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Abstract: In recent years, sparse representation approaches have been integrated into multi-focus
image fusion methods. The fused images of sparse-representation-based image fusion methods show
great performance. Constructing an informative dictionary is a key step for sparsity-based image
fusion method. In order to ensure sufficient number of useful bases for sparse representation in the
process of informative dictionary construction, image patches from all source images are classified
into different groups based on geometric similarities. The key information of each image-patch
group is extracted by principle component analysis (PCA) to build dictionary. According to the
constructed dictionary, image patches are converted to sparse coefficients by simultaneous orthogonal
matching pursuit (SOMP) algorithm for representing the source multi-focus images. At last the sparse
coefficients are fused by Max-L1 fusion rule and inverted to fused image. Due to the limitation of
microscope, the fluorescence image cannot be fully focused. The proposed multi-focus image fusion
solution is applied to fluorescence imaging area for generating all-in-focus images. The comparison
experimentation results confirm the feasibility and effectiveness of the proposed multi-focus image
fusion solution.

Keywords: Image Fusion; Sparse Representation; Dictionary Construction; Geometric Classification;
Multi-focus; Fluorescence Imaging

1. Introduction

Following the development of cloud computing, cloud environment provides more and more
strong computation capacity to process various images [1–3]. Due to the limited depth-of-focus of
optical lenses in imaging sensors, one-time focus cannot guarantee to obtain all focused image in the
whole scene [4]. In another word, it is difficult to obtain an image that contains all relevant objects
in focus. In microscope, only the objects at a certain distance away from the lens can be captured in
focus and sharply, and other objects are out of focus and blurred. A fuzzy multi-sensor data fusion
Kalman filter model was proposed by Rodger to reduce failure risk in an integrated vehicle health
maintenance system (IVHMS) [5]. In fluorescence spectroscopy, one scene at least contains several
objects. For ensuring the accuracy and efficiency of fluorescence image processing, it usually captures
multiple images of the same scene to guarantee all objects are in focus. However, it costs too much
on viewing and analyzing a series of images separately. Multi-focus image fusion is an effective
technique to resolve this problem by combining complementary information from multiple images of
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the same scene into a sharp and accurate one [6,7]. The integrated image can precisely describe the
corresponding scene, which is beneficial for further analysis and understanding.

As one of the most widely recognized image fusion technologies, a large number of multi-focus
image fusion methods have been proposed. According to fusion domain, these methods could be
categorized into two main categories: spatial-domain-based methods and transform-domain-based
methods [8]. Spatial-domain-based methods directly choose clear pixels, blocks, or regions from
source images to compose a fused image [9,10]. Some simple methods, such as averaging or max
pixel schemes, are performed on single pixel to generate a fused image. However, these methods may
reduce the contrast and edge intensity of fused result. In order to improve the performance of fused
image, some advanced schemes, such as block-based and region-based algorithms, were proposed.
Li et al. proposed a scheme by dividing images into blocks and chose the focused one by comparing
spatial frequencies (SF) first; then the fused results were produced by consistency verification [11].
Although block-based methods improve the contrast and sharpness of integrated image, they may
cause block effect in integrated image [12].

Different from spatial-domain fusion methods, transform-domain methods transform source
images into a few corresponding coefficients and transform bases first [13]. Then the coefficients
are fused and inverted to an integrated image. Multi-scale transform (MST) and wavelet based
algorithms are the most conventional transform approaches applied to transform-domain-based image
fusion [14,15]. Wavelet transform [16,17], shearlet [18,19], curvelet [20], dual tree complex wavelet
transform [21,22], nonsubsampled controulet transform (NSCT) [23] are usually used in MST-based
methods. MST decomposition methods have attracted great attention in image processing field and
achieved great performance in image fusion fields. However, MST-based methods are difficult to
select an optimal transform basis without priori knowledge [24,25]. As each MST method has its own
limitations, one MST method is difficult to fit all kinds of images [14].

In recent years, sparse-representation-based methods, as the subsets of MST fusion methods,
are applied to image fusion. Other than MST methods, sparse-representation-based methods
usually use trained bases, which can adaptively change according to input images without priori
knowledge [26,27]. Due to adaptive learning feature, sparse representation is widely applied to
image de-noising [28,29], image deblurring [30,31], image inpainting [32], image fusion [33], and
super-resolution [34].

