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Abstract: In this study, efficient global optimization (EGO) with a multi-fidelity hybrid surrogate
model for multi-objective optimization is proposed to solve multi-objective real-world design
problems. In the proposed approach, a design exploration is carried out assisted by surrogate models,
which are constructed by adding a local deviation estimated by the kriging method and a global model
approximated by a radial basis function. An expected hypervolume improvement is then computed
on the basis of the model uncertainty to determine additional samples that could improve the model
accuracy. In the investigation, the proposed approach is applied to two-objective and three-objective
optimization test functions. Then, it is applied to aerodynamic airfoil design optimization with
two objective functions, namely minimization of aerodynamic drag and maximization of airfoil
thickness at the trailing edge. Finally, the proposed method is applied to aerodynamic airfoil
design optimization with three objective functions, namely minimization of aerodynamic drag at
cruising speed, maximization of airfoil thickness at the trialing edge and maximization of lift at low
speed assuming a landing attitude. XFOILis used to investigate the low-fidelity aerodynamic force,
and a Reynolds-averaged Navier–Stokes simulation is applied for high-fidelity aerodynamics in
conjunction with a high-cost approach. For comparison, multi-objective optimization is carried out
using a kriging model only with a high-fidelity solver (single fidelity). The design results indicate
that the non-dominated solutions of the proposed method achieve greater data diversity than the
optimal solutions of the kriging method. Moreover, the proposed method gives a smaller error than
the kriging method.

Keywords: multi-fidelity optimization; efficient global optimization; multi-objective optimization;
airfoil design

1. Introduction

A high-cost computation function is required to solve aerodynamic design problems. In addition,
real-world design problems often involve several objective functions [1,2]. For example, in aircraft
design, it is necessary for a designer to account for not only the performance at a specific cruise condition,
but also the performances at all operating speeds, including those during take-off and landing. Owing
to these problems, several researchers have explored methods to reduce the computational costs of
design optimization algorithms for multi- or many-objective optimization problems.

In aerodynamic evaluation, it is possible to select various physical computation models to solve a
design problem [3]. For example, forces around an airfoil can be evaluated by a potential equation as a
low-level computation [4]. Moreover, the Navier–Stokes equation can be employed as a high-level
computation [5]. Given the advantage of the above-mentioned approach, a multi-fidelity approach
combines two-fidelity data for optimization in order to improve the efficiency of the optimization
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process. Thus, approaches that include a multi-fidelity surrogate model have been widely studied [6–8]
in aerospace engineering. Multi-fidelity methods for single-objective optimization based on the error
estimation of response surfaces have been successfully applied to design low-boom supersonic jets [6].
Because the response surfaces [9] use simple concepts to construct the function, the multi-fidelity
function based on the response surface is easy to construct. However, such methods are often associated
with low accuracy because the response surface model cannot be optimized in situations involving
an extremely small number of data points. A co-kriging model [7,8] has been extensively applied to
combine multi-fidelity functions. In addition, it has been employed to solve an optimal single-objective
airfoil design problem [7]. This method is beneficial for predicting a complicated landscape function.
However, it is less optimal in predicting a smooth landscape function. Rethore proposed a multi-fidelity
single-objective optimization process for wind turbine design [10,11]. This optimization process begins
with the location of an optimal point of a low-fidelity function by using a genetic algorithm (GA).
Then, an optimization with a high-fidelity function is performed using a gradient-based method.
The optimum point of the low-fidelity function is used as a starting point. This method is beneficial, as it
uses a basic optimization tool to solve the multi-fidelity optimization problem. However, it could fail to
find an optimum high-fidelity function if the error between the low-fidelity and high-fidelity functions
is large. Because the gradient-based method required many evolution functions to solve multi-objective
optimization problems, the multi-fidelity optimization based on evolutionary computation combined
with the gradient method would not reduce the computation time of the high-fidelity function.
Thus, multi-fidelity approaches are expected to improve the efficiency.

An approach to multi-fidelity/multi-objective optimization involves a model reduction
technique [12,13]. This technique has been applied to helicopter rotor blade design and airfoil
design [13,14]. The application of this technique reduces the design parameter space for defining the
possible design ranges based on a low-fidelity function. A high-fidelity function is then used to find
the optimum design in the primary defined design range. The high-fidelity function is sampled by
selecting the preferred design points, where the blade shows improved performance with respect to
the baseline design, in order to ensure good diversity of the sample data, in addition to the initial point
that is generated with the primary defined design range. However, this approach has the potential to
obtain an unexpected optimal solution outside the parameter space given that the design ranges of
the low-fidelity function are not always appropriate for the high-fidelity function. Fusi [15] used GA
to find the optimum solution of low-fidelity data and selected the interesting points of the optimum
solution using the low-fidelity data to find the optimum point of high-fidelity data of a hovering rotor
airfoil design.

