
applied
sciences

Article

A Neural Parametric Singing Synthesizer Modeling
Timbre and Expression from Natural Songs †

Merlijn Blaauw *,‡ ID and Jordi Bonada ‡ ID

Music Technology Group, Universitat Pompeu Fabra, 08012 Barcelona, Spain; jordi.bonada@upf.edu
* Correspondence: merlijn.blaauw@upf.edu; Tel.: +34-93-542-2199
† This paper is an extended version of our paper published in Blaauw, M.; Bonada, J. A neural parametric

singing synthesizer. In Proceedings of the 18th Annual Conference of the International Speech
Communication Association (Interspeech), Stockholm, Sweden, 20–24 August 2017.

‡ These authors contributed equally to this work.

Academic Editor: Vesa Valimaki
Received: 3 November 2017; Accepted: 12 December 2017; Published: 18 December 2017

Abstract: We recently presented a new model for singing synthesis based on a modified version
of the WaveNet architecture. Instead of modeling raw waveform, we model features produced by
a parametric vocoder that separates the influence of pitch and timbre. This allows conveniently
modifying pitch to match any target melody, facilitates training on more modest dataset sizes,
and significantly reduces training and generation times. Nonetheless, compared to modeling
waveform directly, ways of effectively handling higher-dimensional outputs, multiple feature streams
and regularization become more important with our approach. In this work, we extend our proposed
system to include additional components for predicting F0 and phonetic timings from a musical score
with lyrics. These expression-related features are learned together with timbrical features from a
single set of natural songs. We compare our method to existing statistical parametric, concatenative,
and neural network-based approaches using quantitative metrics as well as listening tests.

Keywords: singing synthesis; machine learning; deep learning; conditional generative models;
autoregressive models

1. Introduction

Many of today’s more successful singing synthesizers are based on concatenative methods [1,2].
That is, they transform and concatenate short waveform units selected from an inventory of recordings
of a singer. While such systems are able to achieve good sound quality and naturalness in certain
settings, they tend to be limited in terms of flexibility, and can be difficult to extend or significantly
improve upon. One notable limitation is that jointly sampling musical and phonetic contexts usually is
not feasible, forcing timbre and expression to be modeled disjointly, from separate, specialized corpora.
Machine learning approaches, such as statistical parametric methods [3,4], are much less rigid and
do allow for things such as combining data from multiple speakers, model adaptation using small
amounts of training data, and joint modeling of timbre and expression from a single corpus of natural
songs. However, until recently, these approaches have been unable to match the sound quality of
concatenative methods, in particular suffering from oversmoothing in frequency and time.

Recent advances in generative models for Text-to-Speech Synthesis (TTS) using Deep Neural
Networks (DNNs), in particular the WaveNet model [5], showed that model-based approaches can
achieve sound quality on-par or even beyond that of concatenative systems. This model’s ability to
accurately generate raw speech waveform sample-by-sample, clearly shows that oversmoothing is
not an issue. Recently, we presented a model for singing synthesis based on the WaveNet model [6],
with an important difference being that we model vocoder features rather than raw waveform. While

Appl. Sci. 2017, 7, 1313; doi:10.3390/app7121313 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-8051-9942
https://orcid.org/0000-0002-8671-0729
http://dx.doi.org/10.3390/app7121313
http://www.mdpi.com/journal/applsci

Appl. Sci. 2017, 7, 1313 2 of 23

a vocoder unavoidably introduces some degradation in sound quality, we consider the degradation
introduced by current models to still be the dominant factor. Thus, if we can improve the quality
of the generative model, we should be able to achieve a quality closer to the upper bound the
vocoder can provide, i.e., round-trip vocoder analysis-synthesis without modification. Additionally,
by decomposing the signal into phonetic and pitch components, we are able to conveniently
synthesize any melody with any lyrics, and require less training data to sufficiently cover the entire
pitch-timbre space.

Our previously presented system only generated timbrical features, and did not generate features
related to musical expression, such as F0 and phonetic timings. Additionally, the corpora used to
train the models were specialized recordings similar to those used for building concatenative voices.
In this work, we extend our previously presented system to also include F0 and phonetic timing
prediction, and train the entire system from a single corpus of natural singing. We feel that this is an
important step forward towards capturing all aspects of a singer’s voice in a natural setting. Finally,
we provide detailed quantitative and qualitative experiments and results.