Yang and Li [35] took the first step for applying sparse representation theory to image fusion
field. They proposed a multi-focus image fusion method with a fixed-dictionary. Li and Zhang [36]
applied morphologically filtering sparse feature to matrix decomposition method for improving the
accuracy of sparse representation in image fusion. Wang and Liu [37] proposed an approximate K-SVD
based sparse representation method for image fusion and exposure fusion to reduce computation
costs. Kim and Han [38] proposed a joint clustering dictionary learning method for image fusion.
They used the steering kernel regression to strength the local geometric features of source images first.
Then K-means clustering method was applied to image pixels clustering based on the local image
features. The proposed method by Kim and Han can significantly group the pixels of input source
images into a few classes. The principle components of local features are extracted from each group to
construct a dictionary, which can make a compact and informative dictionary. This method reduces the
sparse coding time by using the constructed compact dictionary. However, the performance of Kim and
Han’s method depends on the presetting cluster number, that is difficult to confirm before clustering.
The number of local geometric-feature types is usually used as the presetting cluster number, but the
actual clustering results do not exactly follow the geometric features every time. So the clustering
results cannot reach the expectations all the time. To optimize the weakness of existing clustering
methods, a geometric information based image block classification method is proposed in this paper.

Geometric information, as one type of the most important image information, including
edges, contours, and textures of image, and so on, can remarkably influence the quality of image
perception [39]. The information can be used in patch classification as a supervised dictionary prior
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to improve the performance of trained dictionary [40,41]. In this paper, a geometric classification
based dictionary learning method is proposed for sparse-representation based image fusion. Instead
of grouping the pixels of images, the proposed geometric classification method groups image blocks
directly by the geometric similarity of each image block. Since sparse-representation based fusion
method uses image blocks for sparse coding and coefficients fusion, extracting underlying geometric
information from image-block groups is an efficient way to construct a dictionary. Moreover, the
geometric classification can group image blocks based on edge, sharp line information for dictionary
learning, which can improve the accuracy of sparse representation. The proposed dictionary learning
approach consists of three steps:

• In the first step, input source images are split into small blocks. According to the similarity
of geometric patterns, these blocks are classified into smooth patches, stochastic patches, and
dominant orientation patches.

• In the second step, it does principal component analysis (PCA) on each type of patches to extract
crucial bases. The extracted PCA bases are used to construct the sub-dictionary of each image
patch group.

• In the last step, the obtained sub-dictionaries are merged into a complete dictionary for
sparse-representation-based fusion approach and the integrated sparse coefficients are inverted
to fused image.

This paper has two main contributions.

1. A geometric image patches classification method is proposed for dictionary learning.
The proposed geometry classification method can accurately split source image patches into
different image patch groups for dictionary learning. Dictionary bases extracted from each image
patch group have good performance, when they are used to describe the geometric features of
source images.

2. A PCA-based geometry dictionary construction method is proposed. The trained dictionary with
PCA bases is informative and compact for sparse representation. The informative feature of
trained dictionary ensures that different geometric features of source images can be accurately
described. The compact feature of trained dictionary can speed up the sparse coding process.

The rest sections of this paper are structured as follows: Section 2 proposes the geometric
dictionary learning method and multi-focus image fusion framework; Section 3 compares and analyzes
experimentation results; and Section 4 concludes this paper.

2. Geometry Dictionary Construction and Fusion Scheme

2.1. Dictionary Learning Analysis

During the sparse representation of the dictionary construction process, the key step is to construct
an over-complete dictionary that covers the important information of input image. Since geometry
information of image plays an important role in describing an image, an informative dictionary should
take the geometric information into consideration. Smooth and non-smooth information as two
important types of geometry information can be used to classify source images.