Efficient global optimization (EGO) [16] is a widely-used method that consists of kriging-model-based
explorations. EGO involves additional sampling-procedure-based expected improvements (EIs) for
improving the model accuracy. The EIs are defined for single-objective optimization. The expected
hypervolume improvement (EHVI) algorithm [17,18] has been proposed to improve the non-dominated
front defining the expectations of hypervolume improvements (HVI); it considers the model
uncertainty, as well as the EIs. However, existing studies have not investigated the applicability
of EHVI to multi-fidelity techniques. In this article, a multi-objective optimization process involving
multi-fidelity/multi-objective EGO is proposed and investigated through the solutions of test functions
and airfoil design problems. With respect to airfoil design problems, a low-fidelity function is used to
construct a global model that can provide the global landscape of the function. Further, a high-fidelity
function is used to evaluate local deviations. The global model, constructed by a radial basis function
(RBF) [19,20] based on a database, is evaluated using low-fidelity models. Local variances are predicted
using a correlation term of the kriging method. The study involves airfoil design problems with
two and three objectives. The results of the optimization are compared with those of an ordinary
kriging-based EHVI involving a single-fidelity approach.
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2. Surrogate Models for Design Optimization

2.1. Kriging Method

An ordinary kriging method [21] predicts the unknown function ŷ(x) as:

ŷ(x) = µ + ε(x), (1)

where µ is global model and ε(x) is a local deviation. The sample points x are interpolated with
Gaussian random function. The correlation between Z(xi) and Z(xj) is related to the distance between
the two corresponding point xi and xj. A local deviation ε(x) is expressed as:

d(xi, xj) =
n

∑
k=1

θk|xk
i − xk

j |2, (2)

where θk(0 ≤ θk ≤ ∞) is the k-th element of the correlation vector parameter and n is the number of
the sample points. The correlation between the points xi and xj is defined as:

Corr
[
Z(xi), Z(xj)

]
= exp

[
− d(xi, xj)

]
. (3)

The kriging prediction can be expressed as:

ŷ(x) = µ + rTR−1(F− µ̂), (4)

where Z(xi) represents a local deviation from the global model [22], F =[
f (x1), f (x2), f (x3), ..., f (xn)

]T is the value of the evaluated function at X = {x1, x2, x3, ..., xn},
R denotes the n× n matrix whose (i, j) entry is Corr

[
Z(xi), Z(xj)

]
and r is the vector i-th element:

ri(x) = Corr
[
Z(x), Z(xi)

]
. (5)

µ is assumed to be constant in the original kriging model, and µ̂ is given by:

µ̂ = [µ, µ, µ, ..., µ]T, (6)

where µ is defined as:

µ =
1TR−1F
1TR−11

. (7)

The unknown parameter, θ, for the kriging model can be estimated via maximum likelihood
estimation (MLE):

Ln(µ, σ2, θ) = −n
2

ln(σ2)− 1
2

ln(|R|). (8)

MLE is an m-dimensional unconstrained nonlinear optimization problem. In this article, a GA [23]
is used to solve this problem. For a given θ, σ2 can be defined as:

σ2 =
(F− µ̂)TR−1(F− µ̂)

n
. (9)

The mean square error s2(x) at a point x of this function can be calculated using the
following equation:

s2(x) = σ

[
1− rTR−1r +

1− 1TR−1F
1TR−11

]
, (10)

where 1 denotes an n-dimensional unit vector.
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2.2. Hybrid Surrogate Model for Multi-Fidelity Approach

In this section, the hybrid surrogate model (Figure 1) is proposed for the multi-fidelity approach.
The proposed approach constructed the local deviation estimated by the kriging method and the global
model approximated by the RBF. It employs an RBF to represent the global model, µ + f r(x), based on
a dataset obtained from low-fidelity evaluation. The proposed approach combines the kriging method
and the RBF by the following equation:

ŷ(x) = [µ + f r(x)] + rTR−1(Fh − µ̂− FR). (11)