2. Proposed System

2.1. Overview

The task of singing synthesis mimics the task of a singer during a studio recording, that is,
interpret a musical score with lyrics to produce a singing waveform signal. The goal of our system
is to model a specific singer’s voice and a specific style of singing. To achieve this, we first record a
singer singing a set of musical scores. From these recording, acoustic features are extracted using the
analysis part of a vocoder. Additionally, the recordings are phonetically transcribed and segmented.
Note level transcription and segmentation can be generally obtained from the musical scores, as long
as the singer did not excessively deviate from the written score.

During training, our model learns to produce acoustic features given phonetic and musical
input sequences, including the begin and end time of each segment. However, during generation,
we only have access to the note begin and end times, and phoneme sequence corresponding to each
note (generally a syllable). As we do not have access to the begin and end times of each phoneme,
these must be predicted using a phonetic timing model. The next step is to predict F0 from the timed
musical and phonetic information, using a pitch model. The predicted phonetic timings and F0 are
then used by the timbre model to generate the remaining acoustic features such as the harmonic
spectral envelope, aperiodicity envelope and voiced/unvoiced (V/UV) decision. Finally, the synthesis
part of the vocoder is used to generate the waveform signal from the acoustic features. An overview of
the entire system is depicted in Figure 1.

Training

Generation

F0 Harm. Aper.

F0

V/UV Harm. Aper.
Phonetic timingsNotes

Notes

×

>0

Dataset

Input

Vocoder analysis

Phonetic timing
model Pitch model

Vocoder synthesis

Musical
score

Phonetic
timings Audio

AudioMusical
score

Phonetic
sequence

Timbre model

>0

Output

Fill UV

Figure 1. Diagram depicting an overview of the system with its different components. Here, V/UV is
the predicted voice/unvoiced decision, and the Fill UV block fills unvoiced isegments by interpolation.

Appl. Sci. 2017, 7, 1313 3 of 23

2.2. Modified WaveNet Architecture

The main building block of our system is based on the WaveNet model and architecture. A key
aspect of this model is that it is autoregressive. That is, the prediction at each timestep depends on
(a window of) predictions of past timesteps. In our case, a timestep corresponds to a single frame of
acoustic features. Additionally, the model is probabilistic, meaning that the prediction is a probability
distribution rather than a single value. In order to control the prediction, e.g., by phonetic and musical
inputs, the predicted distribution is not only conditioned on past predictions, but also on control
inputs. This model is implemented using a powerful, yet efficient neural network architecture.

The network we propose, depicted in Figure 2, shares most of its architecture with WaveNet.
Like this model we use gated convolutional units instead of gated recurrent units, such as Long
Short-Term Memory (LSTM) units, to speed up training. The input is fed through an initial causal
convolution which is then followed by stacks of 2× 1 dilated convolutions [7] where the dilation
factor is doubled for each layer. This allows exponentially growing the model’s receptive field, while
linearly increasing the number of required parameters. To increase the total nonlinearity of the model
without excessively growing its receptive field, the dilation factor is increased up to a limit and then the
sequence is repeated. We use residual and skip connections to facilitate training deeper networks [8].
As we wish to control the synthesizer by inputting notes and lyrics, we use a conditional version of
the model. At every layer, before the gated nonlinearity, feature maps derived from control inputs are
summed to the feature maps from the layer’s main convolution. In our case, we do the same thing at
the output stack, similar to [9].

Multivariate mixture
density output

Dilated
conv.

Causal
conv.

Re
si

du
al

 c
on

ne
ct

io
n

Control inputs (linguistic features)

Acoustic input features

Frequency axis
separated into channels

(convs are 1D)

Output distributions

k layers

Skip connection

Figure 2. Overview of the modified WaveNet network architecture. In this case, the network depicted
predicts harmonic spectral envelope features (top-right and bottom), given control inputs (mid-right).

