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Abstract: The main aim of the present paper is to solve numerically the free vibration problem
of sandwich shell structures with variable thickness and made of Functionally Graded Materials
(FGMs). Several Higher-order Shear Deformation Theories (HSDTs), defined by a unified formulation,
are employed in the study. The FGM structures are characterized by variable mechanical properties
due to the through-the-thickness variation of the volume fraction distribution of the two constituents
and the arbitrary thickness profile. A four-parameter power law expression is introduced to describe
the FGMs, whereas general relations are used to define the thickness variation, which can affect both
the principal coordinates of the shell reference domain. A local scheme of the Generalized Differential
Quadrature (GDQ) method is employed as numerical tool. The natural frequencies are obtained
varying the exponent of the volume fraction distributions using higher-order theories based on a
unified formulation. The structural models considered are two-dimensional and require less degrees
of freedom when compared to the corresponding three-dimensional finite element (FE) models,
which require a huge number of elements to describe the same geometries accurately. A comparison
of the present results with the FE solutions is carried out for the isotropic cases only, whereas the
numerical results available in the literature are used to prove the validity as well as accuracy of the
current approach in dealing with FGM structures characterized by a variable thickness profile.

Keywords: functionally graded materials; free vibration analysis; local generalized differential
quadrature method; higher-order structural theories; variable thickness shells

1. Introduction

Shells are structural elements commonly employed by engineers, architects and designers to
fulfil particular structural requirements. In fact, due to their peculiar shape and the curvature effect
they are characterized by high-level stiffness, which allows to carry external loads in an efficient way.
Analogously, their dynamic behavior is considerably affected by these curved geometries. Examples
of shell structures can be easily seen everywhere, for example, large roofs, boat hulls, car bodies,
fuselages, as well as several mechanical components, are all shell structures. Thus, it is evident that
their importance is well-known in many fields, such as automotive, mechanical, civil, and aerospace
engineering, architecture, aeronautical and naval industries [1–3]. Nevertheless, assessment of their
advantages due to the curvature effect are made difficult by lack of accurate analytical description of

Appl. Sci. 2017, 7, 131; doi:10.3390/app7020131 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/journal/applsci


Appl. Sci. 2017, 7, 131 2 of 39

the curved middle surface. To the best of authors’ knowledge, this issue can be overcome by means of
the differential geometry which provide extremely simple and efficient tools to define these surfaces.
As highlighted by Kraus in his book [4], shell structures can be obtained by a proper parametric
description of their middle surfaces. As a consequence, doubly-curved geometries characterized by a
punctual variation of the main radii of curvature can be easily taken into account.

The excellent features of shells are enhanced by the introduction of innovative materials
characterized by superior mechanical properties. For example, by using composite materials it is
possible to manufacture light-weight structures with higher strength, reducing the amount of material
needed to build them. Consequently, the main aim of many designers and engineers is to find the best
mechanical configuration to solve particular structural problems, by combining in an optimal way
several layers of composite materials. Thus, laminated structures became more popular due to this
aspect, as it can be noted from the huge amount of related papers available in the literature [5–44].
It should be noted that laminates could be affected by some typical issues, such as delamination and
stress concentrations at the interfaces, since various materials are used as constituents of the layers.
In order to avoid problems associated with material mismatch at the layer interfaces, the class of
Functionally Graded Materials (FGMs) was introduced. By assigning a continuous gradual variation of
the mechanical properties along a specified direction, these composites do not show discontinuities in
the material. As a consequence, the residual stresses and the stress concentrations that commonly affect
a laminated structure can be reduced by mixing two or more constituents according to a specific graded
distribution of the volume fraction. The wide use of FGMs is proven by the large number of papers
published in the literature [45–72]. For the sake of completeness, it should be noted that the same idea
of graded materials is currently employed to define also the volume fractions of nanoparticles such as
Carbon Nanotubes (CNTs) in nanocomposites [73–75].

The mechanical response of each structural element is obviously affected by the choice of the
materials and the distribution of the various constituents. Nevertheless, the shape of these structures
plays an important role as well. In fact, many designers aim to find the optimal geometry to achieve
desired structural requirements. For this purpose, it is possible to modify the buckling behavior, change
the bending response, and influence the vibration characteristics by varying the shape of a particular
structure. Among the various approaches of structural optimization processes, the assignment of a
variable thickness allows to modify the stiffness of the structure by redistributing the materials within
the reference domain without increasing the structural weight. In other words, variable thickness
can enhance the mechanical behavior of a structure by increasing the stiffness in those parts of the
structure where the stresses are high and reducing the amount of material where it is not needed.

Several works concerning variable thickness structure are available in the literature, most of them
are related to isotropic materials. A partial bet relevant literature review of this topic is presented
here. Since the present paper is focused on the free vibration analysis, only the studies that were
performed the same kind of structural analysis are mentioned. The work by Mizusawa [76] must be
cited since it presented many investigations concerning isotropic plates characterized by different
thickness profiles. In his paper, a complete analysis was performed for various geometries and
different boundary conditions. In a similar manner, Shufrin and Eisenberger [77] computed the
natural frequencies of plates with variable thickness by using both first-order and higher-order
structural models. On the other hand, a variable kinematic Ritz approach was employed by Dozio
and Carrera [78] to evaluate the vibrational behavior of quadrilateral plates with arbitrary thickness.
The exact element method was employed to find the axisymmetric vibration frequencies of isotropic
circular and annular plates with variable thickness by Eisenberger and Jabareen [79]. On the other
hand, Wu and Liu [80] solved numerically the same problem by using the generalized differential
quadrature method, whereas a finite element method was proposed by Liang et al. [81] for the same
purpose. The free vibration analysis of circular sandwich plates made of isotropic layers with a
parabolic thickness variation was carried out by Lal and Rani [82]. All the aforementioned papers
are related to flat panels. The following works are focused on isotropic shell structures. The free
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vibrations of circular cylindrical shells with variable thickness were investigated by Duan and Koh [83]
and by El-Kaabazi and Kennedy [84] by means of an analytical procedure and the Wittrick-Williams
algorithm, respectively. The works by Kang and Leissa [85,86] and by Leissa and Kang [87] represented
a great contribution to this topic for the results given on thick spherical and paraboloidal shells of
revolution with variable thickness obtained by a three-dimensional analysis. The dynamic stiffness
method was employed by Efraim and Eisenberger [88] to compute the natural frequencies of thick
spherical shell panels with variable thickness for various boundary restraints, taking into account
both the effects of transverse shear stresses and rotary inertia. Finally, Jiang and Redekop [89] studied
the free vibrations of orthotropic toroidal shells described by the Sanders-Budiansky equations by
means of a semi-analytical differential quadrature method. In this circumstance, the variable thickness
profile is defined by a sinusoidal variation and the solutions are obtained for different geometric
configurations. In this paper an orthotropic medium was considered. At this point, some works
concerning FGM structures with variable thickness can be cited. Firstly, the exact element method
was used by Efraim and Eisenberger [90] to provide some benchmark solutions to the free vibration
problem of FGM annular plates. Several thickness profiles, as well as volume fraction distributions,
were considered. The same kind of FGM structures resting on the Pasternak elastic foundation were
investigated also by Hosseini-Hashemi et al. [91] and by Tajeddini et al. [92]. In the first paper, the
differential quadrature method was used to solve numerically the governing equations based on the
classical plate theory, whereas the free vibration problem was solved by means of the polynomial-Ritz
method in the second paper.

The main aim of the present paper is to investigate the natural frequencies of shell structures
with variable thickness made of FGMs. A unified formulation is employed to derive the governing
equations for several Higher-order Shear Deformation Theories (HSDTs) [93–114]. As highlighted by
Librescu and Reddy [115], the introduction of innovative materials in the stacking sequence of the
structure could generate some effects that classical and first-order theories that are commonly neglected.
For the sake of completeness, it should be noted that the same observation was illustrated also in the
works [116–121]. In the present paper, the field equations, as well as the corresponding boundary
conditions are solved by means of the Generalized Differential Quadrature (GDQ) method developed
by Shu [122]. A local approach which does not take into account all the sampling points of the
domain is employed to approximate the derivatives of the governing equations, following the adaptive
procedure illustrated by Wang [123]. Further details concerning the numerical method can be found
in [124–128]. It should be underlined that the authors have considered the topic of variable thickness
shells in the works [104,109], where laminated composite structures are investigated. In particular,
a global version of the GDQ method is employed in the paper by Bacciocchi et al. [109], in which
several comparisons with the results available literature allowed to validate both the structural model
and the numerical technique. On the other hand, the convergence and accuracy features of the local
approach of the GDQ are studied in the work by Tornabene et al. [104], where a general formulation
to define arbitrary smooth thickness variations was presented. Nevertheless, in these papers the
mechanical properties of the materials were assumed constant in each layer. The novelty introduced in
this paper is to employ FGM plies. Thus, all the structures are characterized by a continuous gradual
variation of the mechanical properties along the shell thickness. In addition, several lamination
schemes and different through-the-thickness distributions of the constituents are considered to define
sandwich configurations, without discontinuities at the interfaces between two contiguous layers.
In the aforementioned papers, in fact, all the laminae are orthotropic and their mechanical parameters
do not depend on the thickness coordinate. As far as the thickness profiles are concerned, the general
approach shown in the work by Tornabene et al. [104] represents the mathematical tool employed
even in this paper to describe the thickness variation by means of several functions, such as sinusoidal
or power-law.

The present work is structured as follows. The mechanics of FGMs is described preliminarily.
Then, some details concerning the definition of the shell geometry and the higher-order structural
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models are presented. The main aspects of the local GDQ method are briefly illustrated, followed by
some numerical results. Finally, some concluding remarks are presented.

2. Functionally Graded Materials

It is well-known that FGMs allows to define a continuous gradual variation of the mechanical
properties of two isotropic constituents, in general one ceramic and one metal, from the bottom to the
top surfaces of the layer in which they are employed. In the present paper, the rule of mixture is used
to evaluate the mechanical properties of these composites. For the sake of simplicity, let us assume
that the k-th layer of the structure is made of FGM and the two constituents are ceramic and metallic
materials, respectively. Each mechanical quantity related to the first constituent is denoted by the
subscript “C”, whereas the subscript “M” is used to specify the properties of the metal. Since the two
constituents are assumed isotropic and linear elastic, they are fully characterized through the Young’s
modulus (EC, EM), Poisson’s ratio (νC, νM), and the density (ρC, ρM). By hypothesis, these composites
are isotropic and non-homogenous along the thickness direction, which is denoted by ζ. Thus, the rule
of mixture provides the following relations

E(k)(ζ) = ECV(k)
C (ζ) + EMV(k)

M (ζ) (1)

ν(k)(ζ) = νCV(k)
C (ζ) + νMV(k)

M (ζ) (2)

ρ(k)(ζ) = ρCV(k)
C (ζ) + ρMV(k)

M (ζ) (3)

where E(k)(ζ), ν(k)(ζ), and ρ(k)(ζ) stand for the overall mechanical properties of the k-th FGM layer.
On the other hand, V(k)

C (ζ) and V(k)
M (ζ) represent the volume fraction distributions of the ceramic and

the metal, respectively. These two quantities are related as follows

V(k)
C (ζ) + V(k)

M (ζ) = 1 (4)

Thus, Equations (1)–(3) could be rewritten also as a function only of the volume fraction of one
constituent. Several expressions are available in the literature to define the continuous and gradual
variation of the mechanical properties along the thickness of the FGM layer [67]. In the current paper,
a four-parameter power law is introduced for this purpose. Let us assume that the volume fraction is
strictly related to the materials located to the external surfaces of the k-th FGM layer. With reference to
Figure 1, in which a generic stacking sequence made of FGM and isotropic layers is depicted, the k-th
ply is identified by the thickness coordinates ζk and ζk+1, which denote respectively the coordinates of
its bottom and top surfaces in each point of the reference domain.