The local deviations rTR−1(Fh− µ̂− FR) are evaluated on the basis of a high-fidelity dataset using
the kriging method, where Fh =

[
fh(x1), fh(x2), fh(x3), ..., fh(xn)

]T is the value of the high-fidelity

function at x = {x1, x2, x3, ..., xn}; FR =
[

f r(x1), f r(x2), f r(x3), ..., f r(xn)
]T, f r(x) the function

predicted from the low-fidelity data that predicted by RBF, can be expressed by (12):

f r(x) = a0 + a1 fl(x), (12)

where fl(x) is a function predicted by an RBF [19,20] using low-fidelity data and a0 and a1 are
correlation terms between the low-fidelity data and the high-fidelity data. Further, σ2 can be defined as:

σ2 =
(F− µ̂− FR)TR−1(F− µ̂− FR)

n
. (13)

The unknown parameters (θ, a0 and a1) for the hybrid surrogate multi-fidelity model can be
estimated by MLE, as expressed by (8).

The RBF is used to approximate the global model of the hybrid surrogate-model. An RBF is used
to predict the low-fidelity function ( fl(x)) by:

fl(x) =
n

∑
m=1

wmΦ(x− xm) (14)

where Φ(x) is an RBF, xm is a sample point and wm(m = 1, 2, 3, ..., n) is a weighting function. A
multi-quadratic function is applied as an RBF in this study. The weighting function w = [w1, w2, w3, ..., wn]T

is determined from the interpolation conditions:

Aw = F (15)

where A =


a1,1 a1,2 · · · a1,j
a2,1 a2,2 · · · a2,j

...
...

. . .
...

ai,1 ai,2 · · · ai,j

, ai,j = Φ(xi − xj), i = 1, 2, 3, ..., n, j = 1, 2, 3, ..., n

Here, F =
[

f (x1), f (x2), f (x3), ..., f (xn)
]T is the value of the low-fidelity function at

X = {x1, x2, x3, ..., xn}.



Appl. Sci. 2017, 7, 1318 5 of 21

Figure 1. Schematic illustration of single-fidelity and multi-fidelity surrogate models.

3. Efficient Global Optimization for the Multi-Objective Problem

The procedure of EGO with the ordinary kriging model is illustrated in Figure 2a. The EGO process
starts with the generated initial samples. In this study, the Latin hypercube sampling (LHS) is employed.
Sample data are evaluated, and the model is predicted using the kriging method. An arbitrary
optimization method can be used to find an additional point by maximizing an EHVI [17,18]. The EHVI
is the function of the hypervolume improvement (HVI) combined with the uncertainty of the additional
point. HVI is calculated from the hypervolume improvement of the additional sampling and the
non-dominated solution shown in Figure 3a.

The EHVI at a point can be expressed as:

EHVI[ f1(x), f2(x), ..., fM(x)] =∫ fre f 1

−∞

∫ fre f 2

−∞
...
∫ fre f M

−∞
HVI[ f1(x), f2(x), ..., fM(x)]× φ1(F1)φ2(F2)...φM(FM)dF1dF2...dFM,

(16)

where Fi denotes the Gaussian random variable N[ f̂i(x), ŝ2
i (x)]. φi(Fi) is the probability density

function and fre f i is the reference value used for calculating the hypervolume. The maximization of
EHVI is considered as the updating criterion to determine the location of an additional sample point.
In this study, the hypervolume is calculated based on the HypEalgorithm [24], which is an algorithm
that uses the Monte Carlo simulation [25] to approximate the hypervolume for multi/many-objective
optimization problems. The Monte Carlo simulation is one of the simplest ways to calculate the
hypervolume (HV) for many dimensions, which is often difficult to calculate. Thus, the HypE algorithm
uses the benefit of the Monte Carlo simulation to calculate the hypervolume. The hypervolume is the
volume of the non-dominated solutions measured from the reference point. The schematic illustration
of the hypervolume is shown in Figure 3b.



Appl. Sci. 2017, 7, 1318 6 of 21

(a) (b)

Figure 2. Flowchart of efficient global optimization: (a) single-fidelity efficient global optimization
(EGO); (b) multi-fidelity EGO.

(a) (b)

Figure 3. Schematic illustration of hypervolume improvement and hypervolume: (a) hypervolume
improvement; (b) hypervolume.