The underlying idea of this model is that joint probability over all timesteps can be formulated as
a product of conditional probabilities for a single timestep with some causal ordering. The conditional
probability distributions are predicted by a neural network trained to maximize likelihood of a

Appl. Sci. 2017, 7, 1313 4 of 23

observation given past observations. To synthesize, predictions are made by sampling the predicted
distribution conditioned on past predictions, that is, in a sequential, autoregressive manner. However,
while models on which we base our model like WaveNet, or PixelCNN [10] and PixelRNN [11]
before it, perform this factorization for univariate variables (e.g., individual waveform samples or
pixel channels), we do so for multivariate vectors corresponding to a single frame,

p (x1, . . . , xT | c) =
T

∏
t=1

p (xt | x<t, c) , (1)

where xt is an N-dimensional vector of acoustic features [xt,1, . . . , xt,N], c is an T-by-M-dimensional
matrix of control inputs, and T is the length of the signal. In our case, we consider the variables within
a frame to be conditionally independent,

p (xt | x<t, c) =
N

∏
i=1

p (xt,i | x<t, c) . (2)

In other words, a single neural network predicts the parameters of a multivariate conditional
distribution with diagonal covariance, corresponding to the acoustic features of a single frame.

The main reason for choosing this model is that, unlike raw audio waveform, features produced
by a parametric vocoder have two dimensions, similar to (single channel) images. However, unlike
images, these two dimensions are not both spatial dimensions, but rather time-frequency dimensions.
The translation invariance that 2D convolutions offer is an undesirable property for the frequency
(or cepstral quefrency) dimension. Therefore, we model the features as 1D data with multiple channels.
Note that these channels are only independent within the current frame; the prediction of each of the
features in the current frame still depends on all of the features of all past frames within the receptive
field (the range of input samples that affect a single output sample). This can be explained easily as all
input channels of the initial causal convolution contribute to all resulting feature maps, and so on for
the other convolutions.

Predicting all channels at once rather than one-by-one simplifies the models, as it avoids the need
for masking channels and separating them in groups. This approach is similar to [12], where all three
RGB channels of a pixel in an image are predicted at once, although in our work we do not incorporate
additional linear dependencies between channel means.

2.2.1. Constrained Mixture Density Output

Many of the architectures on which we base our model predict categorical distributions, using a
softmax output. The advantage of this nonparametric approach is that no a priori assumptions have to
be made about the (conditional) distribution of the data, allowing things such as skewed or truncated
distributions, multiple modes, and so on. Drawbacks of this approach include an increase in model
parameters, values are no longer ordinal, and the need to discretize data which is not naturally discrete
or has high bitdepth.

Because our model predicts an entire frame at once, the issue of increased parameter count is
aggravated. Instead, we opted to use a mixture density output similar to [12]. This decision was
partially motivated because in earlier versions of our model with softmax output [13], we noted the
predicted distributions were generally quite close to Gaussian or skewed Gaussian. In our model
we use a mixture of four continuous Gaussian components, constrained in such a way that there are
only four free parameters (location, scale, skewness and a shape parameter). Figure 3 shows some
of the typical distributions that the contraints imposed by this parameter mapping allow. We found
such constraints to be useful to avoid certain pathological distributions, and in our case explicitly not
allowing multimodal distributions was helpful to improve results. We also found this approach speeds
up convergence compared to using categorical output. See Appendix A for details.

Appl. Sci. 2017, 7, 1313 5 of 23

Figure 3. Example distributions of the constrained mixture density output. All subplots use location
ξ = 0 and scale ω = 6× 10−2, but varying skewness α and shape β. The plots show the resulting
mixture distributions (solid) and the four underlying Gaussian components (dashed).

2.2.2. Regularization

While the generation process is autoregressive, during training rather than using past predictions,
groundtruth past samples are used. This is a practical necessity as it allows the computations to
be parallelized. However this also causes a number of issues. One issue, known as exposure
bias [14], results in the model becoming biased to the groundtruth data it is exposed to during
training, and causing errors to accumulate at each autoregressive generation step based on its own past
predictions. In our case, such errors cause a degradation in synthesis quality, e.g., unnatural timbre
shifts over time. Another notable issue is that as the model’s predictions are conditioned on both past
timesteps and control inputs, the network may mostly only pay attention to past timesteps and ignore
the control inputs [15]. In our case, this can result in the model occasionally changing certain lyrics
rather than follow those dictated by its control inputs.

One way to reduce the exposure bias issue may be to increase the dataset size, so that the model
is exposed to a wider range of data. However, we argue that the second problem is mostly a result of
the inherent nature of the data modeled. Unlike raw waveform, vocoder features are relatively smooth
over time, more so for singing where there are many sustained vowels. This means that, usually,
the model will be able to make accurate predictions given the highly correlated past timesteps.