On the other hand, hk represents the thickness of the k-th layer in a generic point of the domain.
If the constituent at the top surface is the ceramic material, the volume fraction V(k)

C (ζ) is defined
as follows

V(k)
C (ζ) =

(
1− a(k)

(
ζk+1 − ζ

hk

)
+ b(k)

(
ζk+1 − ζ

hk

)c(k)
)p(k)

(5)

where a(k), b(k), c(k) and p(k) are the four parameters that characterize the distribution at issue.
As specified in the paper by Tornabene [60], their value must be chosen accurately so that Equation (4)
is satisfied for any value of p(k). On the other hand, if the constituent at the top surface is the metallic
material the volume fraction V(k)

C (ζ) assumes the following aspect

V(k)
C (ζ) =

(
1− a(k)

(
ζ − ζk

hk

)
+ b(k)

(
ζ − ζk

hk

)c(k)
)p(k)

(6)
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It should be noted that homogeneous and isotropic material can be obtained as a particular case
of the FGM, by setting properly the value of the exponent p(k). In other words, by setting p(k) = 0 or
p(k) = ∞ it is possible to model an isotropic layer. In addition, it should be specified that sandwich
structures can be obtained by choosing properly the volume fraction distributions of the constituents
in the various plies. As a consequence, the composites are not characterized by those discontinuities at
the layer interfaces that typically identify conventional laminates. At this point, a peculiar notation
must be introduced to specify univocally the volume fraction distribution used to define the gradual
variation of the mechanical properties. In the following, the acronyms shown below are employed for
this purpose. In particular, if the Equation (5) is employed, the k-th FGM layer is denoted by

FGMC
M (a(k)/b(k)/c(k)/p(k)) (7)

On the other hand, the notation

FGMM
C (a(k)/b(k)/c(k)/p(k)) (8)

is used to specify the use of Equation (6). Finally, it is important to underline that E(k)(ζ), ν(k)(ζ),
and ρ(k)(ζ) are all affected by the gradation laws specified in Equation (5) or (6).
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Functionally Graded Materials (FGM) or isotropic layers.

3. Definition of the Geometry

Let us consider a generic doubly-curved shell element with variable thickness as the one
schematically depicted in Figure 2. It is completely identified by means of the position vector
R(α1, α2, ζ) defined as follows

R(α1, α2, ζ) = r(α1, α2) +
h(α1, α2)

2
zn(α1, α2) (9)

where z = 2ζ/h(α1, α2), for z ∈ [−1, 1], is a non-dimensional parameter which represents the distance
between the generic point P within the three-dimensional shell body and its projection P′, located on
the middle surface. It should be noted that O′ α1 α2 ζ denotes the local reference coordinate system
of the shell element. In particular, α1, α2 are the principal curvilinear coordinates of the shell middle
surface, whereas ζ specify the coordinate along the normal directions, which is identified by the
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outward unit normal vector n(α1, α2). The following boundary values must be specified to define the
three-dimensional domain of the shell.

α0
1 ≤ α1 ≤ α1

1 (10)

α0
2 ≤ α2 ≤ α1

2 (11)

− h(α1, α2)

2
≤ ζ ≤ h(α1, α2)

2
(12)

From the definition shown in Equation (9), it is clear that the thickness of the shell h(α1, α2) is
arbitrary and can vary point by point.
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Figure 2. Generic doubly-curved shell element with variable thickness: edge identification, global and
local reference coordinate system representation.

It should be recalled that its overall value is given by the sum of the thickness of each ply if the
structure is made of several layers (Figure 1). Thus, one gets

h(α1, α2) =
l

∑
k=1

hk(α1, α2) (13)

where l stands for the number of layers. In the present paper, the thickness variation assumes the
following aspect

h(α1, α2) = h0(1 + f (α1) + g(α2)) (14)

in which h0 is the thickness reference value, whereas f (α1), g(α2) are arbitrary functions that describe
the thickness profile along the principal curvilinear coordinates α1, α2. It should be pointed out
that there is no restriction on the choice of these functions, as illustrated in details in the work by
Tornabene et al. [104]. Nevertheless, they must represent a smooth variation and their effect has to
involve each layer. Thus, the parameters h0,k, for k = 1, 2, ..., l, are introduced to specify the thickness
reference value of each lamina. For completeness purposes, the reader can refer to the work by
Tornabene et al. [104] for a general treatise on the variable thickness. In connection with Equation (9),



Appl. Sci. 2017, 7, 131 7 of 39

r(α1, α2) is the vector that allows to identify each point of the shell reference surface, which corresponds
to the middle surface of the structure. In general, its expression can be written as follows

r(α1, α2) = f1(α1, α2)e1 + f2(α1, α2)e2 + f3(α1, α2)e3 (15)

in which fi(α1, α2), for i = 1, 2, 3, are generic functions that depend on the shell middle surface,
whereas ei, for i = 1, 2, 3, are the unit vectors which denote the main axes of the global reference
system O′x1x2x3 shown in Figure 2. Equation (15) is fundamental to evaluate each geometric quantity
related to the shell under consideration. For this purpose, its derivatives with respect to the principal
curvilinear coordinates must be also computed. As far as the first-order derivatives are concerned,
one gets

r,1 =
∂r

∂α1
(16)

r,2 =
∂r

∂α2
(17)

whereas the second-order derivatives assume the following aspect

r,11 =
∂2r
∂α2

1
(18)

r,22 =
∂2r
∂α2

2
(19)

At this point, an analytic expression can be found for the unit normal vector n(α1, α2)

n =
r,1 ∧ r,2

|r,1 ∧ r,2|
(20)

where “∧” denotes the vector product. Analogously, the definition of the Lamè parameters A 1(α1, α2),
A 2(α1, α2) is also provided

A1 =
√

r,1 · r,1 (21)

A2 =
√

r,2 · r,2 (22)

where “·” denotes the scalar product. Finally, the middle surface of a doubly-curved shell is
characterized by two principal radii of curvature R 1(α1, α2), R 2(α1, α2) that vary point by point.
The following expressions can be used to define them

R 1 = − r,1 · r,1

r,11 · n
(23)

R 2 = − r,2 · r,2

r,22 · n
(24)

Equations (23) and (24) are valid since α1, α2 are principal and orthogonal by hypothesis.
Once definition of R 1(α1, α2), R 2(α1, α2) is specified, the following quantities can be also computed

H1 = 1 +
ζ

R1
(25)

H2 = 1 +
ζ

R2
(26)

It should be specified that the parameters H1(α1, α2, ζ), H2(α1, α2, ζ) are required to take
into account the three-dimensional size of a generic shell structure. Differential geometry is the
mathematical tool that allows to compute all the geometric quantities defined in the present section.
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4. Higher-Order Equivalent Single Layer Approach

A unified formulation is employed in the present paper to define several HSDTs in a
compact manner. In particular, an Equivalent Single Layer (ESL) approach is taken into account.
The three-dimensional displacements U1(α1, α2, ζ, t), U2(α1, α2, ζ, t), U3(α1, α2, ζ, t) for a generic
composite shell made of several layers can be written as a function of a generic order of kinematic
expansion τ.

U1 =
N+1
∑

τ=0
Fτ(ζ)u

(τ)
1 (α1, α2, t)

U2 =
N+1
∑

τ=0
Fτ(ζ)u

(τ)
2 (α1, α2, t)

U3 =
N+1
∑

τ=0
Fτ(ζ)u

(τ)
3 (α1, α2, t)

(27)

Where the generalized displacements u(τ)
1 (α1, α2, t), u(τ)

2 = u(τ)
2 (α1, α2, t), u(τ)

3 = u(τ)
3 (α1, α2, t)

represent the degrees of freedom of the problem and are defined on the shell middle surface. They can
be conveniently collected in the algebraic vector u(τ)(α1, α2, t) for each order τ of kinematic expansion.

u(τ) =
[

u(τ)
1 u(τ)

2 u(τ)
3

]T
(28)

On the other hand, Fτ(ζ) denotes the shear function (or thickness functions) linked to the τ-th
order of kinematic expansion and can assumes different meanings. In the current work, the power
function ζ τ , for τ = 0, 1, 2, ..., N, is chosen for this purpose. The (N + 1)-st order of kinematic
expansion denotes the Murakami’s function that is employed to model the zig–zag effect [94–96].
For the laminated shell element shown in Figure 1, the Murakami’s function is defined as follows:

Z = (−1)k
(

2
ζk+1 − ζk

ζ − ζk+1 + ζk
ζk+1 − ζk

)
(29)

in which the index k is introduced to specify the k-th ply. Thus, the (N + 1)-st shear function is
assumed equal to Equation (29) if the zig-zag effect is included in the structural theory (in other
words, one gets FN+1 = Z). It should be noted that each HSDT is identified by the maximum order of
kinematic expansion N. If the power function ζ τ is employed to define all the thickness functions of
the model, the following HSDT can be introduced.

N = 1 → ED1
N = 2 → ED2
N = 3 → ED3
N = 4 → ED4

(30)

When the zig–zag effect is contemplated, the same order theories are specified as follows:

N = 1 → EDZ1
N = 2 → EDZ2
N = 3 → EDZ3
N = 4 → EDZ4

(31)

With reference to the Equations (30) and (31), it should be noted that the letter “E” specifies
an ESL model, “D” means that the fundamental equations will be written in terms of generalized
displacements, and “Z” stands for the Murakami’s function. At this point it is important to
underline that the displacement field of the well-known first-order shear deformation theory can be
obtained from Equation (27) by choosing properly the shear functions and the degrees of freedom.
In the following, this theory will be indicated by the notation FSDT (First-order Shear Deformation
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Theory). Analogously, the term FSDTZ is introduced to identify the FSDT embedded with the
Murakami’s function.