The basic idea of the original EGO, namely EHVI-based explanation, can also be applied to the
hybrid surrogate model expressed in (10), because local deviations are estimated using the kriging
method. The procedure of EGO with the hybrid surrogate model proposed in this study is shown in
Figure 2b. The proposed hybrid surrogate-model-based EGO starts by acquiring initial samples for
a low-fidelity/low-cost function. The low-fidelity sample data are used to predict the global model;
then, a set of samples for a high-fidelity function is obtained. This result is used to estimate the local
deviations using the kriging method. Then, the multi-fidelity surrogate model, which can predict the
unknown point value (an approximation of the high-fidelity function), is generated. A GA [23] is used
to find the maximum EHVI point, x. In this study, the roulette wheel method was used in the selection
process. Blend crossover (BLX)-0.5 [26] was used in the crossover process, and uniform mutation [27]
with a mutation rate of 0.1 was used in the mutation process.
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4. Investigation of Proposed Method by Solving Test Functions

4.1. Formulation

The proposed multi-objective multi-fidelity EGO is investigated by solving two test functions;
one has two objective functions, and the other has three objective functions. The results are compared
with those of a kriging-based multi-objective EGO. The high-fidelity function is denoted by f , and the
low-fidelity function is denoted by fl.

The definition of two-objective optimization problem from Van Valedhuizen’s test suite [28] is:

Minimize: f1(x1, x2, ..., x5) = 1− exp
(
−

5

∑
i=1

(xi − 1/
√

5)2
)

Minimize: f2(x1, x2, ..., x5) = 1− exp
(
−

5

∑
i=1

(xi + 1/
√

5)2
)

fl1(x1, x2, ..., x5) = 1− exp
(
−

5

∑
i=1

(0.5xi − 0.05− 1/
√

5)2
)

fl2(x1, x2, ..., x5) = 1− exp
(
−

5

∑
i=1

(0.75xi + 0.2 + 1/
√

5)2
)

.

(17)

The design space of this problem is x1, x2, ..., x5 ∈ [−2.5, 2.5].
The definition of the DTLZ2 three-objective optimization problem [28] is:

Minimize: f1(x1, x2, ..., x5) = (1 + g)cos(0.5xiπ)cos(0.5x2π)

Minimize: f2(x1, x2, ..., x5) = (1 + g)cos(0.5x1π)sin(0.5x2π)

Minimize: f3(x1, x2, ..., x5) = (1 + g)sin(0.5x1π)

g =
5

∑
i=3

(xi − 0.5)2

fl1(x1, x2, ..., x5) = (0.5 + 1.5gc)cos(0.6xiπ)cos(0.4x2π)

fl2(x1, x2, ..., x5) = (0.3 + 1.2gc)cos(0.4x1π)sin(0.6x2π)

fl3(x1, x2, ..., x5) = (0.4 + 1.3gc)sin(0.5x1π)

gc =
5

∑
i=3

(0.8xi − 0.3)2.

(18)

The design space of this problem is x1, x2, ..., x5 ∈ [0, 1].
In each investigation, 10 initial high-fidelity points, f , and 150 low-fidelity points, fl, were acquired

by LHS. The number of iterations was set to 30 for each test function.

4.2. Two-Objective Test Function Results

The solution space acquired by the proposed multi-fidelity/multi-objective EGO is compared
with that acquired by the single-fidelity/multi-objective EGO as shown in Figure 4. Because the
single-fidelity/multi-objective EGO finds local optimum points at the beginning of the optimization
process, the solution for additional samples stalls earlier. On the other hand, the developed
multi-fidelity/multi-objective EGO can find a solution close to the global optimum solution of this
multi-objective optimization problem. The histories of the hypervolumes of the two methods are
compared in Figure 5. These results also indicate that the proposed multi-fidelity/multi-objective
EGO provides better solutions, which shows higher diversity because its hypervolume is larger
than that of the single-fidelity/multi-objective EGO. These results also suggest that the proposed
multi-fidelity/multi-objective EGO obtains better solutions than the single-fidelity/multi-objective
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EGO, because the non-dominated solutions of the former can dominate all the non-dominated solutions
of the latter. In addition, comparisons of the hypervolumes show that the solution of additional samples
by the single-fidelity/multi-objective EGO continues to stall earlier.

(a) (b)

Figure 4. Initial sampling data and additional sampling data of two-objective test problem:
(a) multi-fidelity approach; (b) single-fidelity approach.