As a way around both these issues, we propose using a denoising objective to regularize
the network,

L = − log p (xt | x̃<t, c) with x̃<t ∼ p (x̃<t | x<t) , (3)

where p (x̃ | x) is a Gaussian corruption distribution,

p (x̃ | x) =N (x̃; x, λI) , (4)

with noise level λ ≥ 0. That is, Gaussian noise is added to the input of the network, while the network
is trained to predict the uncorrupted target.

When sufficiently large values of λ are used, this technique is very effective for solving the
problems noted above. However, the generated output can also become noticeably more noisy.
One way to reduce this undesirable side effect is to apply some post processing to the predicted output
distribution, much in the same vein as the temperature softmax used in similar models (e.g., [9]).

We have also tried other regularization techniques, such as dropout, but found them to be
ultimately inferior to simply injecting input noise.

2.3. Timbre Model

This model is responsible for generating acoustic features related to the timbre of the voice.
It consists of a multistream variant of the modified WaveNet architecture. Control inputs are the
sequence of timed phonemes and F0, predicted by the timing model and pitch model respectively.
The predicted timbrical acoustic features can be combined with the predicted F0 to generate the final
waveform using the synthesis stage of the vocoder.

Appl. Sci. 2017, 7, 1313 6 of 23

2.3.1. Multistream Architecture

Most parametric vocoders separate the speech signal into several components. In our case, we use
three feature streams; a harmonic spectral envelope, an aperiodicity envelope and a voiced/unvoiced
decision (continuous pitch is predicted by the pitch model and given as a control input). These
components are largely independent, but their coherence is important (e.g., synthesizing a harmonic
component corresponding to a voiced frame as unvoiced will generally cause artifacts, and vice
versa). Rather than jointly modeling all data streams with a single model, we decided to model these
components using independent networks. This approach gives us more fine-grained control over each
stream’s architecture, and also avoids the possibility of streams with lower perceptual importance
interfering with streams of higher perceptual importance. For instance, the harmonic component is by
far the most important, therefore we would not want any other jointly modeled stream potentially
reducing model capacity dedicated to this component.

To encourage predictions to be coherent, we concatenate the predictions of one network to the
input of another, as depicted in Figure 4. In our current system, the aperiodic component depends on
the harmonic component, and the voiced/unvoiced decision depends on both harmonic and aperiodic
components. All the networks are similar, but have slightly different hyperparameters (see Table A1 in
Appendix C for details). The voiced/unvoiced decision network has a Bernoulli output distribution
rather than a mixture density (see Section 2.2.1). While we found this approach to generally work well,
we did not exhaustively investigate the many other alternative approaches.

Harm.

V/UV

Aper.

Harm.

Aper.

V/UV

Harm.

Control inputs

Aper.

V/UV

Training Generation

Figure 4. Diagram depicting the cascaded multistream architecture for training and generation phases.
The “z−1” blocks represent unit delays. The upward inputs represent control inputs, shared between
all streams. Autoregressive connections in generation phase are not shown.

2.3.2. Handling Long Notes

In most datasets, not all note durations will be exhaustively covered. In particular, the case of
synthesizing notes significantly longer than the notes in the dataset can be problematic. This issue
manifests itself mainly as a repetition in time of some of the transitions predicted by the timbre model,
causing a kind of stutter. To reduce such artifacts, we compute the control feature corresponding to
the frame position within the phoneme (see Section 2.6) with a nonlinear mapping depending on the
length of the phoneme. The idea behind this is that the edges of a phoneme, where the transitions are
likely to be, will maintain their original rate, while the more stable center parts will be expanded more.

2.4. Pitch Model

Generating expressive F0 contours for singing voice is quite challenging. Not only is this because
of its importance to the overall results, but also because in singing voice there are many factors
that simultaneously affect F0. There are a number of musical factors, including melody, various
types of attacks, releases and transitions, phrasing, vibratos, and so on. Additionally, phonetics
can also cause inflections in F0, so-called microprosody [16]. Some approaches try to decompose

Appl. Sci. 2017, 7, 1313 7 of 23

these factors to various degrees, for instance by separating vibratos [4] or using source material
without consonants [1,17]. In our approach, however, we model the F0 contour as-is, without any
decomposition. As such, F0 is predicted from both musical and phonetic control inputs, using a
modified WaveNet architecture (see Table A1 in Appendix C for details).