A multiple geometry information classification approach was proposed for single image
super-resolution reconstruction (SISR) [39]. According to the geometric features, a large number of
high-resolution (HR) image patches were randomly extracted and clustered to generate corresponding
geometric dictionaries for sparse representations of local patches in low-resolution (LR) images.
The geometric features were classified into three types, smooth patch, dominant orientation patch, and
stochastic patch. According to the estimated dominant orientation, the dominant orientation patches
could be divided into different directional patches. Rather than adaptively selecting one dictionary, the
recovered patches were weighted in the learned geometric dictionaries to characterize the local image
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patterns, by a subsequent patch aggregation to estimate the whole image. To reduce the redundancy in
image recovery, the self-similarity constraints were added on HR image patch aggregation. Both LR
and HR residual images were estimated from the recovered image and compensated for the subtle
details of reconstructed image.

In SISR, the source images are classified as smooth, dominant orientation, and stochastic
patches. Dominant orientation and stochastic patches are non-smooth patches. Since the detection of
orientation in finite dimensional Euclidean spaces corresponded to fitting an axis or a plane by Fourier
transformation of an n-dimensional structure, Bigün verified dominant orientation and stochastic
patches can be separated by orientation estimation in the spatial domain based on the error of the
fit [42].

In dictionary learning, the redundancy of trained dictionary is usually not considered.
A redundant dictionary not only has high computational complexity, but cannot also obtain the best
effect in image representation. Different methods are proposed to reduce the redundancy in learning
process to construct the compact dictionary. Elad [43] estimated the maximum a posteriori probability
(MAP) by a compact dictionary. An effective image interpolation method by nonlocal autoregressive
modeling (NARM) was developed and embedded in SRM by Dong [44] to enhance the effectiveness of
SRM in image interpolation by reducing the coherence between the sampling matrix and the sparse
representation dictionary and minimizing the nonlocal redundancy. To improve the performance of
sparse representation-based image restoration, a non-locally centralized sparse representation (NCSR)
model proposed by Dong [45] suppressed the sparse coding noise in image restoration.

The sparse representation-based approach linearly combines a few atoms extracted from an
over-complete dictionary as an image patch. The promising results have been shown in various image
restoration applications [38,45]. Based on the classification of image patches, this paper proposed
sparse representation-based approach that uses PCA algorithm to construct more informative and
compact dictionary [38]. The proposed solution cannot be extended to other sparse-representation
applications. Most sparse representation methods are based on a large number of sample images.
The corresponding learned dictionaries are expected to be applied to different scenic source images.
The proposed solution uses sparse feature to do image sparse representation and fusion. Therefore, the
learned dictionary of proposed solution does not need to be extended to different source images, and
only specializes for experimented source images. It uses PCA classification to reduce the redundancy
in dictionary and enhance the performance.

There are many popular dictionary learning methods like KSVD. However, this paper cannot use
other dictionary learning methods to substitute PCA to do dictionary learning. It compares PCA with
KSVD to explain the benefits of using PCA in dictionary learning. For sparse representation-based
image reconstruction and fusion techniques, it is difficult to select a good over-complete dictionary.
To obtain an adaptive dictionary, Aharon [46] developed KSVD that learned an over-complete
dictionary by using a set of training images or updates a dictionary adaptively by applying SVD
operations. The image patches used by KSVD in dictionary learning were extracted either from globally
trained dictionary (natural images) or adaptively trained dictionary (input images). Although KSVD
shows better performance in dictionary learning than other methods, it takes high costs to do
dictionary learning with a large number of training images iteratively. The high computational
complexity constrains the learned dictionary size of KSVD in practical usage. Kim [38] firstly applied
clustering-based dictionary learning solution to image fusion. It clustered patches from different
source images together based on local structural similarities. Only a few principal components of each
cluster were analyzed and used to construct corresponding sub-dictionary. All learned sub-dictionaries
were combined to form a compact and informative dictionary that can describe local structures of
all source images effectively. The redundancies of dictionary (i.e., reducing the size of dictionary)
were eliminated to reduce the computation loads of the proposed PCA-based dictionary learning
solution. In various comparison experimentations, the proposed PCA-based dictionary learning
solution (JPDL) had better performance than other traditional multi-scale transform-based and sparse
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representation-based methods, including KSVD. Comparing with KSVD, JPDL as a PCA-based method
not only obtained a more compact dictionary, but also took less computational costs in dictionary
learning process.

