a simply supported beam. Then the method is applied
to model updating of Hunan Road Bridge, a self-anchored suspension bridge with extra-width in
Shandong Province in China. Results show the proposed method can obtain reasonable values of
updated parameters and show great efficiency and accuracy in model updating issues. This article
is organized as follows. Section 2 presents the theory background of GMPSO method, Kriging
meta-model method, Latin hypercube sampling, and the hybrid model updating method. Section 3
introduces the study example of model updating of a damaged simply supported beam. Section 4
describes the details model updating process of Hunan Road Bridge using the hybrid method and
conclusions are made in Section 5.

2. Hybrid Model Updating Method

2.1. GMPSO

GMPSO is a stochastic global search algorithm based on adjustment of standard PSO. Supposing
there are an amount of N random initialization particles with a d-dimensional searching space in
which the position and velocity of particle i are Xi = [xi1, xi2, · · ·, xid] and Vi = [vi1, vi2, · · ·, vid],
respectively. In every iteration process, particle i can yield two best solutions of the objective
function, one is the personal best (pbest), Pi = [pi1, pi2, · · ·, pid] and the other is the global best (gbest),
Pg = [pg1, pg2, · · ·, pgd]. For a standard PSO, the particle i adjusts its velocity and position according to
the following equations:

vij(t + 1) = ωvij(t) + c1r1
[
pij − xij(t)

]
+ c2r2

[
pgj − xij(t)

]
(1)

xij(t + 1) = xij(t) + vij(t + 1)× ∆t (2)

where i = 1, 2, . . . , N, j = 1, 2, . . . , d, ∆t = 1, t is the t-th iteration, w is inertia weight, c1 and c2

are positive learning coefficients, namely acceleration coefficients, r1 and r2 are random numbers
uniformly distributed between 0 and 1. In the Equation (1) of subsequent velocity, the first part
represents the inheritance of current state, the second part means self-cognition namely experiences
and memories of itself which enables global search capability and the last part reflects group-cognition
based on experiences of entire particles which improves the global search ability. As aforementioned,
the drawback of standard PSO is the lack of swarm diversity at the later stage which influences the
global convergence as the algorithm may end prematurely. Through introducing mutation of Gaussian
white noise (GWN) disturbance for position of every particle at a probability, GMPSO apparently
increases the diversity of particle swarm [23]. For a GMPSO algorithm, the position of particle i,
Xi = [xi1, xi2, · · ·, xid], is mutated by disturbance of GWN at a probability of Pm around the global best
position before the adjustment of Equation (2). The value of Pm is generally between 0.05 and 0.15 and
the mutation formula is as follows

xij = pgj × (0.5 + σ) (3)

where σ is a random number of GWN and the other meanings of items are like before.
The detail steps shown in Figure 1 are as follows:

1. Randomly initializing positions and velocities of N particles and setting the values of serials of
parameters such as w, c1, c2, d, Pm, maximum iteration number, and the upper and lower bounds
of search space;

2. Establishing the objective function, called fitness function and calculating its value of each particle.
Recording each particle’s current position and function value in pbest in which the best position
and best value are recorded in gbest;

3. Renewing velocity of particles based on Equation (1);
4. Mutating position of particles at a probability of Pm based on Equation (3);
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5. Renewing position of particles based on Equation (2);
6. Calculating function value again and replacing pbest if the current value is better than the

former one.
7. Replacing gbest in the current pbest and gbest according to the best value.
8. Quitting searching if the iteration number reaches the maximum one or accuracy meets the

limitation, otherwise, returning to Step 3.
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2.2. Latin Hypercube Sampling with Bounded Parameters

Reasonable computer experimental design is necessary for establishing explicit relationship
between selected parameters and interested responses of FE model. The simplest method to generate
the input data sample is random sampling, but a significant drawback of the method is the lack of
guarantee that the chosen data covers the entire design space uniformly. To overcome this shortage,
Latin hypercube sampling (LHS), instead of methods of orthogonal design, uniform design, etc.,
has simpler operation, smaller calculation, higher accuracy, and can rapidly generate samples with
interested number of parameters and dimensions [1,27].