2.4.1. Data Augmentation

One issue with modeling pitch, is that obtaining a dataset that sufficiently covers all notes in a
singer’s register can be challenging. Assuming that pitch gestures are largely independent of absolute
pitch, we apply data augmentation by pitch shifting the training data, similar to [18]. While training,
we first draw a pitch shift in semitones from a discrete uniform random distribution, for each sample
in the minibatch,

pshift∼ U (pshiftmin, pshiftmax) (5)

pshiftmin = pitchsinger
min − pitchsample

max (6)

pshiftmax = pitchsinger
max − pitchsample

min , (7)

where pshiftmin and pshiftmax define the maximum range of pitch shift applied to each sample. These
ensure that all notes of the melody within a sample can occur at any note within the singer’s register.
Finally, this pitch shift is applied to both the pitch used as a control input and the target output pitch,

ˆpitchcond = pitchcond + pshift (8)

f̂0 = f0 2
1

12 pshift . (9)

2.4.2. Tuning Postprocessing

For pitch in singing voice, one particular concern is ensuring that the predicted F0 contour is in
tune. The model described above does not enforce this constraint, and in fact we observed predicted
pitch to sometimes be slightly out of tune. If we define “out of tune” as simply deviating a certain
amount from the note pitch, it is quite normal for F0 to be out of tune for some notes in expressive
singing, without perceptually sounding out of tune. One reason why our model sometimes sounds
slightly out of tune may be that such notes are reproduced in different musical context where they do
sound out of tune. We speculate that one way to combat this is may be use a more extensive dataset.

We improve tuning of our system by applying a moderate postprocessing of predicted F0.
For each note (or segment within a long note), the perceived pitch is estimated using F0 and its
derivative. The smoothed difference between this pitch and the score note pitch is used to correct the
final pitch used to generate the waveform. Appendix B discusses the algorithm in detail.

2.5. Timing Model

The timing model is used to predict the duration of each phoneme in the sequence to synthesize.
Unlike with TTS systems where phoneme durations are generally predicted in a freerunning manner,
in singing synthesis, the phoneme durations are heavily constrained by the musical score. In our
proposed system we enforce this constraint using a multistep prediction. First, the note timing model
predicts the deviations of note (and rest) onsets with respect to nominal onsets in the musical score.
At the same time phoneme durations are predicted by the phoneme duration model. Finally, a simple
fitting heuristic is used to ensure the predicted phoneme durations fit within the available note
duration, after adjusting timing. This approach is somewhat similar to the approach taken by [19].

2.5.1. Note Timing Model

Most singers will not follow the timing of a musical score exactly. Slightly advancing or delaying
notes is part of normal expressive singing, and is the result of the given musical and linguistic context

Appl. Sci. 2017, 7, 1313 8 of 23

and the style of the singer. Additionally, there may be a small truly random component, simply because
most singers cannot sing with exact timing.

Note onset deviations are computed from a musical score and phonetic segmentation of the
corresponding utterance by the singer. We define a note onset deviation as the difference between
the onset of the first syllabic nucleus in a note and that note’s nominal onset as written in the musical
score. These deviations are also computed for rest notes, or equivalently, note offsets before a rest.

We use a neural network to predict these deviations from note-level musical and linguistic input
features. These input features are designed by hand, in part because using note-level data means we
have relatively few samples compared to phoneme or frame-level data. We assume that these features
contain most or all contextual information relevant to computing note time deviations, therefore we
can use a simple feedforward neural network, without the need for a recurrent or convolutional
architecture. To avoid making any assumptions about the (conditional) probability distribution of the
note onset deviations, we use a nonparametric approach by using a softmax output and discretizing
the deviations to multiples of the hoptime. Details of the input features and network architecture are
available in Table A2 (Appendix C).

2.5.2. Phoneme Duration Model

Phoneme durations are obtained in a similar way. They are first computed from the given phonetic
segmentation, and then discretized on a log scale, similar to [20]. A neural network is used to predict
the phoneme durations from phoneme-level musical and linguistic input features. Unlike the note
timing model, in this case we do require some local context information, so we use a convolutional
architecture. Here we assume the range of context information affecting the duration of a phoneme
to be limited by the musical score and the linguistic constraints on the number of possible onset and
coda consonants. Therefore, the limited receptive field of a convolutional neural net should not be
a significant disadvantage over a recurrent neural net’s unbound receptive field. See Table A2 in
Appendix C for details.