Figure 5. Hypervolume comparison of multi-fidelity approach and single-fidelity approach of
two-objective test problem.

To investigate the reason for the superiority of the proposed multi-fidelity/multi-objective
EGO, the cross-validation [29,30] of f1 and f2 was compared, as shown in Figure 6. It can be seen
that the linear regression line nearly coincides with the predicted line in the case of the proposed
multi-fidelity/multi-objective EGO. Thus, the multi-fidelity surrogate model achieves higher accuracy
than the single-fidelity surrogate model. More specifically, the proposed multi-fidelity/multi-objective
EGO achieves higher accuracy because the dataset obtained by low-fidelity evaluation enables the
surrogate model to predict the solution in the uncertainty region.
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The developed approach The single-fidelity

(a)

The developed approach The single-fidelity

(b)

Figure 6. Cross-validation results of the two-objective test problem: (a) result of f1; (b) result of f2.

4.3. Three-Objective Test Function Results

Further, all the samples acquired by the two methods (the proposed multi-fidelity/multi-objective
EGO and the single-fidelity/multi-objective EGO) are compared as shown in Figure 7. According to
these results, the proposed multi-fidelity/multi-objective EGO and the single-fidelity/multi-objective
EGO have similar non-dominated solutions. However, the results of the multi-fidelity/multi-objective
EGO are better than those of the single-fidelity/multi-objective EGO because some of the results
of additional sampling by the single-fidelity/multi-objective EGO stall at local optimum points.
The hypervolumes of the two methods are compared in Figure 8. The hypervolume comparison
of the proposed multi-fidelity/multi-objective EGO and single-fidelity/multi-objective EGO
is shown in Figure 9. It suggests that the proposed multi-fidelity/multi-objective EGO gives
better solutions than that of the single-fidelity/multi-objective EGO. These results indicate
that the proposed multi-fidelity/multi-objective EGO has a higher convergence rate than the
single-fidelity/multi-objective EGO. The solution of the proposed multi-fidelity/multi-objective
EGO converges after 18 iterations with a larger hypervolume, whereas the solution of the
single-fidelity/multi-objective EGO converges after 23 iterations.
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f1 vs. f2 f1 vs. f3

f2 vs. f3

(a)

f1 vs. f2 f1 vs. f3

f2 vs. f3

(b)

Figure 7. Initial sampling data and additional sampling data of three-objective test problem:
(a) multi-fidelity approach; (b) single-fidelity approach.
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Figure 8. Hypervolume comparison of the multi-fidelity approach and the single-fidelity approach of
three-objective test problem.

The developed approach The single-fidelity

(a)
The developed approach The single-fidelity

(b)

Figure 9. Cont.
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The developed approach The single-fidelity

(c)

Figure 9. Cross-validation results of the three-objective test problem: (a) result of f1; (b) result of f2;
(c) result of f3.

The cross-validation results for f1, f2 and f3 are shown in Figure 9. The results indicate that the
multi-fidelity surrogate model can achieve higher accuracy than the single-fidelity surrogate model for f1

and f2. Moreover, the results show that the non-dominated solution of the multi-fidelity/multi-objective
EGO has a higher convergence rate because of the higher accuracy of the multi-fidelity surrogate model.
With regard to f3, a comparison between the multi-fidelity and single-fidelity surrogate models shows
that the two methods have similar accuracy because f3 has a simpler shape than f1 and f2.

5. Airfoil Design Problem

The proposed multi-fidelity/multi-objective design method discussed in Section 3 was also
investigated by solving two airfoil design problems as real-world design problems.

5.1. Formulations

5.1.1. Two-Objective Case

The first problem has two objectives: minimize the aerodynamic drag (Cd) at Mach 0.3, which
requires a target lift of 0.5, and maximize the airfoil thickness at 75.0% of the chord length (t75),
which can be obtained directly by the real function because it can be calculated rapidly. Thus,
two surrogate models are constructed. The optimization problem can be expressed as:

Minimize: Cd at Re = 4× 106, Ma = 0.3, Cl = 0.5

Maximize: t75
(19)

The number of initial samples for the high-fidelity/high-cost function is set to 10, and the number
of low-fidelity/low-cost functions for the multi-fidelity surrogate model is 150. Further, the number
of additional samples for this problem is set to 30. t75 can be immediately calculated after the set of
design parameters is decided upon. Thus, we used the exact value for t75 in the following equation
based on Equation (16).