For uncertain but bounded parameters, supposing X is a variable vector of d parameters
[x1, x2, · · ·, xd], ([l1,u1],[l2,u2], . . . ,[ld,ud]) is the lower and upper boundary value of each parameter,
N is the interested number of samples. The steps of the LHS method are as follows. Firstly, each
parameter is divided into N equal parts according to its boundary, namely [li, li +

ui−li
N ] = P1i < P2i <

. . . < PNi = [li +
ui−li

N (N − 1), ui], i = 1, 2, . . . , d; Secondly, a N × d matrix S1

S1 =


P11 P12 . . . P1d
P21 P22 . . . P2d

...
...

. . .
...

PN1 PN2 · · · PNd

 (4)

can be obtained in which every element is a small boundary; Thirdly, a matrix S2 is transformed from
matrix S1 with elements at each column, namely P1i, P2i, . . . , PNi, arranging to be in random order;
Then, a matrix S is transformed from matrix S2 with elements chosen randomly in correlation small
boundaries. In matrix S, each row represents one sample vector of d parameters.
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2.3. Kriging Meta-Model

For a Kriging meta-model, supposing the unknown function is combined by a polynomial part and
a stochastic process which provide a global model and localized departures respectively. The formula
is as follows

y(X) = f T(X)β+ z(X) (5)

where X is variable vector of d parameters [x1 · · · xd], for example, the ith vector of d parameters
Xi = [xi1 · · · xid]; y(X) is the response of FE model with parameter condition of X; f T(X) is a vector of
m polynomial functions, namely f T(X) = [ f1(X) · · · fm(X)]; β is a vector of m regression coefficients,
β = [β1 · · · βm]

T; z(X) is a Gaussian stationary stochastic process with mean 0 and variance σ2.
The covariance of arbitrary two elements in z(X) is as follows

cov(z(Xi)z(Xj)) = σ2R(Xi, Xj) = σ2 exp(−
d

∑
k=1

θk|xi,k − xj,k|2) (6)

where R(Xi, Xj) is the spatial correlation of two samples which is usually implemented Gaussian

function exp(−
d
∑

k=1
θk|xi,k − xj,k|2) as a core function because its calculation effect is the most welcome;

θk is coefficient with value over zero in computation of spatial correlation. Supposing there are
N samples, the matrices of responses and polynomial values are Y = [y(X1) · · · y(XN)] and
F = [ f T(X1) · · · f T(XN)]

T, respectively. The estimated values of β and σ2 are as follows

β̂ = (FTR−1F)
−1

FTR−1Y (7)

σ̂2 =
1
N
(Y− Fβ̂)

T
R−1(Y− Fβ̂) (8)

where spatial correlation matrix

R =


R(X1, X1) R(X1, X2) . . . R(X1, XN)

R(X2, X1) R(X2, X2) . . . R(X2, XN)
...

...
. . .

...
R(XN , X1) R(XN , X2) · · · R(XN , XN)

 (9)

In above equations, before obtaining values of β̂, σ̂2 and R through Equations (7)–(9), θ1, . . . and
θd should be known first. By implementing maximum likelihood estimation method, θ1, . . . and θd
should be selected to get minimum value of expression below

min
θ1>0,...,θd>0

{
1
2
[N ln(σ̂2) + ln |R|]

}
(10)

where |R| is determinant of matrix R, the optimal values of θ1, . . . and θd can be obtained by
optimization method such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), etc. with
an objective function of Equation (10). Once θ1, . . . and θd are determined, the best linear unbiased
predicted value of interested performance is

ŷ(X) = f T(X)β̂+ rT(X)α̂ (11)

where rT(X)α̂ = ẑ(X) denotes interpolation of residuals of regression model f T(X)β̂, vector
rT(X) = [R(X, X1), R(X, X2), · · · , R(X, XN)], vector α̂ = R−1(Y− Fβ̂).
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2.4. Hybrid Method

The hybrid method is a combination of the aforementioned techniques that involves following
processes illustrated in Figure 2.

1. Applying LHS method to select reasonable samples of random parameters as input datasets;
2. Performing a series of the FE analyses with the input parameters to obtain the interested mode

frequencies of the structure as the output datasets;
3. Determining the architecture of the Kriging meta-model, yielding its correlation coefficients with

the input and output datasets with Equations (6)–(10) and extracting the explicit expression based
on Equation (11);

4. Applying GMPSO as an optimization technique with an objective function which is the sum
of natural frequencies residuals between experimental value and Kriging model according to
Figure 1;

5. Yielding the updated values of parameters after several iterations.
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To apply this hybrid method to solve model updating problem, a combined program based
on both MATLAB-code and ANSYS-APDL is developed. The program is performed in modular
form so that it can be easily used in other model updating of structures, which obviously facilitate
practical application.