2.2. Geometry Dictionary Construction

According to geometric patterns used in SISR [39], this paper classifies the image into three patch
types: smooth patches, stochastic patches, and dominant orientation patches. The smooth patches,
stochastic patches and dominant orientation patches mainly describe the structure information, texture
information, and edge information respectively. Based on a priori knowledge, image patches can
be classified into three groups for sub-dictionaries learning. Additionally, to obtain more compact
sub-dictionary for each image patch group, this paper uses PCA method to extract the important
information from each group. PCA bases of each group are used as the bases of corresponding
sub-dictionary. The obtained dictionary can be more compact and informative by combining the
PCA-based sub-dictionaries [38].

This paper learns three different sub-dictionaries rather other one dictionary. Three different
sub-dictionaries contain more detailed information and structure information, and less redundant
information. It means that although the obtained sub-dictionaries are compact, they can still contain
more useful information. Three types of geometric patches extract different image information from
source images respectively.

• Smooth patches describe the structure information of source images, such as the background.
• Dominant orientation patches describe the edge information to provide the direction information

in source images.
• Stochastic patches show the texture information to make up the missing detailed information

that is not represented in dominant orientation patches.

Three learned dictionaries specialize in smooth, dominant orientation, and stochastic patches
respectively. The structure information, edge information, and texture information can be
accurately and completely shown in corresponding sub-dictionary. Comparing with one learned
dictionary, three learned sub-dictionaries can not only supply different information of source images
respectively, but also make up the deficiencies mutually to enhance the quality of merged dictionary.
So each sub-dictionary is important to compose a compact and informative dictionary in the
proposed approach.

The proposed geometric approach is shown in Figure 1 that has two main steps. In the first step,
the input source images Ii to Ik are split to several small image blocks pin, i ∈ (1, 2...k), n ∈ (1, 2...w),
where i is the source image number, and n is the patch number. The total block number of each input
image is w. Then according to the similarity of geometric patterns, the obtained image blocks are
classified into three groups, smooth patch group, stochastic patch group, and dominant orientation
patch group. In the second step, it does PCA analysis on each sub-class for extracting corresponding
PCA bases as sub-dictionary. Then these obtained sub-dictionaries are composed to construct a
complete dictionary for image sparse representation.
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Figure 1. Geometric Dictionary based Image Fusion Framework.

2.3. Geometric-Structure-Based Patches Classification

Image blocks of a source image can be classified by various image features in describing
underlying relationships. According to geometry descriptions, the multi-focus source images can be
divided to smooth, stochastic, and dominant orientation patches. The edges of focused area are usually
sharp that contain dominant orientation patches. The out-of-focused areas are smooth that contain a
large number of smooth blocks. Besides that, there are also lots of stochastic blocks in source images.
Grouping image blocks into different classes for dictionary learning is an efficient way to improve the
accuracy of image description.

To obtain different geometry sub-classes, this paper uses a geometric-structure-based approach
to partition image into several sub-classes first. Then based on the classified image blocks, it gets the
corresponding sub-dictionaries.

Before doing geometry analysis, it needs to divide the input image into
√

w×
√

w small image
blocks PI = (p1, p2, ..., pn) first. Each image patch pi, i ∈ (1, 2, ...n) is converted into 1× w image
vectors vi, i ∈ (1, 2, ...n). After obtaining vectors , the variance Ci of pixels in each image vector can be
calculated. After obtaining variance, it needs to choose the threshold δ to evaluate whether image block
is smooth. If Ci < δ, image block pi is smooth, otherwise image block pi is not smooth [39]. Based on
the threshold δ, the classified smooth and non-smooth patches are shown in Figure 2a,b respectively.

According to the classified smooth and non-smooth patches shown in Figure 2a,b, it is clear to find
that the smooth patches have similar structure information of input images. Oppositely, non-smooth
patches are different and cannot be directly classified into one class.
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Figure 2. Smooth Image Patches and Non-smooth Image Patches, (a) shows smooth image patches, (b)
shows non-smooth image patches.