At this point, the generalized strain components can be defined. For the sake of conciseness,
they are collected in the corresponding algebraic vector ε(τ)(α1, α2, t)

ε(τ) =
[

ε
(τ)
1 ε

(τ)
2 γ

(τ)
1 γ

(τ)
2 γ

(τ)
13 γ

(τ)
23 ω

(τ)
13 ω

(τ)
23 ε

(τ)
3

]T
(32)

for each order τ of kinematic expansion. The generalized strain components assume the compact
matrix form shown below for each order of kinematic expansion τ = 0, 1, 2, ..., N, N + 1

ε(τ) = DΩu(τ) (33)

where DΩ is the differential operator defined as

DΩ =


1

A 1
∂

∂α1
1

A 1 A 2

∂A 2
∂α1

− 1
A 1 A2

∂A1
∂α2

1
A 2

∂
∂α2

− 1
R 1

0 1 0 0

1
A 1 A 2

∂A 1
∂α2

1
A 2

∂
∂α2

1
A 1

∂
∂α1

− 1
A 1 A2

∂A2
∂α1

0 − 1
R 2

0 1 0
1

R 1
1

R 2
0 0 1

A 1
∂

∂α1
1

A 2
∂

∂α2
0 0 1


T

(34)

The internal stress resultants for each order of kinematic expansion τ = 0, 1, 2, ..., N, N + 1 are
collected in the algebraic vector S(τ)(α1, α2, t) which assume the following aspect.

S(τ) =
[

N(τ)
1 N(τ)

2 N(τ)
12 N(τ)

21 T(τ)
1 T(τ)

2 P(τ)
1 P(τ)

2 S(τ)
3

]T
(35)

Due to the duality between stresses and strains, the generalized stress resultants can be directly
related to the corresponding generalized displacements. In compact matrix form, one gets

S(τ) =
N+1

∑
η=0

A(τη)DΩu(η) (36)

for τ = 0, 1, 2, ..., N, N + 1, in which A(τη) is the matrix of the elastic constants. Equation (36) is
of extremely importance since it gives also the definition of the stress resultants involved in those
boundary conditions that affect the stresses, such as in the free edges. In general, the matrix A(τη)

assumes the following aspect for a shell made of l layers.

A(τη) =



A(τη)
11(20) A(τη)

12(11) A(τη)
16(20) A(τη)

16(11) 0 0 0 0 A(τη̃)
13(10)

A(τη)
12(11) A(τη)

22(02) A(τη)
26(11) A(τη)

26(02) 0 0 0 0 A(τη̃)
23(01)

A(τη)
16(20) A(τη)

26(11) A(τη)
66(20) A(τη)

66(11) 0 0 0 0 A(τη̃)
36(10)

A(τη)
16(11) A(τη)

26(02) A(τη)
66(11) A(τη)

66(02) 0 0 0 0 A(τη̃)
36(01)

0 0 0 0 A(τη)
44(20) A(τη)

45(11) A(τη̃)
44(10) A(τη̃)

45(10) 0

0 0 0 0 A(τη)
45(11) A(τη)

55(02) A(τη̃)
45(01) A(τη̃)

55(01) 0

0 0 0 0 A(τ̃η)
44(10) A(τ̃η)

45(01) A(τ̃η̃)
44(00) A(τ̃η̃)

45(00) 0

0 0 0 0 A(τ̃η)
45(10) A(τ̃η)

55(01) A(τ̃η̃)
45(00) A(τ̃η̃)

55(00) 0

A(τ̃η)
13(10) A(τ̃η)

23(01) A(τ̃η)
36(10) A(τ̃η)

36(01) 0 0 0 0 A(τ̃η̃)
33(00)



(37)
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where

A(τη)
nm (pq) =

l
∑

k=1

ζk+1∫
ζk

B(k)
nmFη Fτ

H1 H2
Hp

1 Hq
2

dζ

A(τ̃η)
nm (pq) =

l
∑

k=1

ζk+1∫
ζk

B(k)
nmFη

∂Fτ
∂ζ

H1 H2
Hp

1 Hq
2

dζ

A(τη̃)
nm (pq) =

l
∑

k=1

ζk+1∫
ζk

B(k)
nm

∂Fη

∂ζ Fτ
H1 H2
Hp

1 Hq
2

dζ

A(τ̃η̃)
nm (pq) =

l
∑

k=1

ζk+1∫
ζk

B(k)
nm

∂Fη

∂ζ
∂Fτ
∂ζ

H1 H2
Hp

1 Hq
2

dζ

(38)

for τ, η = 0, 1, 2, ..., N, N + 1, n, m = 1, 2, 3, 4, 5, 6 and p, q = 0, 1, 2. For the sake of conciseness,
the symbols τ, η denote the shear function order, whereas τ̃, η̃ stand for the corresponding derivatives

with respect to ζ. On the other hand, B(k)
nm specifies the elastic constant of the material. It assumes the

following definition for n, m = 1, 2, 3, 6

B(k)
nm = E(k)

nm (39)

whereas for n, m = 4, 5 one gets

B(k)
nm = κE(k)

nm (40)

where κ = 1/χ is the shear correction factor. If the structural model requires this correction, the value
of χ is set equal to χ = 1.2, otherwise the unitary value is employed (χ = 1). Equations (39) and (40)

are general and allows to introduce also the plane stress hypothesis. In fact, E(k)
nm denotes the elastic

constant of the material of the k-th ply. If the plane stress hypothesis is required, the reduced elastic

coefficients must be used (E(k)
nm = Q(k)

nm). On the other hand, the non-reduced coefficients are employed

(E(k)
nm = C(k)

nm). These aspects will be specified properly by adding specific subscripts and superscripts to
the notation used to denote the structural model. For instance, the Reissner-Mindlin theory needs both
the shear correction factor and the plane stress-reduced elastic coefficients. As a consequence, it will
be indicated as FSDTχ=1.2

RS , where RS stands for “reduced stiffness”. Finally, it should be specified

that the quantities E(k)
nm depend on the third coordinate ζ if the layer is made of FGM. In other words,

one gets E(k)
nm(ζ).

A set of three motion equations for each order of kinematic expansion τ = 0, 1, 2, ..., N, N + 1 is
obtained. In compact matrix form, they assume the following aspect

D∗ΩS(τ) =
N+1

∑
η=0

M(τη) ..
u(η) (41)

The equilibrium operator D∗Ω is defined as follows:

D∗Ω =



1
A1

∂
∂α1

+ 1
A1 A2

∂A2
∂α1

− 1
A1 A2

∂A 1
∂α2

− 1
R 1

− 1
A1 A2

∂A 2
∂α1

1
A2

∂
∂α2

+ 1
A1 A2

∂A1
∂α2

− 1
R 2

1
A1 A2

∂A1
∂α2

1
A1

∂
∂α1

+ 1
A1 A2

∂A2
∂α1

0
1

A2
∂

∂α2
+ 1

A1 A2

∂A1
∂α2

1
A1 A2

∂A2
∂α1

0
1

R 1
0 1

A1
∂

∂α1
+ 1

A1 A2

∂A2
∂α1

0 1
R 2

1
A2

∂
∂α2

+ 1
A1 A2

∂A1
∂α2

−1 0 0
0 −1 0
0 0 −1



T

(42)
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On the other hand, the mass matrix M(τη) is defined below:

M(τη) =

 I(τη) 0 0
0 I(τη) 0
0 0 I(τη)

 (43)

for τ, η = 0, 1, 2, ..., N, N + 1. If ρ(k) stands for the mass density of the k-th layer, the inertia masses
I(τη) in Equation (43) are computed for each order of kinematic expansion τ, η = 0, 1, 2, ..., N, N + 1
as follows

I(τη) =
l

∑
k=1

ζk+1∫
ζk

ρ(k)Fτ Fη H1H2dζ (44)

With reference to the motion Equation (41), it should be specified that
..
u(η)

(α1, α2, t) is the algebraic
vector that collects the second-order derivatives of the generalized displacements Equation (28) with
respect to the time variable t. The system of governing Equation (41) can be expressed as a function of
the degrees of freedom by inserting Equation (36) into (41). The fundamental equations are obtained
for each order of kinematic expansion τ, η = 0, 1, 2, ..., N, N + 1

N+1

∑
η=0

L(τη)u(η) =
N+1

∑
η=0

M(τη) ..
u(η) (45)

where L(τη) is the fundamental operator defined as follows

L(τη) =

 L(τη)
11 L(τη)

12 L(τη)
13

L(τη)
21 L(τη)

22 L(τη)
23

L(τη)
31 L(τη)

32 L(τη)
33

 (46)

The terms collected into Equation (46) can be computed by applying the following definition

L(τη) = D∗ΩA(τη)DΩ (47)

for τ, η = 0, 1, 2, ..., N, N + 1. It should be pointed out that Equation (45) define a set of 3× (N + 2)
motion equations. Since it represents a set of partial differential equations, the proper boundary
conditions must be enforced to find the solution. At this point, Figure 2 can be taken as a reference to
identify the coordinates of each edge along which the boundary conditions are applied. Let us consider
fully clamped edges (specified by “C”) or free edges (denoted by “F”). The boundary conditions
assume the following aspect

C → u(τ)
1 = u(τ)

2 = u(τ)
3 = 0

F → N(τ)
1 = N(τ)

12 = T(τ)
1 = 0

(48)

for α0
2 ≤ α2 ≤ α1

2 and α1 = α0
1 or α1 = α1

1. This is the case of the South (S) and North (N) edges.
The same boundary conditions can be written as follows:

C → u(τ)
1 = u(τ)

2 = u(τ)
3 = 0

F → N(τ)
21 = N(τ)

2 = T(τ)
2 = 0

(49)

for α0
1 ≤ α1 ≤ α1

1 and α2 = α0
2 or α2 = α1

2. This is the case of the West (W) and East (E) edges. In the
next sections related to the numerical applications, the boundary conditions applied along each edge
will be specified following the order WSEN. Finally, it should be noted that another set of compatibility
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conditions must be enforced if the considered structure has a common edge, as in the case of complete
shells of revolution or toroidal panels. If the closing edge involves the coordinates α1 = α0

1 and α1 = α1
1,

the following conditions must be added in terms of stress resultants

N(τ)
1
(
α0

1, α2, t
)
= N(τ)

1
(
α1

1, α2, t
)

N(τ)
12
(
α0

1, α2, t
)
= N(τ)

12
(
α1

1, α2, t
)

T(τ)
1
(
α0

1, α2, t
)
= T(τ)

1
(
α1

1, α2, t
) (50)

and displacements
u(τ)

1
(
α0

1, α2, t
)
= u(τ)

1
(
α1

1, α2, t
)

u(τ)
2
(
α0

1, α2, t
)
= u(τ)

2
(
α1

1, α2, t
)

u(τ)
3
(
α0

1, α2, t
)
= u(τ)

3
(
α1

1, α2, t
) (51)

On the other hand, if the closing edge is identified by α2 = α0
2 and α2 = α1

2, the compatibility
conditions in terms of stress resultants become

N(τ)
21
(
α1, α0

2, t
)
= N(τ)

21
(
α1, α1

2, t
)

N(τ)
2
(
α1, α0

2, t
)
= N(τ)

2
(
α1, α1

2, t
)

T(τ)
2
(
α1, α0

2, t
)
= T(τ)

2
(
α1, α1

2, t
) (52)

whereas the kinematic conditions assume the aspect written below

u(τ)
1
(
α1, α0

2, t
)
= u(τ)

1
(
α1, α1

2, t
)

u(τ)
2
(
α1, α0

2, t
)
= u(τ)

2
(
α1, α1

2, t
)

u(τ)
3
(
α1, α0

2, t
)
= u(τ)

3
(
α1, α1

2, t
) (53)

Finally, it should be specified that the presented theoretical approach is employed to analyze the
mechanical behavior of thick and moderately thick shells that are defined by the following limitations

0.01 ≤ max
(

h
Rmin

,
h

Lmin

)
≤ 0.2 (54)

where Rmin and Lmin stand for the minimum value of the radii of curvature and the minimum
size, respectively.