3. Case Study of a Damaged Simply Supported Beam

A damaged simply supported beam is selected as an example to demonstrate the efficiency and
accuracy of the proposed hybrid method. The structure is a 10 m-span beam, shown in Figure 3,
with a rectangle section of 1 × 1 m. The elastic module and density of material are 3.45 × 1010 Pa
and 2600 kg/m3, respectively. The gravity acceleration is 9.806 m/s2 and the damping ratio of beam
is 0.05. BEAM 44 element is used to establish the FE model based on ANSYS (12.0, ANSYS Inc.,
Canonsburg, PA, USA) and the model consists of 11 nodes and 10 elements. To get the experimental
data of mode frequencies, two damaged locations are assumed in this beam, of which the moment
inertia of section in elements 3 and 8 reduce to 70% of original value, the aim of using the proposed
method is yielding precise FE model which can reflect this damage. Ten parameters of ratio coefficients
(real value/original value) of moment inertia of those 10 element sections in Figure 3 (for example,
initial FE model with parameter vector of [1,1,1,1,1,1,1,1,1,1] and objective model with parameter
vector of [1,1,0.7,1,1,1,1,0.7,1,1]) are selected as modified parameters. In this case study, both direct
GMPSO and proposed hybrid method are implemented.
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For direct GMPSO with a particle described as Xi = [xi1, xi2, · · ·, xi10], the lower and upper
boundary of each parameter is assumed to be 0.6 and 1.1, respectively. The amount of particles N is 60,
the inertia weight w is 0.55, the learning coefficients c1 and c2 are both 2, the probability of Pm is set
as 0.1 and the maximum iteration number is 60. Objective function is chosen as the sum of residuals
of frequencies of first two vertical bending mode and first two transverse bending mode between
FE value and experimental value. The modified parameters shown in Table 1 are obtained and the
frequency comparison of first 10 modes between the updated and experimental model are shown in
Table 2. Finally, this optimization process takes nearly five hours.

Table 1. Parameter values of updated and experimental model with different methods.

Parameter 1 2 3 4 5 6 7 8 9 10

Experimental model 1.000 1.000 0.700 1.000 1.000 1.000 1.000 0.700 1.000 1.000
Direct GMPSO 0.991 0.945 0.717 0.978 1.005 1.037 0.982 0.729 0.980 1.034
Hybrid method 1.025 1.016 0.735 0.932 0.932 1.078 1.008 0.668 0.968 0.993

Table 2. The comparison between updated and experimental frequencies 1.

Mode
Experimental
Frequency/Hz

Updated Frequency/Hz Difference/%

Direct GMPSO Hybrid Method Direct GMPSO Hybrid Method

1 15.39069 15.43708 15.31826 0.30 0.47
2 37.14974 37.25102 37.14082 0.27 0.02
3 52.36193 52.31448 52.41372 0.09 0.10
4 83.96296 83.96269 83.58468 0.00 0.45
5 96.36669 96.79726 96.11117 0.45 0.27
6 116.64350 116.43540 116.98770 0.18 0.30
7 144.77070 145.07480 144.88010 0.21 0.08
8 184.79670 186.12250 184.99380 0.72 0.11
9 223.79820 223.20420 223.93680 0.27 0.06
10 254.07320 255.31840 254.94600 0.49 0.34