Non-smooth patches may also be classified. According to geometric patterns, non-smooth
patches could be divided into stochastic and dominant orientation patches. The separation method
of stochastic and dominant orientation image patches consists of two steps. In the first step, the
gradient of each pixel is calculated. In every image vector vi, i ∈ (1, 2, ...n), the gradient of each pixel
kij, j ∈ (1, 2, ..., w), i ∈ (1, 2, ...n) is composed by its x and y coordinate gradient gij(x) and gij(y).
The gradient value of each pixel kij in image patch vi is gij = (gij(x), gij(y)). The (gij(x), gij(y)) can
be calculated by gij(x) = ∂kij(x, y)/∂x, gij(y) = ∂kij(x, y)/∂y. For each image vector vi, the gradient
Gi is Gi = (gi1, gi2, ..., giw)

T , where Gi ∈ Rw×2. In the second step, the gradient value of each image
patch is decomposed by Equation (1):

Gi =


Gi1
Gi2
...

Giw

 = UiSiVT
i , (1)

where UiSiVT
i is the singular value decomposition of Gi. Si is a diagonal 2× 2 matrix for representing

energy in dominant directions [47]. When Si is obtained, the dominant measure R can be calculated.
The calculation method of R is shown in Equation (2):

R =
S1,1 − S2,2

S1,1 + S2,2
, (2)

The smaller the R is, the more stochastic the corresponding image patch is [48]. In this case, a threshold
R∗ should be calculated for distinguishing stochastic and dominant orientation patches. To find the
threshold R∗, a probability density function (PDF) of R is calculated. According to [42], the PDF of R
can be calculated by Equation (3).

P(R) = 4(w− 1)R
(1− R2)

w−2

(1 + R2)w , (3)

The PDF of dominant measure R of patches with different sizes is shown in Figure 3.
A PDF significance test is implemented to distinguish stochastic and dominant orientation patch

by the threshold R∗ [42]. If R is less than R∗, the image patch can be considered as stochastic patch.
The stochastic and dominant orientation patches separated by the proposed method are shown in
Figure 4. The Figure 4a shows the stochastic image patches, which contain some texture and detailed
information. Dominant orientation image patches are shown in Figure 4b, which mainly contain the
edge information.

As shown in Figure 3, when R increases, P(R) converges to zero. It chooses the value of R as the
threshold R∗, when P(R) reaches zero for the first time.
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Figure 3. PDFs of Dominant Measure R, (a) shows PDF of R in 6*6 patch size, (b) shows PDF of R in
7*7 patch size, (c) shows PDF of R in 8*8 patch size, (d) shows PDF of R in 9*9 patch size.

Figure 4. Stochastic Image Patches and Dominant Orientation Image Patches, (a) shows stochastic
image patches, (b) shows dominant orientation image patches.

2.4. PCA-Based Dictionary Construction

When the geometric classification finished, image patches with similar geometric structure are
classified into a few groups. In this work, the compact and informative dictionary is trained by
combining the principal components of each geometric group. Since patches in the same geometric
group can be well-approximated by a small number of PCA bases, top m most informative principal
components are chosen to form a sub-dictionary [49] as Equation (4).

Bx = [b1, b2..., bj], s.t. p = arg max
p

{
q

∑
j=p+1

Lj > δ

}
, (4)

where Bx denotes the sub-dictionary of the xth cluster, and q is the total number of atoms in each cluster.
Each Bx consists of p eigenvector atoms. Lj is the eigenvalue of the corresponding jth eigenvector
dj. The eigenvalues are sorted in descending order (i.e., L1 > L2 > ... > Ln > 0). δ is a parameter to
control the amount of approximation with rank p. Usually, δ is set to a proportional to the dimension
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of input image to avoid over-fitting [49]. After the sub-dictionaries are obtained, a dictionary D is
constructed by combining sub-dictionaries together as Equation (5).

D = [B1, B2..., Bn] , (5)

where n is the total number of clusters.

2.5. Fusion Scheme

The fusion scheme of proposed method is shown in Figure 5, which consists of two steps.

..
...
.

..
.

..
.

 

Figure 5. Proposed Image Fusion Scheme.

In the first step, each input image Ii is split into n image patches with the size of
√

w×
√

w. These
image patches are resized to w ∗ 1 vectors pi

1, pi
2, ..., pi

n. The resized vectors are sparse coded with
trained dictionary to sparse coefficients zi

1, zi
2, ..., zi

n. In the second step, the sparse coefficients are
fused by ’Max-L1’ fusion rule [50–52]. Then the fused coefficients are inverted to fused image by the
trained dictionary.