5. Numerical Aspects

In this section, the numerical techniques employed in the present work are briefly illustrated.
In particular, the GDQ method is used to approximate the derivatives in order to solve the strong form
of the governing equations and to obtain the geometric parameters required to define the shell geometry.
On the other hand, the integrals needed to evaluate the elastic constants of the stiffness matrix are
computed by means of the Generalized Integral Quadrature (GIQ). For further details concerning
these numerical approaches, the reader can refer to the review paper by Tornabene et al. [124].

5.1. Local Generalized Differential Quadrature Method

The Local Generalized Differential Quadrature (LGDQ) method is a numerical tool that allows to
approximate the derivatives of a generic function without considering all the points of the reference
domain. In other words, local interpolating basis functions are taken into account instead of their
corresponding global ones, if compared to the well-known GDQ method. The main features of
the LGDQ are explained in this paragraph considering a one-dimensional domain for conciseness
purposes. The n-th derivative of a sufficiently smooth function f (x) evaluated at a generic point xi can
be computed as a weighted linear sum of the function values at some selected grid points, considering
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only a limited part of the whole domain, which is globally made up of IN discrete points. From the
mathematical point of view, one gets

dn f (x)
dxn

∣∣∣∣
x=xi

∼=
N2

∑
j=N1

ς
(n)
ij f

(
xj
)

(55)

for i = 1, 2, ..., IN , where the symbol ς
(n)
ij denotes the weighting coefficients for derivative in hand.

It is clear that the evaluation of these weighting coefficients and the choice of a proper grid distribution
represent the key points of the present technique. The limit values of the sum N1, N2 depend on the
position of the point xi where the derivative is computed. The following relations must be introduced
to define their value

N1 = max(i− IPN , 1)
N2 = min(i + IPN , IN)

(56)

for i = 1, 2, ..., IN . The symbol IPN stands for the number of grid points that must be taken into
account on the left and on the right of the point xi itself. It should be noted that the value of IPN has
to be set a priori. Due to the definitions shown in Equation (56), the values of N1, N2 is variable and
assumes different meanings according to the position of the point xi within the domain. Figure 3
is introduced now to explain more clearly the significance of Equation (56). Let us assume that xi
is placed in the center of the domain so that on both its left and its right the number of points is
greater than IPN . As it can be noted from Figure 3a, the derivative shown in Equation (55) is computed
considering (2IPN + 1) points, since N1 = i− IPN and N2 = i + IPN . Let us consider the circumstance
in which xi is located next to the limits of the domain (or corresponds also to the boundary points).
In these case, the value of IPN can be greater than the number of points that actually appear on the
left (Figure 3b) or on the right (Figure 3c) of xi. With reference to the case depicted in Figure 3b, one
gets N1 = 1 and N2 = i + IPN , whereas N1 = i − IPN and N2 = IN is set for the situation shown
in Figure 3c. It should be clear that the variability of N1, N2 is given not to overcome the domain
boundaries. Finally, the well-known GDQ method in its global form can be obtained by setting N1 = 1
and N2 = IN for each value of IPN .Appl. Sci. 2017, 7, 131 14 of 39 
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Figure 3. One-dimensional scheme for the Local Generalized Differential Quadrature (LGDQ) method
considering different positions of the i-th point where the derivative is computed: (a) point placed
in the center of the domain; (b) point located next to the limits of the domain; (c) point placed on
the boundary.
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As far as the evaluation of the weighting coefficients ς
(n)
ij is concerned, the formulas shown in the

works [104,123] can be used. For the first-order derivatives, one gets

ς
(1)
ij =

N2
∏

k=N1, k 6=i,j
(xi − xk)

N2
∏

k=N1, k 6=i,j

(
xj − xk

) for i 6= j, j ∈ [N1, N2] (57)

ς
(1)
ij = −

N2

∑
k=N1, k 6=i

ς
(1)
ik for i = j, j ∈ [N1, N2] (58)

ς
(1)
ij = 0 otherwise (59)

On the other hand, the following recursive relations must be employed for the n-th
order derivatives

ς
(n)
ij = n

ς
(1)
ij ς

(n−1)
ii −

ς
(n−1)
ij

xi − xj

 for i 6= j, j ∈ [N1, N2] (60)

ς
(n)
ij = −

N2

∑
k=N1, k 6=i

ς
(n)
ik for i = j, j ∈ [N1, N2] (61)

ς
(n)
ij = 0 otherwise (62)

The formulation just presented can be easily extended to the case of two-dimensional domain
following the same considerations shown in the works [108,109]. It should be noted that in this case
a discrete grid distribution must be applied along both the principal coordinate directions. Let us
assume that the domain is bounded by the limitations shown in Equations (10)–(12). The discrete
points within the shell reference domain can be placed as follows

α1i =
α1

1 − α0
1

rIN − r1
(ri − r1) + α0

1 (63)

α2j =
α1

2 − α0
2

rIM − r1

(
rj − r1

)
+ α0

2 (64)

for i = 1, 2, ..., IN and j = 1, 2, ..., IM, where IN , IM denote the total number of points along α1, α2,
respectively. Due to the general features of the present approach, several grid distributions can be
considered to define the value of ri, rj. Due to the accuracy and convergence characteristics shown
in the work [104], the points are placed within the domain by evaluating the roots of the Chebyshev
polynomials of the second kind. In other words, ri, rj assume the following aspect

ri = cos
(

IN − i + 1
IN + 1

π

)
(65)

rj = cos
(

IM − j + 1
IM + 1

π

)
(66)
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for i = 1, 2, ..., IN , j = 1, 2, ..., IM, and r ∈ [−1, 1]. It should be noted that a local interval of points
must be defined also along the second principal direction of the two-dimensional domain. For this
purpose, the parameter IPM is introduced with the same meaning of IPN . For the sake of simplicity,
in the present work the value of IPM corresponds to IPN . In general, the use of the LGDQ should be
more advisable to deal with those physical problems in which the properties of the domain change
point by point. With this aim, a substantial number of discrete points could be required to define
accurately these features, as in the case of shells with variable thickness presented in this work. As a
consequence, the cost could be high from the computational point of view if a global approach is
employed. Nevertheless, the LGDQ represents an efficient tool to reduce the computational effort
since the matrix that collects the coefficients is banded, as explained in the literature [102,104].

5.2. Generalized Integral Quadrature Method

The GIQ method is a numerical tool that allows to evaluate integrals. Let us consider a smooth
function f (x) defined in a closed domain [a, b]. In addition, let us assume that IT points are placed
to discretize the domain itself, so that one gets a = x1, x2, . . . , xIT−1, xIT = b. As a consequence,
IT − 1 subdomains are defined. The continuous function f (x) can be approximated by the Lagrange
polynomials of order IT − 1, since IT points are employed to discretize the domain. The integral of the
approximated function in the closed interval

[
xi, xj

]
is defined as follows

xj∫
xi

f (x)dx =
IT

∑
k=1

wij
k f (xk) (67)

In other words, the numerical integral of f (x) is a weighted linear sum of the values that the
function f (x) assumes in each point of the reference domain. It should be noted that this procedure
involves the values that the function assumes in the points placed outside the integration domain.
As in the GDQ method, wij

k are the weighting coefficients required for the integration, which can be
computed as shown below. Let us assume that the function f (x) is approximated by a polynomial
expansion as

f (x) = a1 + a2x + · · ·+ aIT xIT−1 (68)

in which ai, for i = 1, 2, ..., IT , denote the arbitrary constants of the polynomial. An auxiliary function
F(x) must be introduced so that

f (x) =
dF(x)

dx
(69)

Due to Equation (68), the function F(x) can be defined as

F(x) =
x∫

c

f (λ)dλ + u(c) = I f (x, c) + u(c) (70)

in which I f (x, c) is the integrand function that assumes the following aspect

I f (x, c) = x
(

a1 +
a2

2
x + · · ·+

aIT

IT
xIT−1

)
− c
(

a1 +
a2

2
c + · · ·+

aIT

IT
cIT−1

)
(71)
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On the other hand, c denotes an arbitrary constant. Due to the Weierstrass theorem and
the properties of a linear vector space, the expression below represents an approximation of the
function I f (x, c)

I f (x, c) =
IT

∑
j=1

(x− c)lj(x)dj (72)

where lj(x) specifies the Lagrange polynomials. The first derivative of I f (x, c) with respect to x can be
easily evaluated at the point xi

dI f (x, c)
dx

∣∣∣∣
xi

= I(1)f (x, c)
∣∣∣
xi
=

IT

∑
j=1

dj

(
lj(xi) + (xi − c)l(1)j (xi)

)
(73)

where l(1)j (xi) stands for the first-order derivative with respect to x of the Lagrange polynomials

computed at xi. It should be noted that l(1)j (xi) stands for the first-order derivative with respect to x of
the Lagrange polynomials computed at xi and coincides with the weighting coefficients of the first
order derivative ς

(1)
ij given by the GDQ method [124]. By applying the differential quadrature law,

Equation (73) becomes

dI f (x, c)
dx

∣∣∣∣
xi

= I(1)f (x, c)
∣∣∣
xi
=

IT

∑
j=1

ς
(1)
ij I f

(
xj, c

)
=

IT

∑
j=1

ς
(1)
ij

IT

∑
k=1

dk
(
xj − c

)
lk
(

xj
)

(74)

in which the terms lk
(

xj
)
= δkj represent the Kronecker delta. The following results is achieved by

comparing Equations (73) and (74)

dI f (x, c)
dx

∣∣∣∣
xi

= I(1)f (x, c)
∣∣∣
xi
=

IT

∑
j=1

ς
(1)
ij
(
xj − c

)
dj (75)

where the weighting coefficients assume the form

ς
(1)
ij =

xi − c
xj − c

ς
(1)
ij (76)

for i 6= j, and

ς
(1)
ij = ς

(1)
ii +

1
xi − c

(77)

for i = j. The arbitrary constant c must be set equal to c = xIT + 10−10 due to accuracy and stability
reasons [124]. At this point, Equation (74) can be conveniently written in matrix form