2.5.3. Fitting Heuristic

The fitting heuristic is used to conform the total of predicted phoneme durations to the available
note duration predicted by the note timing model. The basic strategy is to expand or shrink the
(principal) vowel, ensuring it is always at least some given percentage of the note duration, by also
shrinking consonants if needed.

First, the sequence of phonemes to fit in the note duration is obtained by “shifting” onset
consonants to the preceding note. The sequences will thus always start with a vowel (or silence
for rests), followed by zero or more consonants formed by the note’s coda consonants and the next
note’s onset consonants. In cases where a note contains multiple syllables, the secondary vowels are
handled as if they were consonants. Then, the sequence of N predicted durations d0, d1, . . . , dN−1 is fit
into the available note duration da,

r = min

(
1,

da(1− r0)

∑N−1
i=1 di

)
, (10)

where r0 is the minimum fraction of the note’s duration to be occupied by the primary syllabic nucleus.

d̂i =

da − r ∑N−1
j=1 dj for i = 0

rdi for i = 1, 2, . . . , N − 1 .
(11)

Appl. Sci. 2017, 7, 1313 9 of 23

2.6. Acoustic and Control Frontend

We use an acoustic frontend based on the WORLD vocoder [21] (D4C edition [22]) with a
32 kHz sample rate and 5 ms hop time. The dimensionality of the harmonic component is reduced to
60 log Mel-Frequency Spectral Coefficients (MFSCs) by truncated frequency warping in the cepstral
domain [23] with an all-pole filter with warping coefficient α = 0.45. The dimensionality of the aperiodic
component is reduced to four coefficients by exploiting WORLD’s inherently bandwise aperiodic
analysis. All acoustic features are min/max normalized before feeding them to the neural network.

The control frontend produces linguistic and musical features that control the synthesizer.
The linguistic features we use are relatively simple compared to most TTS systems as we omit most
of the features that are principally used to predict prosody. The main linguistic features we use
are previous, current and next phoneme identity encoded as one-hot vectors. We assume that the
lyrics input is a phonetic rather than orthographic sequence. For datasets that do not already include
aligned phonetic and acoustic features, we apply a forced alignment using a speaker-dependent
Hidden Semi-Markov Model (HSMM) trained using deterministic annealing [24]. The most important
musical features are note pitch and duration, as one-hot and 4-state coarse coded vectors respectively.
Additionally, we include the normalized position of the current frame within the current phoneme
and note as a 3-state coarse coded vectors, roughly corresponding to the probability of being in the
beginning, middle or end of the phoneme or note respectively. See Table A1 in Appendix C for a
complete listing of the control features used.

2.7. Audio Generation Speed

One special concern with autoregressive models, especially those generating raw waveform,
is that the time required to generate a sequence can exceed several times the sequence’s duration.
Our approach generating vocoder features has the advantage that timesteps have to be produced at
a much lower rate, as well as requiring a significantly reduced network architecture to achieve
a similar receptive field. However, even in this case, as autoregressive inference is inherently
sequential, it cannot exploit massively parallel hardware such as modern GPUs. Therefore, naive
implementations of the generation algorithm still tend to be relatively slow. By caching calculations
between timesteps, we were able to implement a fast generation algorithm. While this algorithm was
developed independently, it is essentially identical to those proposed in other works [25,26]. Using this
algorithm, our model can achieve generation speeds of 10–15× real-time on CPU. Combined with low
memory and disk footprints, these relatively fast generation speeds make the system competitive with
most existing systems in terms of deployability.

3. Related Work

Our method is heavily based on a class of fully-visible probabilistic autoregressive generative
models that use neural networks with similar architectures. This type of model was first proposed
to model natural images (PixelCNN) [9,10,12], but was later also applied to modeling raw audio
waveform (WaveNet) [5], video (Video Pixel Networks) [27] and text (ByteNet) [28].