EHVI =
∫ Cd,max

−∞
HVI[Cd, t75]× φ1(Cd)dCd. (20)
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5.1.2. Three-Objective Case

The second problem has three objectives: minimize Cd at cruising speed, maximize t75 and
maximize the lift coefficient (Cl) in the landing condition at an angle of attack of 5.0◦. The optimization
problem is expressed as:

Minimize: Cd at Re = 4× 106, Ma = 0.3, Cl = 0.5

Maximize: Cl at Re = 2× 106, Ma = 0.15, α = 5.0o

Maximize: t75

(21)

In this problem, the hybrid surrogate model is used to predict Cd and Cl. Further, t75 can be
directly obtained by the real function. The number of initial samples for the high-fidelity/high-cost
function is set to 10, and the number of low-fidelity/low-cost functions for the multi-fidelity surrogate
model is 150. Further, the number of additional samples for this problem is set to 30. t75 can be
immediately calculated after the set of design parameters is decided upon. Thus, we used the exact
value for t75 in the following equation based on Equation (16).

EHVI =
∫ Cd,max

−∞

∫ ∞

Cl,min

HVI[Cd, t75, Cl]× φ1(Cd)φ2(Cl)dCddCl. (22)

5.2. Evaluation Methods

5.2.1. High-Fidelity Evaluation Using CFD as the High-Cost Function

The aerodynamic evaluation as a high-fidelity function was carried out using a Reynolds-averaged
Navier–Stokes (RANS) solver [31]. The governing equation is expressed as:

∂

∂T

∫
Ω

ΨdV +
∮

∂Ω
Q · nds = 0, (23)

Ψ is a vector that consists of conservative quantities, and Q is the summation of conservative quantities
entering and leaving the area. A lower-upper symmetric Gauss–Seidel (LU-SGS) implicit method [32]
was employed for time integration, and a third-order-accurate upwind difference scheme with a
monotone upstream-centered scheme for conservation laws (MUSCL) method [33] was employed
for the flux evaluation. Further, the Baldwin–Lomax model [34] was used as a turbulent model.
In addition, a structured grid was automatically created by an algebraic method for each design
(200× 61 structured grid for the RANS solver, as shown in Figure 10). The computation time of CFD
in this work is approximately 180 to 300 s.

(a) (b)

Figure 10. Computation structured grid: (a) full length; (b) grid around the airfoil.
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5.2.2. Low-Fidelity Solver as the Low-Cost Function

XFOIL [35] was employed as the low-fidelity evaluation. In XFOIL, the inviscid pressure
distribution is modeled using a linear vortex strength distribution, while the viscous effects and
the development of the laminar-turbulent boundary layer are modeled using integral boundary layer
theory. The computation time of XFOIL is approximately 1 to 2 s.

5.2.3. Airfoil Representation

In this study, the class-shape function transformation (CST) parameterization method [36] was
used for airfoil shape parameterization. The benefits of CST are that it could can generate several
kinds of aerodynamic shapes and that it has a high degree of freedom due to the changeable number
of numbers of the controlled parameter to generate the airfoil shape; whereas the other type of
airfoil representation, such as NACA’s airfoil representation, parametric section (PARSEC) and
non-uniform rational B-spline (NURBS), have the fixed controlled parameters. The product of a
class function, C(x/c), and a shape function, S(x/c), can be represented geometrically by adding a
term that characterizes the trailing edge thickness:

y
c
= C

( x
c

)
S
( x

c

)
+

x
c

∆zte

c
, (24)

where ∆zte is the trailing edge thickness, and C(x/c) is given in generic form by:

C
( x

c

)
≡
( x

c

)N1
[
1− x

c

]N2
for 0 ≤ x

c
≤ 1. (25)

The shape function, S(x/c), is defined on the basis of the Bernstein binomials [37], by the
introduction of weight factor bi as follows:

S
( x

c

)
=

n

∑
i=0

[
bi · Ki,p ·

( x
c

)i
·
(

1− x
c

)p−i
]

, (26)

where p is the degree of the Bernstein binomials. In this study, N1 was set to 0.5 and N2 was set to 1.0.
Further, third-degree Bernstein polynomials were used to generate the airfoil shape for the lower side
b1 − b3 and the upper side b4 − b6. The ranges of the design parameters are defined in Table 1.

Table 1. The range of design variables for airfoil design by class-shape function transformation (CST).