3. Experiments and Analyses

In comparison experiments, three pairs of color fluorescence images are used to test the proposed
multi-focused image fusion approach. All three multi-focus image pairs are modified to the size
of 256× 256 for comparison purpose. To show the efficiency of proposed method, the state of art
dictionary learning based sparse-representation fusion schemes KSVD [50] and JPDL [38], which
were proposed by Li in 2012 and Kim in 2016 respectively, are used in comparison experiments. The
comparison experiments are evaluated by both subjective and objective assessments. Four popular
image fusion quality metrics are used in this paper for the quantitative evaluation. The patch size of
all sparse-representation-based methods including the proposed method are set to 8× 8. To avoid
blocking artifacts, all experiments use sliding window scheme [38,50]. The overlapped region of
sliding window scheme is set to 4-pixel in each vertical and horizontal direction of all experiments.
All experiments were implemented using Matlab, version 2014a; MathWorks: Natick, MA, 2014, and
Visual Studio, version Community 2013; Microsoft: Redmond, WA, 2013, mixed programming on an
Intel(R) Core(TM), version i7-4720HQ; Intel: Santa Clara, CA, 2015, CPU @ 2.60 GHz Laptop with
12.00 GB RAM.
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3.1. Objective Evaluation Methods

Five mainstream objective evaluation metrics are implemented for the quantitative evaluation.
These metrics include edge retention (QAB/F) [53,54], mutual information (MI) [55], visual information
fidelity (VIF) [56], Yang proposed fusion metric (QY) [57,58], and Chen-Blum metric (QCB) [58,59]. For
the fused image, the sizes of QAB/F, MI, VIF, QY, and QCB become bigger, the corresponding fusion
results are better.

3.1.1. Mutual Information

MI for images can be formalized as Equation (6).

MI =
L

∑
i=1

L

∑
j=1

hA,F(i, j)log2
hA,F(i, j)

hA(i)hF(j)
, (6)

where L is the number of gray-level, hR,F(i, j) is the gray histogram of image A and F. hA(i) and hF(j)
are edge histogram of image A and F. MI of fused image can be calculated by Equation (7).

MI(A, B, F) = MI(A, F) + MI(B, F) , (7)

where MI(A, F) represents the MI value of input image A and fused image F; MI(B, F) represents the
MI value of input image B and fused image F.

3.1.2. QAB/F

QAB/F metric is a gradient-based quality index to measure how well the edge information of
source images conducted to the fused image. It is calculated by:

QAB/F =
∑i,j (QAF(i, j)wA(i, j) + QBF(i, j)wB(i, j))

∑i,j (wA(i, j) + wB(i, j))
, (8)

where QAF = QAF
g QAF

0 , QAF
g and QAF

0 are the edge strength and orientation preservation values at
location (i, j). QBF can be computed similarly to QAF . wA(i, j) and wB(i, j) are the weights of QAF and
QBF respectively.

3.1.3. Visual Information Fidelity

VIF is the novel full reference image quality metric. VIF quantifies the mutual information between
the reference and test images based on Natural Scene Statistics (NSS) theory and Human Visual System
(HVS) model. It can be expressed as the ratio between the distorted test image information and the
reference image information, the calculation equation of VIF is shown in Equation (9).

VIF =
∑i∈subbands I(

−−→
CN,i;

−−→
FN,i)

∑i∈subbands I(
−−→
CN,i;

−−→
EN,i)

, (9)

where I(
−−→
CN,i;

−−→
FN,i) and I(

−−→
CN,i;

−−→
EN,i) represent the mutual information, which are extracted from a

particular subband in the reference and the test images respectively.
−→
CN denotes N elements from a

random field,
−→
EN and

−→
FN are visual signals at the output of HVS model from the reference and the test

images respectively.
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To evaluate the VIF of fused image, an average of VIF values of each input image and the
integrated image is proposed [56]. The evaluation function of VIF for image fusion is shown in
Equation (10).