I(1)f = ς(1)I f (78)

in which ς(1) is the matrix that collects the weighting coefficients, and the following vectors
are introduced

I(1)f = f =
[

I(1)f (x1, c), I(1)f (x2, c), . . . , I(1)f
(
xIT−1, c

)
, I(1)f

(
xIT , c

)]
(79)

I f = F =
[

I f (x1, c), I f (x2, c), . . . , I f
(
xIT−1, c

)
, I f
(
xIT , c

)]
(80)

Recalling Equation (70), vector I f can be rewritten as

I f = F =

 x1∫
c

f (x)dx,
x2∫

c

f (x)dx, . . . ,

xIT−1∫
c

f (x)dx,

xIT∫
c

f (x)dx

 (81)
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Thus, the integrals shown in Equation (81) can be evaluated as follows

I f = WI(1)f (82)

where W =
(

ς(1)
)−1

is the matrix of the weighting coefficients for the integrals that can be computed
by inverting the corresponding matrix of the weighting coefficients for the first-order derivatives.
One gets

xi∫
c

f (x)dx =
IT

∑
k=1

wik f (xk) (83)

for i = 1, 2, ..., IT . Finally, the integral in Equation (67) is obtained

xj∫
c

f (x)dx +

xi∫
c

f (x)dx =

xj∫
c

f (x)dx−
c∫

xi

f (x)dx =

xj∫
xi

f (x)dx =
IT

∑
k=1

(
wjk − wik

)
f (xk) (84)

where the weighting coefficients for the GIQ method are given by

wij
k = wjk − wik (85)

It should be clear that they can be evaluated directly from the expressions of the weighting
coefficients used to approximate the first order derivatives [124]. A proper grid distribution must
be introduced to discretize the reference domain. Since in the present work the integrals must be
evaluated along the shell thickness to compute the elastic coefficients of the stiffness matrix, the points
along the coordinate ζ can be located as

ζm =

(
1− cos

(
i− 1

IT − 1
π

))
h(α1, α2)

2
− h(α1, α2)

2
, (86)

for m = 1, 2, ..., IT . Equation (86) represents the well-known Chebyshev–Gauss–Lobatto grid
distribution. It is important to notice that each node defined by Equation (86) depends on the principal
coordinates α1, α2 since the thickness of the considered structures is variable. The value of IT is fixed
equal to 51 for each numerical analysis presented in the following sections.

6. Free Vibration Analysis

The governing system of equations can be written in the following form

N+1

∑
η=0

L(τη)U(η) + ω2
N+1

∑
η=0

M(τη)U(η) = 0 (87)

for τ = 0, 1, 2, ..., N, N + 1, if the solution is conveniently assumed equal to

u(τ)(α1, α2, t) = U(τ)(α1, α2)eiωt (88)

where U(τ) is the vector of the mode shapes defined as follows

U(τ) =
[

U(τ)
1 (α1, α2) U(τ)

2 (α1, α2) U(τ)
3 (α1, α2)

]T
(89)

for each order of kinematic expansion τ. It should be noted that ω denotes the corresponding circular
frequencies, from which it is possible to evaluate the natural frequencies as f = ω/2π.



Appl. Sci. 2017, 7, 131 18 of 39

At this point, Equation (87) can be solved by means of the LGDQ method. In other words,
the derivatives that appear in the governing equation can be approximated through Equation (55) and
written in their discrete form. Thus, the governing system of equations assume the following aspect

Kδ = ω2Mδ (90)

in which K and M represent the stiffness and the mass matrices, respectively. On the other hand, δ is
the vector that collects the vibration spatial amplitude values. It is well-known that Equation (90)
represents a generalized linear eigenvalue problem. The eigenvalue ωk are evidently the circular
frequencies of the considered structure. Once their value is computed, the corresponding eigenvectors
δk that represent the mode shapes can be evaluated, too. It should be specified that the maximum
number of eigenvalues, as well as eigenvectors, depends on the number of points IN , IM chosen to
discretize the reference domain along the two principal directions α1, α2, respectively. It is point
out that the size of system of discrete Equation (90) is equal to 3× (N + 2)× (IN × IM)× (IN × IM),
where N denotes the maximum order of kinematic expansion. It should be noted that the size of the
problem can be reduced by applying the well-known kinematic condensation of non-domain degrees
of freedom in order to separate the quantities associated with the central points of the domain from
the ones related to the boundaries.

7. Numerical Results

The four structures with variable thickness made of FGMs depicted in Figure 4 are considered in
the present section to evaluate their natural frequencies by the LGDQ method. As previously illustrated,
the reference domain (or middle surface) is described by the corresponding position vector r(α1, α2),
whereas a proper expression is introduced to define the smooth thickness variation of the shells. With
reference to Figure 4, it should be specified that the shell cross-sections affected by the thickness
variation are represented, too. To this end, the local coordinate reference system is also depicted to
understand more clearly the thickness variation (the principal axes are specified by the colors magenta,
cyan and green, respectively). Different stacking sequences and volume fraction distributions are taken
into account to characterize the mechanical features of the composites (Figure 5). The two isotropic
constituents and their corresponding properties are listed in Table 1 for conciseness purposes.

Table 1. Mechanical properties of the two constituents.

Constituents Mechanical Properties

Stainless steel SUS304 EM = 207.7877 GPa, νM = 0.317756, ρM = 8166 kg/m3

Silicon nitride Si3N4 EC = 322.2715 GPa, νC = 0.24, ρC = 2370 kg/m3

Firstly, the proposed method is validated by the comparison with the results available in the
literature. Then, several parametric investigations are performed to show the effect of the variation of
the volume fraction distributions on the natural frequencies. In these circumstances, the results are
compared with the ones obtained by a three-dimensional finite element model (3D-FEM) for the limit
cases. In other words, the commercial code Abaqus is employed only to evaluate the natural frequencies
of composite structures made of isotropic layers. For this purpose, the three-dimensional model is
obtained by using 20-node hexahedrons elements (C3D20). On the other hand, all the results shown in
the following tables are obtained by the LGDQ method implemented in a MATLAB code [128]. In the
present solution, the degrees of freedom are equal to 3(N + 2)× (IN × IM), or 3(N + 1)× (IN × IM)

in case the Murakami’s function is neglected in the HSDT.
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7.1. Comparison with the Literature

The FGM annular plate defined in the work by Efraim and Eisenberger [90] is considered in
the current section to validate the proposed approach. The plate middle surface is described by the
following position vector

r(x, ϑ) = (R i + x) cos ϑ e1 − (R i + x) sin ϑ e2 (91)

where x, ϑ are the principal coordinate of the surface, assuming x ∈ [0, L] and ϑ ∈ [0, 2π]. The inner
radius is denoted by R i, whereas the outer one can be computed as R out = R i + L. A linear variation
is applied along the radial direction to define the thickness profile

h(x) = H
(

1.2− 0.4
x
L

)
(92)

in which H is a constant parameter. The following relations must be taken into account to describe
completely the plate geometry

H/R out = 0.1 (93)

R i/R out = 0.2 (94)

For the sake of completeness, both the structure and its radial cross-section are depicted in
Figure 4a. The upper surface of the plate is made of Silicon nitride and a linear variation of the
mechanical properties is assumed to describe the functionally graded composite layer. On the
other hand, the lower surface is completely made of Stainless steel. The first 20 natural frequencies
(apart from free body motions) are shown in Table 2 in their dimensionless form

Ω = 2π f Rout

√
ρM
EM

(95)

Table 2. First 20 frequency parameters Ω for a completely free (FF) annular plate with variable
thickness [90]. The LGDQ solution is obtained for several Higher-order Shear Deformation Theories
(HSDTs) by setting IN = IM = 41 and IPN = IPM = 14.

Ω Ref. [90] FSDTχ=1.2
RS ED2χ=1.2 ED3

1 0.2262 0.2255 0.2265 0.2261
2 0.3781 0.3941 0.3811 0.3778
3 0.5030 0.5018 0.5027 0.5031
4 0.8226 0.8205 0.8233 0.8218
5 0.8350 0.8357 0.8322 0.8344
6 1.2270 1.2130 1.2216 1.2261
7 1.3619 1.3566 1.3592 1.3629
8 1.6616 1.6345 1.6766 1.6551
9 1.7404 1.7274 1.7222 1.7728

10 1.9994 1.9871 1.9915 1.9956
11 2.1471 2.1382 2.1500 2.1424
12 2.4714 2.4837 2.4434 2.5336
13 2.6810 2.6800 2.6840 2.6754
14 2.7545 2.7311 2.7118 2.7127
15 3.0348 3.0137 3.0273 3.0239
16 3.2471 3.2530 3.2346 3.2953
17 3.3953 3.3699 3.3523 3.3965
18 3.5822 3.5654 3.6344 3.5695
19 3.7599 3.9041 3.8038 3.7826
20 3.9505 3.9472 3.9534 3.9629
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As far as the boundary conditions are concerned, the structure is taken completely free (FF).
The LGDQ solutions are obtained by setting IN = IM = 41 and IPN = IPM = 14. Three different
structural models are considered: FSDTχ=1.2

RS , ED2χ=1.2, and ED3. It should be noted that both the first
and second order theories require the shear correction factor χ = 1.2, whereas the hypothesis of plane
stress is take into account only in the FSDT. From the results shown in Table 2, it can be noted that the
numerical values are in good agreement with the reference solutions for each model.

7.2. Elliptic Cylinder

The next application aims to evaluate the natural frequencies of a FC elliptic cylinder made
of two FGM layers of equal thickness. The geometry under consideration is depicted in Figure 4b.
The stacking sequence, as well as the volume fraction distribution of the constituents, are shown in
Figure 5a for different values of the exponent p(1) = p(2) = p. The middle surface of the shell is given
by the following position vector

r(α1, y) = a cos α1 e1 − y e2 + b sin α1 e3 (96)

where a = 1 m and b = 1.5 m are the semi diameters of the ellipse. The coordinates α1, y are
bounded respectively by the limitations α1 ∈

[
α0

1, α1
1
]

and y ∈ [0, L], with α0
1 = −π/2, α1

1 = 3π/2,
and L = 4 m. A sine-wave variation is applied along the first coordinate α1 to define the thickness
profile. Mathematically speaking, the thickness is described by the following expression

h(α1) = h0

1 +
1
2

(
sin

(
π

(
4

α1 − α0
1

α1
1 − α0

1
+

1
2

)))3
 (97)

with h0 = 0.2 m. The first 10 natural frequencies for the considered structure are shown in Table 3
for different values of the parameter p ∈ [0, ∞], varying the structural model. As in the previous
example, the FSDTχ=1.2

RS , ED2χ=1.2, and ED3 are employed. The same considerations concerning the
shear correction factor and the reduced elastic stiffnesses are still valid.