1 Difference = |Updated Frequency−Experimental Frequency|
Experimental Frequency × 100%.

For the proposed hybrid method, the lower and upper boundary of each parameter is the
same. Firstly, using LHS technique, 200 input samples of selected parameters are yielded. Secondly,
after a series of FE analyses, output datasets, and mode frequencies of first two vertical bending
modes and first two transverse bending modes, are obtained. This process needs a total time of
approximately 400 s. Thirdly, the Kriging meta-model of each mode frequency represents the explicit
expression between parameters and those frequencies which needs a total calculation time of 3140 s.
Finally, GMPSO technique is introduced in the updating process with an objective function of the
sum of the four frequencies residuals between explicit expression value and experimental value.
100 particles, 100 maximum iteration number, and other coefficients and objective functions chosen
as the same as aforementioned are selected for the GMPSO algorithm. The final updated parameters
shown in Table 1 are obtained after time of 3 s and the frequency comparison of first 10 modes between
the updated model and experimental model is shown Table 2. The total model updating time of the
proposed method is less than one hour, which is only 0.2 times of direct GMPSO.
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In this case study, it can be seen that both direct GMPSO and the proposed hybrid method can get
an approximate model of this damaged bridge, which means the damage in elements 3 and 8 are both
identified. In Table 2, the differences of all the first ten mode frequencies between the updated and
experimental model are below 1% which indicates the updated model reflects the damaged one very
well. However, from the view of efficiency, the proposed hybrid method is better than direct GMPSO,
being five times faster. It is evident that the results of direct GMPSO and hybrid method are highly
consistent, which demonstrates that the proposed hybrid method is applicable to model updating of
structures with multi-parameters. More importantly, the updating process can be performed more
efficiently without losing accuracy.

4. Application to Model Updating of an In-Service Bridge with Extra-Width

4.1. Description of Bridge Structure

The pre-stressed concrete bridge, Hunan Road Bridge in Liaocheng City of Shandong Province in
China shown in Figure 4a, a self-anchored suspension bridge with double-tower and double-cable
plane, has a span arrangement of 53 + 112 + 53 m and a total width of 52 m. The main girder with
material of C50 concrete has a section of double-lateral box connected by transverse beams with a
height of 2.8 m of standard section and a height from 4.3 to 5.6 m of sections in the region of the
main cable anchorage. The tower is made of C40, consisting of the main tower and vice tower with
a gate-shape, has a height (including the spire) of 45 m over the deck. The two cables are arranged
symmetrically with a core-to-core transverse distance of 31.7 m and the rise-span ration of the middle
span is 1/5.276. There are 37 pairs of hangers of this bridge, 8 pairs on each of the two side spans
and 21 pairs in middle span, with a standard distance of 5 m between hangers and a distance of 6 m
between axis of the tower and lateral hangers. The general layout of this bridge is shown in Figure 4b.

1 
 

(a)

 
(b) (c)

 
Figure 4. Description of Hunan Road Bridge: (a) Image of Hunan Road Bridge; (b) Image of Hunan
Road Bridge; (c) FE model of Hunan Road Bridge.
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4.2. FE Model

Based on software of ANSYS, the three-dimensional FE model of Hunan Road Bridge was
established shown in Figure 4c. The main girder, transverse beam, and tower are simulated with
BEAM 44 element and due to the extra-width of box girder, it is divided into eight small girders with
the connection of transverse beams and virtual weightless deck using SHELL 63 element. Both the
main cable and hanger are simulated with LINK 10 element, only taking tension into consideration.
The longitudinal and transverse pre-stressed steels are all simulated with LINK 8 element and the
weights of cable clamps, main saddles, and secondary dead load are all transferred to MASS 21 element.
The four connections of each tower and girder are simulated with COMBINE 14 element in which the
connection conditions between the left tower and girder are restrained in the vertical and longitudinal
directions while the conditions between the right tower and girder are restrained only in vertical
direction. The six connections of the girder and foundation are also simulated with COMBINE 14
element in which the connection conditions are all restrained in vertical direction and, especially, in the
transverse direction when referred to connections on the longitudinal axis of the girder. The bottom
of tower is restrained in all directions of six freedoms. A total of 15,530 nodes and 20,875 elements
are found in the whole model in which the gravity acceleration is 9.806 m/s2, the damping ratio of
material of girder, beam, and tower is 0.05 while it is 0.02 for the cable, hanger, and pre-stressed steel.

4.3. Analysis of Dynamic Characteristics

Both the theoretical and experimental analysis of dynamic characteristics of Hunan Road Bridge
are conducted. The experiment mainly focused on the dynamic characteristic of main girder using
ambient vibration test. From the FE model, the first five mode shapes of girders of Hunan Road
Bridge are obtained and shown in Figure 5. Table 3 shows dynamic characteristics of main girder from
theoretical analysis and experimental data. Furthermore, the values of MAC (Model assurance criteria)
are shown in Table 3. Based on test data, the damping ration of mode shape No. 1 and No. 4 in Table 3
are 2.40% and 1.59%, respectively. Thus, in Rayleigh ratio, the coefficients of alpha and beta are set as
0.038 and 0.006, respectively.