VIF(A, B, F) =
VIF(A, F) + VIF(B, F)

2
, (10)

where VIF(A, F) is the VIF value between input image A and fused image F; VIF(B, F) is the VIF
value between input image B and fused image F.

3.1.4. QY

Yang et al. proposed structural similarity-Based way for fusion assessment [57]. The Yang’s
method is shown in Equation (11).

QY =


λ(ω)SSIM(A, F |ω ) + (1− λ(ω)(SSIM(B, F |ω ),
SSIM(A, B |ω ) ≥ 0.75,

max {SSIM(A, F |ω ), SSIM(A, B |ω )} ,
SSIM(A, B |ω ) < 0.75

, (11)

where λ(ω) is the local weight, SSIM(A, B) is a structural similarity index measure for images A and
B. The detail of λ(ω) and SSIM(A, B) can be found in [57,58].

3.1.5. QCB

Chen-Blum metric is human perception inspired fusion metrics. Chen-Blum metric consists of
5 steps:

In the first step, filtering image I(i, j) in frequency domain. I(i, j) is transformed to frequency
domain and get I(m, n). Filtering I(m, n) by contrast sensitive function(CSV) [59] filter S(r), where
r =

√
m2 + n2. In this image fusion metric S(r) is in polar form. Ĩ(m, n) can be got by Ĩ(m, n) =

I(m, n) ∗ S(r).
In the second step, local contrast is computed. For QCB metric, Peli’s contrast is used and it can

be defined as:

C(i, j) =
φk(i, j) ∗ I(i, j)

φk+1(i, j) ∗ I(i, j)
− 1 . (12)

A common choice for φk(i, j) would be

φk(i, j) =
1√

2πσk
e

i2+j2

2σ2
k . (13)

with a standard deviation σk = 2.
In the third step, The masked contrast map for input image IA(i, j) is calculated as:

C
′
A =

t(CA)
p

h(CA)
p + Z

. (14)

Here, t, h, p, q and Z are real scalar parameters that determine the shape of the nonlinearity of the
masking function [59,60].

In the fourth step, the saliency map of IA(i, j) can be calculated by Equation (15),

λA(i, j) =
C
′
A

2
(i, j)

C′A
2
(i, j) + C′B

2
(i, j)

. (15)
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The information preservation value is computed as Equation (16),

QAF(i, j) =


C
′
A(i,j)

C′F(i,j)
, i f C

′
A(i, j) < C

′
F(i, j),

C
′
F(i,j)

C′A(i,j)
, otherwise.

(16)

In the fifth step, the Global quality map can be calculated:

QGQM(i, j) = λA(i, j)QAF(i, j) + λB(i, j)QBF(i, j) . (17)

Then the value of QCB can be got by average the global quality map:

QCB = ∑
i,j

QGQM(i, j) . (18)

3.2. Image Quality Comparison

To show the efficiency of proposed method, the quality comparison of fused images is
demonstrated. It compares the quality of fused image based on visual effect, the accuracy of focused
region detection, and the objective evaluations.

3.2.1. Comparison Experiment 1

The source fluorescence image is obtained from public website [61]. Figure 6a,b are the source
multi-focus fluorescence images. To show the details of fused image, two image blocks are highlighted
and magnified, which are squared by red and blue square respectively. The image block in red
square is out of focus in Figure 6a, and the image block in blue square, is out of focus in Figure 6b.
The corresponding image block in blue and red square are totally focused in Figure 6a,b respectively.
Figure 6c–e show the fused images of KSVD, JPDL, and proposed method, respectively.

 

Figure 6. Fusion Results of Multi-focus Fluorescence Image - 1, (a,b) are source images, (c–e) are fused
image of KSVD, JPDL, and proposed method respectively.
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The difference and performance of fused images by three different methods are difficult to figure
out by eyes. In order to evaluate of fusion performances objectively, QAB/F, MI, VIF, QY, and QCB are
also used as image fusion quality measures. The fusion results of multi-focus fluorescence images
using three different methods are shown in Table 1.

Table 1. Fusion Performance Comparison - 1 of Multi-focus Fluorescence Image Pairs.