Design Parameter Design Range

b1 −0.18–−0.01
b2 −0.15–−0.05
b3 −0.18–−0.02
b4 0.10–0.18
b5 0.05–0.15
b6 0.05–0.15

5.3. Results

5.3.1. Two-Objective Airfoil Shape Optimization Results

All the samples obtained by the two methods (the proposed multi-fidelity/multi-objective
EGO and the single-fidelity/multi-objective EGO) are shown in Figure 11. These results show
that the proposed multi-fidelity/multi-objective EGO can achieve greater diversity in the
solution space than the single-fidelity/multi-objective EGO. The hypervolume of the proposed
multi-fidelity/multi-objective EGO showed faster convergence (after 20 iterations) than that of
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the single-fidelity/multi-objective EGO (after 26 iterations). In addition, the non-dominated
solutions of the proposed multi-fidelity/multi-objective EGO included Cd ranging from 0.006 to 0.027
and t75 ranging from 0.034 to 0.064. On the other hand, the non-dominated solutions of the
single-fidelity/multi-objective EGO included Cd ranging from 0.009 to 0.016 and t75 ranging from 0.047
to 0.064. The histories of the hypervolumes of the two methods are compared in Figure 12. According
to these results, the single-fidelity surrogate model could find only local optimum points, whereas the
proposed multi-fidelity approach could find global optimum points.

The cross-validation results for Cd are shown in Figure 13. It can be confirmed that the hybrid
surrogate model achieves higher accuracy than the single-fidelity kriging-based surrogate model.
This is because the low-fidelity data enable the surrogate model to predict the data in the uncertainty
region. Thus, the multi-fidelity/multi-objective EGO achieves faster solution converge because the
multi-fidelity surrogate model achieves higher accuracy than the single-fidelity surrogate model.
Because the proposed multi-fidelity surrogate model achieves higher accuracy, the optimization
process based on it is more likely to obtain global optimum points.

The optimal shapes of the non-dominated solutions of the two methods that minimize Cd and
maximize t75 are compared in Figure 14. The optimal designs of the single-fidelity/multi-objective
EGO have similar shapes because the algorithm converges early at these optimum points. On the
other hand, the optimal designs of the proposed multi-fidelity/multi-objective EGO have different
shapes for each objective. In addition, the total design time of the multi-fidelity/multi-objective EGO
is 162 min, and the total design time of the single-fidelity/multi-objective EGO is 160 min.

(a) (b)

Figure 11. Initial sampling data and additional sampling data of two-objective airfoil shape
optimization problem: (a) multi-fidelity approach; (b) single-fidelity approach.

Figure 12. Hypervolume comparison of multi-fidelity approach and single-fidelity approach of
two-objective airfoil shape optimization problem.
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The developed approach The single-fidelity

Figure 13. Cross-validation of two-objective airfoil shape optimization problem of Cd.

(a) (b)

Figure 14. Comparison of design geometries of two-objective airfoil shape optimization problem:
(a) multi-fidelity approach; (b) single-fidelity approach.

5.3.2. Three-Objective Airfoil Shape Optimization Results

All the samples obtained by the two methods (the proposed multi-fidelity/multi-objective EGO
and the single-fidelity/multi-objective EGO) are compared in Figure 15. In addition, the histories
of the hypervolumes of the two methods are compared in Figure 16. These results show that
the proposed multi-fidelity/multi-objective EGO achieves greater diversity of the non-dominated
solutions because its hypervolume is larger than that of the single-fidelity/multi-objective EGO.
The non-dominated solutions of the proposed multi-fidelity/multi-objective EGO included Cd ranging
from 0.007 to 0.022, t75 ranging from 0.034 to 0.065 and Cl ranging from 0.0938 to 1.054. On the
other hand, the non-dominated solutions of the single-fidelity/multi-objective EGO included Cd
ranging from 0.010 to 0.022, t75 ranging from 0.047 to 0.065 and Cl ranging from 0.0938 to 1.039.
Thus, the proposed multi-fidelity/multi-objective EGO achieved greater diversity of the solutions
than the single-fidelity/multi-objective EGO. The cross-validation results for Cd and Cl are shown in
Figure 17. It can be seen that the proposed hybrid surrogate model achieves higher accuracy than the
single-fidelity kriging-based surrogate model. Thus, the proposed multi-fidelity/multi-objective EGO
can achieve greater diversity of the solutions because its surrogate model achieves higher accuracy.