From the results of the main girder in Table 3, except the difference between theoretical and
experimental frequencies of first order, transverse bending mode is 3.08%. Other differences are all
above 25% in which the difference of second order of vertical bending frequency is even up to 38.6%.
However, the MACs show that the experimental vibration modes have a relatively high agreement
with the simulated ones, all of the MACs are over 0.84. This phenomenon indicates that a big difference
exists in mode frequencies between the real bridge and the FE model which must be updated to reflect
the real dynamic performance. Moreover, due to the extra-width, the torsion mode emerges earlier
than ordinary bridges, which enhances the importance of yielding a precise FE model for further
performance evaluation.

Table 3. Detail dynamic characteristics of main girder from theoretical and experimental analysis 1.

Mode Theoretical
Frequency/Hz Modal Shape Experimental

Frequency/Hz Difference/% MAC 2

1 0.7208 First order of vertical bending 0.9030 25.28 0.979
2 1.0643 First order of torsion 1.3670 28.44 0.973
3 1.3378 First order of transverse bending 1.3790 3.08 0.915
4 1.3892 Second order of vertical bending 1.9290 38.60 0.894
5 1.7504 Third order of vertical bending 2.4170 38.08 0.849

1 Difference = |Experimental Frequency−Theoretical Frequency|
Theoretical Frequency × 100%; 2 MAC, Model assurance criteria.
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4.4. Parameters Selected by Sensitivity Analysis

Before analysis of model updating, the sensitivity of parameters, material modules (shown in
Figure 6a), material densities (shown in Figure 6b), section characteristics (shown in Figure 6c),
and secondary dead load (shown in Figure 6d), to frequencies like first, second, and third order
vertical bending, first order transverse bending, and first order torsion are all taken into consideration.
Parameters with a sensitivity value beyond ±0.1 are considered to be sensitive ones in this paper in
which the value is computed by following formula,

∂λj(ai)

∂ai
=

δλj

λj
/
δai
ai

(12)

where δλj is a small perturbation of the jth modal frequency of λj, δai is a small perturbation
of the ith parameter of ai. Negative value of sensitivity value indicates negative influence when
parameters increase.
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In Figure 6a, the material module of girder is sensitive to first three order vertical bending,
transverse bending, and torsion with value of 0.33, 0.39, 0.28, 0.42, and 0.37 respectively; the material
module of tower is sensitive to second and third order vertical bending with value of 0.14 and 0.21;
the material module of cable is sensitive to first order vertical bending and torsion with values of 0.13
and 0.11 while the material module of hanger shows no sensitivity to frequencies as all values are
below 0.02. In Figure 6b, the material density of girder is sensitive to first three order vertical bending,
transverse bending, and torsion with value of −0.40, −0.37, −0.37, −0.22, and −0.42 respectively
while the other material densities show no sensitivity. In Figure 6c, the moment inertia of girder
shows sensitivity to first three order vertical bending and torsion with value of 0.26, 0.29, 0.18,
and 0.14 respectively when the moment inertia of tower just shows sensitivity to second and third
order vertical bending with value of 0.11 and 0.16; just the section area of girder shows the same
sensitivity of moment inertia of girder to frequencies with value of −0.24, −0.20, −0.21, and −0.28,
while the area of the tower shows no sensitivity. In Figure 6d, the secondary dead load shows a little
sensitivity to all frequencies as all values are around −0.1. To research more details, the moment
of inertia of girder is divided into three parameters, namely moment inertia of vertical bending,
transverse bending, and torsion. The whole results indicate that the selected sensitive parameters are
material module of main girder, main tower and main cable, density of main girder, moment of inertia
of vertical bending, transverse bending and torsion, moment of inertia of main tower, area of section
of main girder, and secondary dead load, respectively.