It should be noted that the boundary values of p denote a structure completely made of Silicon
nitride (p = 0) and Stainless steel (p = ∞), respectively. In this cases, the comparison with the 3D-FEM
solutions is performed with excellent results for all the structural theories. It should be noted that the
finite element model is made of 69680 brick elements (924690 degrees of freedom). On the other hand,
the LGDQ solutions is obtained by setting IN = 51, IM = 31, and IPN = IPM = 16. These values are
chosen to describe accurately both the elliptical shape and the thickness variation. For completeness
purposes, the variation of the first natural frequency is depicted graphically in Figure 6 as a function of
the exponent p. It is evident that for lower values of p the frequencies are highly affected by variation
of the volume fraction distribution of the constituents. On the other hand, for p > 4÷ 6 the variation
in terms of natural frequencies is considerably restricted. The same behavior can be observed for
each structural model. In the same plots, the black dashed lines represent the extreme cases of the
isotropic homogeneous shell (p = 0 and p = ∞) and the corresponding frequencies are evaluated by
the finite element software. For the sake of conciseness, Figure 6 shows only the variation of the first
natural frequency, but it should be specified that higher modes exhibit the same trend. It is evident
that the variation of the natural frequencies is bounded by these two lines. Finally, the first three mode
shapes for a FC elliptic cylinder with variable thickness are shown in Figure 7 assuming p = 1, which
corresponds to a linear distribution of the volume fraction. From these images, it can be noted that the
boundary conditions are well-enforced. In this paper, the colormap used for the mode shapes stands
for the intensity of the modal displacements. A zero displacement is specified by a dark blue color,
whereas a red tone represents bigger movements.
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Table 3. First 10 natural frequencies f (Hz) for a FC elliptic cylinder with variable thickness, varying
the value of the exponents p(1) = p(2) = p of the volume fraction distributions. The LGDQ solution is
obtained for several HSDTs by setting IN = 51, IM = 31 and IPN = IPM = 16.

FSDTχ=1.2
RS

f p = 0 3D-FEM p = 0 p = 0.5 p = 1 p = 2 p = 4 p = 12 p = 128 p = ∞ p = ∞ 3D-FEM

1 198.416 198.176 160.153 139.672 118.718 102.625 91.032 86.574 86.125 86.218
2 200.943 200.889 160.357 140.862 121.181 105.629 93.010 86.921 86.257 86.440
3 217.121 217.108 175.692 154.648 133.197 116.204 102.277 95.447 94.692 94.809
4 266.782 266.724 212.676 185.125 157.180 135.718 120.251 114.302 113.710 113.803
5 446.760 447.020 356.855 310.736 263.795 227.520 200.911 190.299 189.225 189.113
6 480.164 480.532 386.917 338.160 288.685 250.297 221.188 208.735 207.435 207.348
7 482.571 482.751 390.175 344.231 296.158 257.088 227.140 212.461 210.670 210.696
8 491.482 492.270 395.554 346.281 297.307 259.873 228.446 214.083 212.707 212.296
9 495.069 494.055 401.002 353.707 305.419 266.924 234.671 218.299 216.465 217.250

10 620.312 619.549 501.924 440.961 375.498 325.102 288.585 273.130 270.962 271.596

ED2χ=1.2

f p = 0 3D-FEM p = 0 p = 0.5 p = 1 p = 2 p = 4 p = 12 p = 128 p = ∞ p = ∞ 3D-FEM

1 198.416 198.431 160.340 139.746 118.812 102.734 91.132 86.656 86.208 86.218
2 200.943 200.936 160.449 141.076 121.407 105.877 93.267 87.142 86.466 86.440
3 217.121 217.269 175.834 154.797 133.371 116.419 102.527 95.675 94.912 94.809
4 266.782 266.756 212.726 185.191 157.269 135.823 120.350 114.383 113.788 113.803
5 446.760 446.605 356.514 310.441 263.555 227.327 200.751 190.137 189.060 189.113
6 480.164 480.769 386.492 337.772 288.359 250.041 220.984 208.516 207.210 207.348
7 482.571 482.297 390.320 344.378 295.605 256.635 226.748 212.798 210.987 210.696
8 491.482 491.430 394.815 345.620 297.510 260.177 228.848 213.663 212.279 212.296
9 495.069 494.589 401.401 354.094 305.857 267.471 235.343 218.934 217.083 217.250

10 620.312 619.666 501.948 440.963 375.534 325.175 288.637 273.499 271.306 271.596

ED3

f p = 0 3D-FEM p = 0 p = 0.5 p = 1 p = 2 p = 4 p = 12 p = 128 p = ∞ p = ∞ 3D-FEM

1 198.416 198.497 160.286 139.761 118.814 102.728 91.146 86.677 86.219 86.218
2 200.943 201.012 160.602 141.124 121.420 105.873 93.289 87.156 86.480 86.440
3 217.121 216.814 175.463 154.458 133.061 116.140 102.306 95.422 94.644 94.809
4 266.782 266.795 212.746 185.195 157.252 135.799 120.355 114.407 113.813 113.803
5 446.760 446.703 356.558 310.458 263.549 227.314 200.757 190.160 189.084 189.113
6 480.164 480.217 386.679 337.894 288.402 250.052 221.081 208.649 207.338 207.348
7 482.571 482.574 389.743 343.763 295.321 256.346 226.613 212.551 210.724 210.696
8 491.482 491.361 394.664 345.407 296.857 259.579 228.522 213.614 212.229 212.296
9 495.069 494.722 401.410 354.015 305.682 267.286 235.344 218.950 217.076 217.250

10 620.312 619.988 502.016 440.969 375.479 325.094 288.644 273.637 271.432 271.596
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7.3. Doubly-curved Shell of Revolution with Hyperbolic Meridian 

The FC hyperbolic meridian shell, depicted in Figure 4c, is a doubly-curved shell of revolution 
whose reference surface is defined a branch of a hyperbola. The surface at issue is described by the 
following position vector 

( ) ( ) ( )
( )( )2 2

0

0 1 0 2 32
, cos sin

1

R a
R R

ϕ
ϕ ϑ ϕ ϑ ϕ ϑ

−
= − +

−
r e e e

k
 (98) 

The coordinates ,ϕ ϑ  are defined in the intervals [ ]0 1,ϕ ϕ ϕ∈  and [ ]0 1,ϑ ϑ ϑ∈ , where 

0 1.741190ϕ = , 1 1.212026ϕ = , 0 0ϑ = , 1 2ϑ π= . On the other hand, the parallel radius ( )0R ϕ  
assumes the aspect shown below 
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7.3. Doubly-Curved Shell of Revolution with Hyperbolic Meridian

The FC hyperbolic meridian shell, depicted in Figure 4c, is a doubly-curved shell of revolution
whose reference surface is defined a branch of a hyperbola. The surface at issue is described by the
following position vector

r(ϕ, ϑ) = R 0(ϕ) cos ϑ e1 − R 0(ϕ) sin ϑ e2 +

√
(R 0(ϕ))2 − a2

k2 − 1
e3 (98)

The coordinates ϕ, ϑ are defined in the intervals ϕ ∈ [ϕ0, ϕ1] and ϑ ∈ [ϑ0, ϑ1], where ϕ0 = 1.741190,
ϕ1 = 1.212026, ϑ0 = 0, ϑ1 = 2π. On the other hand, the parallel radius R 0(ϕ) assumes the aspect
shown below

R 0(ϕ) = a sin ϕ

√
k2 − 1

k2 sin2 ϕ− 1
(99)

where k =
√

1 + a2/b2. It should be specified that a is the parallel radius of the throat section of
the structure, and b = aD/

√
d2 − a2 is the characteristic dimension of the shell, in which a = 1 m,

d = 2 m, D = 4 m. The meaning of these parameters, as well as the ones needed to sketch the
following structure, can be found in Figure 8. For further details concerning the present geometry
the reader can refer to the book by Tornabene et al. [2]. With reference to Figure 8a, the characteristic
dimension of the hyperbola can be defined alternatively as b = aC/

√
c2 − a2, where c is the parallel

radius at the top section of the structure and C represents its coordinate that in the present case is
equal to C = 1 m. The value of c can be computed by means of Equation (99). The reference value of
thickness is h0 = 0.2 m and it is measured along the top edge. A cubic variation is applied along the
first coordinate ϕ and it can be defined as follows:

h(ϕ) = h0

(
1 + 2

(
ϕ− ϕ0

ϕ1 − ϕ0

)3
)

(100)
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It should be noted that the same thickness variation affects each ply, as it can be observed in the
cross-section of Figure 4c. The structure is made of five layers with different thickness reference values.
The two external laminae are isotropic and fully ceramic (h0,1 = h0,5 = 0.02 m), whereas the inner
isotropic core is made of metal and its thickness is equal to h0,3 = 0.06 m. The remaining two plies
have equal thickness h0,2 = h0,4 = 0.05 m and are graded as it can be noted from the stacking sequence
depicted in Figure 5b, where the volume fraction distributions of the two constituents are also specified
for several values of the exponent p(2) = p(4) = p ∈ [0, ∞]. In a similar way to the previous example,
the boundary values of p define respectively a layer fully made of Silicon nitride (p = 0) and Stainless
steel (p = ∞). The results of this parametric study are given in Table 4 for the FSDTχ=1.2

RS , ED2χ=1.2,
and ED3 models.

Due to the presence of various layers with different mechanical properties, the influence of
the Murakami’s function is also investigated. Thus, the aforementioned structural theories are also
embedded with this function. The results related to the FSDTZχ=1.2

RS , EDZ2χ=1.2, and EDZ3 models
are shown in Table 5. Even in this circumstance, the shear correction factor is used for the first and
second order models, whereas the plane stress hypothesis is considered only in the Reissner-Mindlin
theory. It is easy to notice that the Murakami’s function does not significantly affect the results. Both in
Tables 4 and 5, the 3D-FEM solutions are also included for comparison purposes. It should be noted
that the finite element model is made of 52,734 brick elements (685,824 degrees of freedom). Excellent
agreement with the reference solutions is achieved in each circumstance. The LGDQ results are
obtained by setting IN = IM = 31 and IPN = IPM = 16, and the natural frequencies are written for
different values of p. It should be noted that Tables 4 and 5 show the first 18 natural frequencies. In fact,
some couples of natural frequencies are equal due to the symmetry of the structure, in terms of both
geometry and materials. For the sake of clarity, the variation of the first six natural frequencies as a
function of the exponent p are depicted in graphical form in Figure 9 for all the considered structural
models, with and without the Murakami’s function. As in the previous case, a remarkable difference in
the structural response can be obtained for lower values of the parameter p. Finally, the first six mode
shapes for the doubly-curved shell of revolution with hyperbolic meridian with variable thickness
are shown in Figure 10 assuming a linear variation for the volume fraction distributions of the two
constituents in the FGM layers (p = 1).
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Table 4. First 18 natural frequencies f (Hz) for a CF doubly-curved shell of revolution with hyperbolic
meridian with variable thickness, varying the value of the exponents p(2) = p(4) = p of the volume
fraction distributions. The LGDQ solution is obtained for several HSDTs by setting IN = IM = 31 and
IPN = IPM = 16.