Soon after WaveNet, there have been several other related works on text-to-speech. Deep Voice [26]
obtains real-time inference by using a deeper, but narrower architecture, and heavily optimized
generation algorithm. It also introduces a pipeline comprised of solely neural network-based
building blocks, although these are independently trained and targets are still obtained in a
traditional way, i.e., by using an F0 estimator, phonetic dictionary, and so on. Deep Voice 2 [20]
improves the components of this pipeline, and explores multispeaker training which allows modeling
hundreds of voices with less than half an hour of data per speaker. The SampleRNN [29]
model proposes an alternative architecture for unconditional raw waveform generation based
on multiscale hierarchical Recurrent Neural Networks (RNNs) rather than dilated Convolutional
Neural Networks (CNNs). Char2Wav [30] uses a SampleRNN component as a neural vocoder

Appl. Sci. 2017, 7, 1313 10 of 23

for synthesizing predicted vocoder parameters. The vocoder parameters are predicted by an
attention-based sequence-to-sequence (seq2seq) model, which allows for a fully end-to-end system,
generating speech signals from unaligned orthographic or phonetic sequences. Another end-to-end
system is Tacotron [31], which proposes a sophisticated seq2seq model able to predict magnitude
spectrum frames from text.

More traditional neural parametric speech synthesizers tend to be based on feedforward
architectures such as DNNs and Mixture Density Networks (MDNs) [32], or on recurrent architectures
such as Long Short-Term Memory RNNs (LSTM-RNNs) [33]. Feedforward networks learn a framewise
mapping between linguistic and acoustic features, thus potentially producing discontinuous output.
This is often partly mitigated by predicting static, delta and delta-delta feature distributions combined
with a parameter generation algorithm that maximizes output probability [34]. Recurrent architectures
avoid this issue by propagating hidden states (and sometimes the output state) over time. In contrast,
autoregressive architectures such as the one we propose make predictions based on predicted past
acoustic features, allowing, among other things, to better model rapid modulations such as plosive
and trill consonants.

There have been several works proposing different types of singing synthesizers. The more
prominent of which are based on concatenative methods [1,2] and statistical parametric methods
centered around Hidden Markov Models (HMMs) [3,4]. Similar to in this work, an important benefit
of statistical models is that they allow joint modeling of timbre and musical expression from natural
singing [18,35]. Many of the techniques developed for HMM-based TTS are also applicable to singing
synthesis, e.g., speaker-adaptive training [36]. The main drawback of HMM-based approaches is
that phonemes are modeled using a small number of discrete states and within each state statistics
are constant. This causes excessive averaging, an overly static “buzzy” sound and noticeable state
transitions in long sustained vowels in the case of singing. More recently, the work on HMM singing
synthesis was extended to feedforward DNNs [37], albeit with a somewhat limited architecture.

4. Experiments

The goal of our experiments is mainly to compare our system against competing systems such as
concatenative unit selection, HMM or DNN systems. We are also interested in having some indication
of the absolute performance of our system, i.e., compared to a reference recording.

We conducted two sets of experiments; one set of experiments involve systems trained on a
dataset of natural singing and the second set involve systems trained on a dataset of what we call
pseudo singing. Pseudo singing are recordings of something in between speech and singing, using a
constant cadence and one or more constant pitches. One limitation of pseudo singing is that it can
only be used to train timbre models, as it does not contain musical expression. However, the reason
for also conducting experiments with this kind of data is two-fold: first, we expect the performance
of in particular unit selection systems to be notably better with pseudo singing datasets, as the more
stable and coherent data is better suited for this type of system; and, second, we have access to a
wider range of datasets of this kind, including more languages. As we only compare the performance
of the timbre model of different systems when using pseudo singing, we generate sequences in a
so-called performance driven manner, that is, F0 and phonetic timings that control the timbre model
are obtained from a reference recording.

The webpage accompanying this article, http://www.dtic.upf.edu/~mblaauw/NPSS/, contains
several demo songs synthesized by our system, after training on both kinds of data.

4.1. Datasets

For systems trained on natural singing, we use a public dataset published by the Nagoya Institute
of Technology (Nitech), identified as NIT-SONG070-F001 (http://hts.sp.nitech.ac.jp/archives/2.3/HTS-
demo_NIT-SONG070-F001.tar.bz2). This dataset consists of studio quality recordings of a female
singer singing Japanese children songs. The original dataset consists of 70 songs, but the public version

http://www.dtic.upf.edu/~mblaauw/NPSS/
http://hts.sp.nitech.ac.jp/archives/2.3/HTS-demo_NIT-SONG070-F001.tar.bz2
http://hts.sp.nitech.ac.jp/archives/2.3/HTS-demo_NIT-SONG070-F001.tar.bz2

Appl. Sci. 2017, 7, 1313 11 of 23

consists of a 31 song subset (approximately 31 min, including silences). Out of these 31 songs, we use
28 for training and 3 for testing (utterances 015, 029 and 040).