4.5. Model Updating Using Proposed Hybrid Method

In the hybrid method, a particle is described as Xi = [xi1, xi2, · · ·, xi10] with 10 parameters
aforementioned of the ratio coefficients (real value/original value). For example, the parameter
vector of initial FE model is [1,1,1,1,1,1,1,1,1,1]. The lower and upper boundary of each parameter
is 0.5 and 1.5, and 400 input samples are yielded with the LHS technique. After the structural
analyses, the output datasets of the aforementioned five natural mode frequencies are achieved.
Then based on the input and output datasets, the Kriging meta-models of those five frequencies can
be yielded. Finally, the objective function is the sum of residuals of mode frequencies of the first
five modes between explicit expression value and experimental value. For GMPSO, the amount of
particles N is 200, the inertia weight w is 0.55, the positive learning coefficients c1 and c2 are both 2,
the probability of Pm is set as 0.1 and the maximum iteration number is 200, the optimized boundary
is 0.6 to 1.4. The final updated parameters of the model of the self-anchored suspension bridge are
[1.394,1.324,1.100,1.166,1.281,1.262,1.038,1.240,0.703,0.803].

The mode frequencies results of updated model and experimental data are compared in Table 4.
Figure 7 shows the comparison of vibration mode among initial FE value, updated value, and
experimental value. The right column of Figure 7 is the 3-D image of mode shapes from ambient
vibration test. It can be seen that the differences of frequencies in Table 3 dropped sharply in Table 4,
all of the differences are below 6%. In addition, the values of MAC of vibration mode of No. 1 to No. 5
between test and initial FE model are 0.979, 0.973, 0.915, 0.894, and 0.849 respectively in Figure 7 while
the MACs between test and modified FE model are 0.983, 0.974, 0.916, 0.873, and 0.882, respectively.
This shows that the vibration modes of the updated bridge model have a higher agreement with the
experimental value shown in Figure 7, although the increases in MACs are insignificant compared
to that in mode frequencies. The whole changes indicate that the relatively precise FE model of
this self-anchored suspension bridge with extra-width can be achieved with high efficiency without
losing accuracy and the proposed hybrid method does have significant value in model updating of
engineering applications.
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Table 4. The comparison between modified and real frequencies.

Mode Experimental Frequency/Hz Updated Frequency/Hz Difference/%

1 0.9030 0.9161 1.45
2 1.3670 1.3427 1.78
3 1.3790 1.4600 5.87
4 1.9290 1.8246 5.41
5 2.4170 2.2810 5.63

1 Difference = |Updated Frequency−Experimental Frequency|
Experimental Frequency × 100%.
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5. Conclusions

In this article, a hybrid model updating method by integration of GMPSO and Kriging meta-model
has been proposed. Compared to ordinary polynomial meta-models, the stochastic process in Kriging
meta-model increases the accuracy, and meanwhile, it first uses the LHS technique to improve
the quality of input datasets. Compared to direct GMPSO method, the only FE analysis calls are
used in forming the Kriging meta-model. By combining advantages of both GMPSO and Kriging
meta-model, the proposed hybrid method can prohibitively reduce the computation time without
losing accuracy. Thus, this method is suitable for model updating of engineering applications
with large-scale, multi-dimensional parameter structures involving implicit performance functions.
After the validation study of this hybrid method and its application to a self-anchored suspension
bridge with extra-width located in China, several conclusions can be drawn from this article as follows:

• Through the application of the hybrid method to a damaged simply supported beam, it was
evident that the updating process of hybrid method, compared to direct GMPSO, can be performed
more efficiently without losing accuracy. This demonstrates that the proposed hybrid method is
applicable to model updating of engineering applications.

• Based on the mode frequency results of ambient vibration test of Hunan Road Bridge, it was
clear seen that the differences between the initial FE model and experiment were large enough,
some of which are up to 38%, but the vibration modes show high agreements with a lowest
MAC value of 0.849. Moreover, due to the extra-width, the torsion mode emerged earlier than
ordinary bridges, which enhanced the importance of yielding a precise FE model for further
performance evaluation.

• Ten sensitive parameters—module of main girder, main tower and main cable, density of main
girder, moment of inertia of vertical bending, transverse bending and torsion, moment of inertia
of main tower, area of section of main girder, and secondary dead load—were selected after
sensitivity analysis as updated parameters of Hunan Road Bridge. After model updating using
hybrid method, both of the mode frequencies and shapes showed a relatively high agreement



Appl. Sci. 2017, 7, 191 14 of 15

with the results of the experiment. The differences of mode frequencies drop sharply and are
all below 6%. Meanwhile, all the MACs increase over 0.87, which indicates the vibration mode
has a higher agreement. The successful model updating of this bridge fills in the blank of model
updating of a complex self-anchored suspension bridge. In addition, the updating process makes
it possible for other model updating issues of complex bridge structures.
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