FSDTχ=1.2
RS

f p = 0
3D-FEM p = 0 p = 0.2 p = 0.5 p = 1 p = 2 p = 6 p = 128 p = ∞ p = ∞

3D-FEM

1-2 258.759 258.617 240.405 224.620 210.698 198.245 185.432 177.078 176.615 176.810
3-4 300.373 299.639 280.115 263.059 247.815 233.866 218.866 208.334 207.720 208.893
5-6 413.931 417.080 389.716 365.832 344.512 325.038 304.168 289.593 288.745 287.997
7-8 464.130 464.720 432.082 403.783 378.801 356.411 333.222 317.662 316.798 316.548
9 469.069 469.517 435.535 406.136 380.231 357.064 333.286 318.105 317.258 317.178

10 591.877 591.647 551.016 515.725 484.573 456.722 428.139 409.599 408.573 409.117
11-12 627.627 630.520 590.173 554.826 523.086 493.813 461.884 438.975 437.620 437.800
13-14 642.576 649.611 606.264 568.470 534.806 504.184 471.639 449.223 447.931 445.365
15-16 762.858 765.328 712.381 666.380 625.678 589.088 551.097 525.940 524.529 524.017
17-18 766.938 777.361 727.148 683.205 643.839 607.691 568.601 540.920 539.296 537.917

ED2χ=1.2

f p = 0
3D-FEM p = 0 p = 0.2 p = 0.5 p = 1 p = 2 p = 6 p = 128 p = ∞ p = ∞

3D-FEM

1-2 258.759 258.987 240.741 224.950 211.034 198.591 185.790 177.441 176.978 176.810
3-4 300.373 301.127 281.523 264.432 249.184 235.254 220.309 209.846 209.236 208.893
5-6 413.931 416.628 389.282 365.465 344.249 324.918 304.274 289.924 289.092 287.997
7-8 464.130 464.908 432.215 403.910 378.947 356.593 332.887 317.366 316.505 316.548
9 469.069 469.044 435.083 405.705 379.825 356.688 333.525 318.399 317.556 317.178

10 591.877 593.040 552.209 516.864 485.729 457.922 429.399 410.903 409.880 409.117
11-12 627.627 631.392 590.988 555.661 524.003 494.875 463.212 440.589 439.255 437.800
13-14 642.576 647.280 603.986 566.321 532.845 502.471 470.314 448.284 447.018 445.366
15-16 762.858 765.353 712.282 666.273 625.628 589.143 551.332 526.362 524.963 524.017
17-18 766.938 776.543 726.307 682.469 643.322 607.525 569.070 542.087 540.512 537.917

ED3

f p = 0
3D-FEM p = 0 p = 0.2 p = 0.5 p = 1 p = 2 p = 6 p = 128 p = ∞ p = ∞

3D-FEM

1-2 258.759 258.962 240.684 224.866 210.933 198.484 185.699 177.382 176.921 176.810
3-4 300.373 300.814 281.158 264.034 248.782 234.891 220.059 209.729 209.128 208.893
5-6 413.931 415.246 387.757 363.872 342.688 323.525 303.292 289.383 288.578 287.997
7-8 464.130 464.701 431.934 403.576 378.590 356.253 332.945 317.417 316.555 316.548
9 469.069 469.126 551.874 405.779 379.895 356.753 333.274 318.265 317.430 317.178

10 591.877 592.843 588.706 516.412 485.195 457.359 428.905 410.548 409.536 409.117
11-12 627.627 629.280 588.706 553.305 521.705 492.818 461.729 439.724 438.429 437.800
13-14 642.576 645.025 601.445 563.638 530.207 500.129 468.713 447.491 446.276 445.365
15-16 762.858 764.507 711.247 665.120 624.452 588.071 550.591 526.011 524.638 524.017
17-18 766.938 771.504 720.824 676.826 637.897 602.830 566.017 540.724 539.253 537.917
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Table 5. First 18 natural frequencies f (Hz) for a CF doubly-curved shell of revolution with hyperbolic
meridian with variable thickness, varying the value of the exponents p(2) = p(4) = p of the
volume fraction distributions. The LGDQ solution is obtained for several HSDTs embedded with the
Murakami’s function by setting IN = IM = 31 and IPN = IPM = 16.

FSDTZχ=1.2
RS

f p = 0
3D-FEM p = 0 p = 0.2 p = 0.5 p = 1 p = 2 p = 6 p = 128 p = ∞ p = ∞

3D-FEM

1-2 258.759 258.613 240.398 224.609 210.684 198.226 185.408 177.050 176.586 176.810
3-4 300.373 299.525 279.937 262.807 247.480 233.443 218.346 207.769 207.154 208.893
5-6 413.931 416.744 389.199 365.100 343.530 323.779 302.583 287.814 286.958 287.997
7-8 464.130 464.649 431.973 403.629 378.594 356.145 332.951 317.660 316.796 316.548
9 469.069 469.517 435.534 406.134 380.229 357.063 333.220 317.726 316.878 317.178

10 591.877 591.644 551.012 515.718 484.563 456.708 428.119 409.574 408.549 409.117
11-12 627.627 630.043 589.434 553.779 521.691 492.040 459.687 436.554 435.192 437.800
13-14 642.576 648.980 605.299 567.108 532.987 501.858 468.718 445.944 444.636 445.365
15-16 762.858 765.045 711.951 665.777 624.875 588.065 549.817 524.505 523.086 524.017
17-18 766.938 775.983 725.041 680.234 639.870 602.616 562.226 533.765 532.106 537.917

EDZ2χ=1.2

f p = 0
3D-FEM p = 0 p = 0.2 p = 0.5 p = 1 p = 2 p = 6 p = 128 p = ∞ p = ∞

3D-FEM

1-2 258.759 258.963 240.728 224.935 211.005 198.536 185.689 177.296 176.830 176.810
3-4 300.373 300.965 281.320 264.171 248.851 234.841 219.807 209.301 208.691 208.893
5-6 413.931 416.333 388.828 364.811 343.356 323.752 302.776 288.216 287.373 287.997
7-8 464.130 464.824 432.116 403.770 378.741 356.297 332.883 317.362 316.501 316.548
9 469.069 469.043 435.080 405.702 379.822 356.684 333.100 317.869 317.020 317.178

10 591.877 592.952 552.191 516.851 485.664 457.750 429.034 410.350 409.315 409.117
11-12 627.627 630.906 590.271 554.669 522.695 493.226 461.189 438.388 437.048 437.800
13-14 642.576 646.806 603.217 565.181 531.260 500.376 467.591 445.150 443.864 445.366
15-16 762.858 765.091 711.933 665.769 624.908 588.149 549.968 524.717 523.303 524.017
17-18 766.938 775.448 724.603 680.015 639.981 603.183 563.533 535.821 534.213 537.917

EDZ3

f p = 0
3D-FEM p = 0 p = 0.2 p = 0.5 p = 1 p = 2 p = 6 p = 128 p = ∞ p = ∞

3D-FEM

1-2 258.759 258.865 240.627 224.839 210.923 198.480 185.681 177.334 176.870 176.810
3-4 300.373 300.592 281.015 263.948 248.733 234.859 220.025 209.683 209.081 208.893
5-6 413.931 414.608 387.359 363.651 342.582 323.471 303.214 289.240 288.431 287.997
7-8 464.130 464.466 431.795 403.506 378.562 356.237 332.939 317.410 316.548 316.548
9 469.069 469.124 435.158 405.777 379.891 356.748 333.228 318.159 317.319 317.178

10 591.877 592.375 551.601 516.281 485.155 457.355 428.850 410.365 409.342 409.117
11-12 627.627 628.374 588.121 552.961 521.528 492.734 461.672 439.664 438.370 437.800
13-14 642.576 643.860 600.729 563.248 530.024 500.032 468.555 447.193 445.969 445.366
15-16 762.858 763.806 710.833 664.910 624.365 588.024 550.470 525.743 524.359 524.017
17-18 766.938 769.235 719.464 676.136 637.643 602.773 565.883 540.380 538.896 537.917
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Figure 10. First six mode shapes for a CF doubly-curved shell of revolution with hyperbolic meridian
with variable thickness assuming p = 1 as exponent.

7.4. Doubly-Curved Panel of Translation

As last example, a CFCF doubly-curved panel of translation is considered (Figure 4d). Since
its geometry is obtained by moving a parabola over another parabola defined by the same shape,
this structure is named also as elliptic paraboloid. Its position vector can be written as follows

r(α1, α2) =

(
k tan α1

2
− k tan2 α2

4
sin α1

)
e1 −

k tan α2

2
e2 +

(
k tan2 α1

4
+

k tan2 α2

4
cos α1

)
e3 (101)

in which the coordinates α1, α2 are defined in the intervals α1 ∈
[
α0

1, α1
1
]

and α2 ∈
[
α0

2, α1
2
]
, assuming

α0
1 = α0

2 = 0.588003, α1
1 = α1

2 = −0.588003. On the other hand, k =
(
a2 − d2)/b is the characteristic

parameter of the two parabolas.
It is well-known that a parabolic curve is completely defined by the definition of three points

with abscissas a, c, d and the relative distance b between the points of coordinates a and d. In particular,
a and c represent the abscissas of the extreme points of the parabolic arch as it can be deducted from
Figure 8b. The current geometry can be obtained by setting a = 3 m, b = 1 m, c = −3 m, and d = 0 m.
For extra details concerning the present shape, the book by Tornabene et al. [2] can be taken into
account as a reference.

As it can be noted from Figure 5c, the structure is made of three layers. In particular, the lower ply
is isotropic and fully metal (Stainless steel), and the upper one is completely ceramic (Silicon nitride).
These two layers have the same reference thickness h0,1 = h0,3 = 0.05 m. On the other hand, the
central core is graded between these two limit cases and its reference thickness is equal to h0,2 = 0.2 m.
Thus, the overall shell thickness that can be assumed as a reference is h0 = 0.3 m. Varying the
exponent p(2) = p ∈ [0, ∞] of the volume fraction distribution, several mechanical configurations can
be obtained.