QAB/F MI VIF QY QCB

KSVD 0.4966 2.4247 0.5778 0.5960 0.5287
JPDL 0.5815 2.9258 0.6972 0.6944 0.7243

Proposed Solution 0.6226∗ 3.4773 0.7428 0.7386 0.7974

* The highest result in each column is marked in bold-face.

The best results of each evaluation metric are highlighted by bold-faces in Table 1. According to
Table 1, it can figure out that the proposed method has the best performance in all five types
of evaluation metrics. Particularly, for the objective evaluation metric QAB/F, the proposed
method obtains higher result than other two comparison image fusion methods. Since QAB/F is a
gradient-based quality metric to measure how well the edge information of source images is conducted
to the fused image, it means the proposed method can get better fused image with edge information.

3.2.2. Comparison Experiment 2 and 3

Similarly, the source fluorescence images shown in Figures 7 and 8a,b are obtained from public
websites [62,63] respectively. In a set of source images, two images (a) and (b) focus on different items.
The source images are fused by KSVD, JPDL, and proposed method to get a totally focused image, and
the corresponding fusion results are shown in Figures 7 and 8c–e respectively.

 

Figure 7. Fusion Results of Multi-focus Fluorescence Image - 2, (a,b) are source images, (c–e) are fused
image of KSVD, JPDL, and proposed method respectively.
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Figure 8. Fusion Results of Multi-focus Fluorescence Image - 3, (a,b) are source images, (c–e) are fused
image of KSVD, JPDL, and proposed method respectively.

Objective metrics of multi-focus comparison experiment 2 and 3 are shown in Tables 2 and 3
respectively to evaluate the quality of fused images. According to the metric results, the proposed
method has the best performance in all five objective evaluations in comparison experiment 2 and 3.
So the proposed method has the best overall performance among all comparison methods.

Table 2. Fusion Performance Comparison - 2 of Multi-focus Fluorescence Image Pairs.

QAB/F MI VIF QY QCB

KSVD 0.5600 2.4747 0.6099 0.6161 0.5477
JPDL 0.6952 3.1357 0.7013 0.7355 0.7423

Proposed Solution 0.7692∗ 3.8982 0.7488 0.8058 0.8206

* The highest result in each column is marked in bold-face.

Table 3. Fusion Performance Comparison - 3 of Multi-focus Fluorescence Image Pairs.

QAB/F MI VIF QY QCB

KSVD 0.6837 2.4624 0.8171 0.7855 0.6454
JPDL 0.8557 2.9358 0.8943 0.9325 0.7665

Proposed Solution 0.8979∗ 3.9154 0.9129 0.9790 0.8237

* The highest result in each column is marked in bold-face.

3.3. Processing Time Comparison

Table 4 compares the processing times of three comparison experimentations. The proposed
solution has lower computation costs than KSVD and JPDL in image fusion process. Compared with
KSVD, the dictionary construction method of proposed solution does not use any iterative way
to extract the underlying information of images, which is not efficient in dictionary construction.
Although JPDL and the proposed method both cluster image pixels or patches based on geometric
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similarity, the proposed method does not use the iterative method of Steering Kernel Regression (SKR),
which is time consuming.

Table 4. Processing Time Comparison.

Experiment - 1 Experiment - 2 Experiment - 3

KSVD 164.02 s 215.09 s 108.65 s
JPDL 123.68 s 171.93 s 73.58 s
Proposed Solution 76.23 s∗ 103.96 s 25.47 s

* The highest result in each column is marked in bold-face.

4. Conclusions

This paper proposes a novel sparse representation-based image fusion framework, which
integrates geometric dictionary construction. A geometric image patch classification approach is
presented to group image patches from different source images based on the similarity of image
geometric structure. The proposed method extracts a few compact and informative sub-dictionaries
from each image patch cluster by PCA and these sub-dictionaries are combined into a dictionary for
sparse representation. Then image patches are sparsely coded into coefficients by the trained dictionary.
For obtaining better edge and corner details of fusion results, the proposed solution also chooses
image block size adaptively and selects optimal coefficients during the image process. The sparsely
coded coefficients are fused by Max-L1 rule and inverted to the fused image. The proposed method
is compared with existing mainstream sparse representation-based methods in various experiments.
The experimentation results proves that the proposed method has good fusion performance in different
image scenarios.
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