The optimal shapes of the non-dominated solutions of the two methods that minimize Cd, maximize
t75 and maximize Cl are compared in Figure 18. The optimal designs of the single-fidelity/multi-objective
EGO have similar shapes for minimizing Cd and maximizing Cl because the algorithm converges
early at these optimum points. On the other hand, the optimal designs of the proposed
multi-fidelity/multi-objective EGO have different shapes for each objective. In addition, the total
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design time of the multi-fidelity/multi-objective EGO is 162 min, and the total design time of the
single-fidelity/multi-objective EGO is 160 min.

Cd vs. Cl Cd vs. t75

Cl vs. t75

(a)

Cd vs. Cl Cd vs. t75

Cl vs. t75

(b)

Figure 15. Initial sampling data and additional sampling data of three-objective airfoil shape
optimization problem: (a) multi-fidelity approach; (b) single-fidelity approach.
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Figure 16. Hypervolume comparison of multi-fidelity approach and single-fidelity approach.

The developed approach The single-fidelity

(a)
The developed approach The single-fidelity

(b)

Figure 17. Cross-validation results of three-objective airfoil shape optimization problem: (a) results of
Cd; (b) results of Cl.
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(a) (b)

Figure 18. Comparison of design geometries of three-objective airfoil shape optimization problem: (a)
multi-fidelity approach; (b) single-fidelity approach.

6. Conclusions

In this article, a multi-fidelity/multi-objective EGO combined with kriging and RBF was proposed
based on the hybrid surrogate model to solve the multi-objective optimization problems and was
applied to solve the multi-objective airfoil design problem. The proposed method constructed a hybrid
surrogate model based on an RBF that predicts a global model and an ordinary kriging method that
predicts the local variance. EHVI was used as an index to find additional samples for the optimization
process. For multi-fidelity optimization, the global model was constructed using a dataset evaluated by
a low-fidelity function, and the local variance was estimated using a dataset evaluated by a high-fidelity
function.

To examine the proposed multi-fidelity/multi-objective EGO, two-/three-objective test
problems were solved, and the results of the proposed multi-fidelity/multi-objective EGO
were compared with those of the single-fidelity/multi-objective EGO. The results for the
test functions showed that the proposed multi-fidelity/multi-objective EGO achieves faster
convergence than the single-fidelity/multi-objective EGO. Moreover, the results showed that
the proposed multi-fidelity/multi-objective EGO has greater diversity of the non-dominated
solutions than the single-fidelity/multi-objective EGO. In addition, the results showed that
the proposed multi-fidelity/multi-objective EGO has fewer global errors. Thus, the proposed
multi-fidelity/multi-objective EGO can be widely applied to real-world problems.

Further, the proposed multi-fidelity/multi-objective EGO was applied to an aerodynamic airfoil
shape optimization problem with two objectives: minimize Cd at cruising speed and maximize the
thickness around the trialing edge. To evaluate the aerodynamic performance, XFOIL was used
to construct a low-fidelity/low-cost dataset, and a Navier–Stokes solver was used to construct a
high-fidelity/high-cost dataset. The results of the proposed multi-fidelity/multi-objective EGO were
compared with those of the single-fidelity/multi-objective EGO. The optimization results showed
that the proposed multi-fidelity/multi-objective EGO achieves greater diversity of the non-dominated
solutions than the single-fidelity/multi-objective EGO. In addition, the cross-validation results
showed that the proposed multi-fidelity/multi-objective EGO has fewer global errors. Finally, the
proposed multi-fidelity/multi-objective EGO was applied to an aerodynamic airfoil shape optimization
problem with three objectives: minimize Cd at cruising speed, maximize the thickness around the
trialing edge and maximize Cl in the landing condition. The results showed that the proposed
multi-fidelity/multi-objective EGO achieves greater diversity of the non-dominated solutions than the
single-fidelity/multi-objective EGO. In addition, the error between the exact value and the predicted
value of the hybrid surrogate model was smaller than that of the single-fidelity model. These results
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suggest that the multi-fidelity/multi-objective EGO is suitable for real-world multi-objective design
problems. In this study, we limited the optimization to two/three objectives for simple aerodynamic
design problems. In the future, we expect that our algorithm will be used to solve more complicated
design problems, and we will investigate the effects of the application of multi-fidelity data in advanced
kriging methods such as universal kriging and anisotropy kriging.
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