As far as the thickness profile is concerned, the thickness variation affects both the two principal
coordinates α1, α2, as it can be easily observed in the cross-sections shown in Figure 4d. In particular,
a quadratic variation is applied along α1, whereas a sine-wave variation is applied on the second
direction. Mathematically speaking, the thickness of the shell at issue is defined as follows

h(α1, α2) = h0

1 +
3
4

(
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1
α1

1 − α0
1

)2

+
1
2
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(
3
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2
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2

)
+ 1

)) (102)

Even in this circumstance, the three structural models previously employed are taken with
and without the Murakami’s function. The natural frequencies related to the FSDTχ=1.2

RS , ED2χ=1.2,
and ED3 are shown in Table 6, whereas the ones obtained by using the FSDTZχ=1.2

RS , EDZ2χ=1.2,
and EDZ3are written in Table 7, for several values of the parameter p. For the sake of completeness,
the 3D-FEM solutions, which are really close to the LGDQ ones, are also included in these tables.
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It should be specified that the finite element model is obtained by using 51,350 brick elements
(676,302 degrees of freedom).

Table 6. First 10 natural frequencies f (Hz) for a CFCF doubly-curved panel of translation with variable
thickness, varying the value of the exponents p(2) = p of the volume fraction distribution. The LGDQ
solution is obtained for several HSDTs by setting IN = IM = 31 and IPN = IPM = 16.

FSDTχ=1.2
RS

f p = 0
3D-FEM p = 0 p = 0.2 p = 0.5 p = 1 p = 2 p = 6 p = 128 p = ∞ p = ∞

3D-FEM

1 195.111 194.845 174.963 159.475 147.115 137.106 127.206 119.404 118.948 118.910
2 198.883 198.938 179.165 163.287 150.067 138.712 127.679 121.391 121.008 121.123
3 238.283 238.321 214.347 195.038 178.939 165.127 151.239 141.995 141.463 141.494
4 271.427 270.265 242.773 221.328 204.198 190.322 177.265 168.602 168.076 168.298
5 298.882 299.997 268.916 244.224 223.933 206.837 190.111 179.369 178.763 177.985
6 334.441 335.047 299.637 271.201 247.526 227.269 207.188 194.433 193.731 193.330
7 385.418 386.448 346.686 315.520 290.447 269.960 250.626 238.139 237.405 236.270
8 419.503 419.592 375.550 341.051 313.364 290.860 269.835 256.432 255.649 255.202
9 429.229 428.002 384.359 350.244 323.001 301.005 280.465 266.925 266.104 266.854

10 524.643 524.255 469.817 427.378 393.594 366.442 341.308 324.961 323.977 323.225

ED2χ=1.2

f p = 0
3D-FEM p = 0 p = 0.2 p = 0.5 p = 1 p = 2 p = 6 p = 128 p = ∞ p = ∞

3D-FEM

1 195.111 195.473 175.471 159.898 147.470 137.412 127.327 119.584 119.132 118.910
2 198.883 198.821 179.050 163.206 150.038 138.746 127.973 121.732 121.354 121.123
3 238.283 238.253 214.233 194.929 178.860 165.094 151.279 142.107 141.580 141.494
4 271.427 271.356 243.673 222.090 204.846 190.884 177.806 169.223 168.705 168.298
5 298.882 298.974 267.925 243.281 223.044 206.010 189.391 178.790 178.196 177.985
6 334.441 334.405 299.058 270.675 247.042 226.824 206.790 194.088 193.390 193.330
7 385.418 385.514 345.753 314.610 289.560 269.105 249.872 237.585 236.868 236.270
8 419.503 419.180 375.026 340.468 312.755 290.275 269.409 256.271 255.507 255.202
9 429.229 429.396 385.395 351.069 323.694 301.641 281.188 267.868 267.063 266.854

10 524.643 523.758 469.103 426.514 392.623 365.438 340.481 324.523 323.570 323.225

ED3

f p = 0
3D-FEM p = 0 p = 0.2 p = 0.5 p = 1 p = 2 p = 6 p = 128 p = ∞ p = ∞

3D-FEM

1 195.111 194.806 175.253 159.979 147.714 137.676 127.331 119.605 119.156 118.910
2 198.883 198.906 179.134 163.286 150.104 138.785 128.103 121.790 121.413 121.123
3 238.283 238.385 214.368 195.063 178.980 165.178 151.289 142.082 141.556 141.494
4 271.427 271.747 244.065 222.444 205.111 190.982 177.635 168.987 168.477 168.298
5 298.882 299.133 267.974 243.250 222.956 205.887 189.263 178.716 178.127 177.985
6 334.441 334.489 299.137 270.744 247.097 226.859 206.790 194.064 193.366 193.330
7 385.418 385.655 345.817 314.599 289.462 268.889 249.489 237.196 236.489 236.270
8 419.503 419.996 375.674 340.978 313.139 290.524 269.510 256.423 255.671 255.202
9 429.229 429.836 386.063 351.908 324.634 302.586 282.042 268.789 267.998 266.854

10 524.643 525.487 470.589 427.767 393.627 366.142 340.818 324.886 323.952 323.225
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Table 7. First 10 natural frequencies f (Hz) for a CFCF doubly-curved panel of translation with
variable thickness, varying the value of the exponents p(2) = p of the volume fraction distribution.
The LGDQ solution is obtained for several HSDTs embedded with the Murakami’s function by setting
IN = IM = 31 and IPN = IPM = 16.

FSDTZχ=1.2
RS

f p = 0
3D-FEM p = 0 p = 0.2 p = 0.5 p = 1 p = 2 p = 6 p = 128 p = ∞ p = ∞

3D-FEM

1 195.111 194.417 174.592 159.130 146.764 136.715 126.998 119.208 118.983 118.910
2 198.883 198.769 178.995 163.111 149.881 138.513 127.198 120.846 120.655 121.123
3 238.283 238.123 214.142 194.820 178.703 164.866 150.941 141.676 141.411 141.494
4 271.427 269.211 241.714 220.222 202.998 188.972 175.675 166.849 166.586 168.298
5 298.882 299.905 268.805 244.095 223.786 206.673 189.934 179.201 178.900 177.985
6 334.441 335.016 299.602 271.162 247.482 227.221 207.134 194.371 194.021 193.330
7 385.418 385.910 346.136 314.937 289.804 269.227 249.750 237.176 236.810 236.270
8 419.503 418.787 374.723 340.174 312.403 289.771 268.552 255.042 254.651 255.202
9 429.229 426.953 383.297 349.130 321.786 299.631 278.844 265.174 264.766 266.854

10 524.643 522.524 468.056 425.524 391.573 364.164 338.633 322.054 321.562 323.225

EDZ2χ=1.2

f p = 0
3D-FEM p = 0 p = 0.2 p = 0.5 p = 1 p = 2 p = 6 p = 128 p = ∞ p = ∞

3D-FEM

1 195.111 194.289 174.720 159.414 147.119 137.070 126.993 119.206 118.750 118.910
2 198.883 198.454 178.738 162.920 149.756 138.449 127.505 121.120 120.733 121.123
3 238.283 237.838 213.882 194.610 178.545 164.755 150.870 141.607 141.073 141.494
4 271.427 270.114 242.534 220.978 203.688 189.600 176.260 167.417 166.884 168.298
5 298.882 298.806 267.694 243.003 222.728 205.665 189.019 178.403 177.808 177.985
6 334.441 334.314 298.985 270.606 246.971 226.740 206.675 193.925 193.223 193.330
7 385.418 384.783 345.011 313.837 288.728 268.173 248.754 236.277 235.549 236.270
8 419.503 418.498 374.277 339.646 311.845 289.248 268.206 254.946 254.178 255.202
9 429.229 427.509 383.866 349.743 322.437 300.327 279.679 266.224 265.417 266.854

10 524.643 522.233 467.535 424.851 390.806 363.390 338.057 321.820 320.855 323.225

EDZ3

f p = 0
3D-FEM p = 0 p = 0.2 p = 0.5 p = 1 p = 2 p = 6 p = 128 p = ∞ p = ∞

3D-FEM

1 195.111 193.053 173.470 158.155 145.838 135.723 125.978 119.135 118.672 118.910
2 198.883 198.439 178.690 162.859 149.697 138.402 126.956 119.227 118.748 121.123
3 238.283 237.760 213.778 194.493 178.430 164.652 150.777 141.470 140.927 141.494
4 271.427 269.878 242.197 220.601 203.318 189.251 175.918 167.043 166.488 168.298
5 298.882 298.720 267.590 242.884 222.606 205.553 188.936 178.310 177.710 177.985
6 334.441 334.364 299.030 270.645 247.001 226.763 206.692 193.922 193.216 193.330
7 385.418 385.063 345.255 314.055 288.936 268.389 249.007 236.596 235.869 236.270
8 419.503 418.657 374.320 339.612 311.774 289.165 268.110 254.756 253.954 255.202
9 429.229 427.613 383.813 349.635 322.380 300.401 279.884 266.253 265.406 266.854

10 524.643 523.809 468.932 426.112 391.995 364.554 339.222 322.911 321.913 323.225

On the other hand, the present results are obtained by setting IN = IM = 31 and IPN = IPM = 16.
From the values in Tables 6 and 7, it is clear that the same observations illustrated for the previous case
do not lose their validity. The variation of the first three natural frequencies for the doubly-curved
panel of translation with variable thickness in hand is depicted in Figure 11. Finally, Figure 12 shows
the first three mode shapes for p = 1 as exponent of the volume fraction distribution of the FGM layer.
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Figure 12. First three mode shapes for a CFCF doubly-curved panel of translation with variable
thickness assuming p = 1 as exponent.

8. Conclusions

The GDQ method has been applied according to a local scheme to compute natural frequencies of
shell structures with variable thickness made of FGMs. The thickness profiles have been defined
through a number of smooth functions (linear, power-law, sinusoidal, and their combinations),
whereas a four-parameter power law function has been adopted to describe the through-the-thickness
volume fraction distribution of the two constituents. As a consequence, the considered shells
have been characterized by a variation of the mechanical properties both along the thickness and
within the reference domain. It should be noted that the higher-order based structural models
employed in this paper are two-dimensional and have allowed to evaluate accurately the natural
frequencies of variable thickness structures. The same geometries have been analyzed, for verification
purposes, also by means of a FEM commercial code for specific mechanical configurations. In this
circumstance, a three-dimensional model made of many brick elements has been required to model
the variable thickness profiles, considerably increasing the computational effort. In addition, the cost
of computation has been further reduced by the use of the LGDQ method, which does not take in
account all the discrete points within the domain. Consequently, the thickness variation has been
described precisely by setting more grid points, without affecting the computational resources. Finally,
a parametric investigation has been carried out to analyze the effect of the graded mechanical properties
along the shell thickness varying the exponent of the volume fraction distributions, for several
structural theories defined by different orders of kinematic expansion. The validity of the current
approach has been proven for FGM structures with variable thickness through the comparison with
the results available in the literature. To sum up, it has been shown that the LGDQ approach can
be considered as an efficient method to solve the free vibration problem of shell structures with
variable thickness with a reduced computational cost if compared to the corresponding FEM models,
which required a three-dimensional description characterized by a higher number of degrees of
freedom to obtain comparable results.
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