We use three proprietary datasets from training systems on pseudo singing; an English male
voice (M1), an English female voice (F1) and Spanish female voice (F2). The studio quality recordings
consist of short sentences which were sung at a single pitch and an approximately constant cadence.
The sentences were selected to favor high diphone coverage. The Spanish dataset contains 123
sentences, while the English datasets contain 524 sentences (approximately 16 and 35 min respectively,
including silences). A randomly selected 10% of sentences are used for testing.

Note that these datasets are small compared to the datasets typically used to train TTS systems.
However, for natural singing, many-hour datasets would exceed the repertoire of most singers.
For pseudo singing, as only timbre is captured in a very constrained setting, substantially larger
datasets would likely yield diminishing returns.

4.2. Compared Systems

• NPSS: Our system, which we call Neural Parametric Singing Synthesizer (NPSS), as described in
Section 2.

• IS16: A concatenative unit selection-based system [1], which was the highest rated system in the
Interspeech 2016 Singing Synthesis Challenge.

• Sinsy-HMM: A publicly accessible implementation of the Sinsy HMM-based synthesizer
(http://www.sinsy.jp/). This system is described in [4,35], although the implementation may
differ to some degree from any single publication, according to one of the authors in private
correspondence. While the system was trained on the same NIT-SONG070-F001 dataset, it should
be noted that the full 70 song dataset was used, including the 3 songs we use for testing.

• Sinsy-DNN: A publicly accessible implementation of the Sinsy feedforward DNN-based
synthesizer (http://www.sinsy.jp/) [37]. The same caveats as with Sinsy-HMM apply here.
Additionally, the DNN voice is marked as “beta”, and thus should be considered still experimental.
The prediction of timing and vibrato parameters in this system seems to be identical to Sinsy-HMM
at the time of writing. Thus, only timbre and “baseline” F0 is predicted by the DNN system.

• HTS: A HMM-based system, similar to Sinsy-HMM, but consisting of a timbre model only, and
trained on pseudo singing. The standard demo recipe from the HTS toolkit (version 2.3) [38] was
followed, except for a somewhat simplified context dependency (just the two previous and two
following phonemes).

4.3. Methodology

We compare the different systems using a set of quantitative and qualitative tests. Finding
perceptually relevant metrics to compare generative models quantitatively tends to be very challenging,
as is the case with expressive singing voice. Although we pay special attention to the metrics we use,
this should be kept in mind when comparing values. Qualitative tests tend to be more conclusive,
but can also be challenging when evaluating multidimensional aspects such as “expression”. It should
be noted that the quantitative metrics for the systems trained on pseudo singing are evaluated with
respect to a pseudo singing reference. Therefore, these results might not directly correspond to our end
goal, expressive singing, as evaluated in the listening tests and quantitative metrics for the systems
trained on natural singing.

4.3.1. Quantitative Metrics

For all metrics, we apply a simple linear time mapping to reduce misalignments due to predicted
timings possibly differing from reference timings.

• Mel-Cepstral Distortion (MCD): Mel-Cepstral Distortion (MCD) is a common perceptually
motivated metric for the quantitative evaluation of timbre models. In our case, some moderate

http://www.sinsy.jp/
http://www.sinsy.jp/

Appl. Sci. 2017, 7, 1313 12 of 23

modifications are made to improve robustness for singing voice; Mel-cepstral parameters are
extracted from WORLD spectra, rather than STFT spectra, to better handle high pitches. To reduce
the effect of pitch mismatches between reference and prediction, we filter pairs of frames with a
pitch difference exceeding ±200 cents. Similarly, to increase robustness to small misalignments in
time, frames with a modified z-score exceeding 3.5 are not considered [39]. MCD is computed for
harmonic components, using 33 (0–13.6 kHz) coefficients.

• Band Aperiodicity Distortion (BAPD): Identical to MCD, except computed over linearly spaced
band aperiodicity coefficients. BAPD is computed for aperiodic components, using 4 (3–12 kHz)
coefficients.

• Modulation Spectrum (MS) for Mel-Generalized Coefficients (MGC): One issue with
framewise metrics, like MCD, is that these do not consider the behavior of the predicted parameter
sequences over time. In particular, the common issue of oversmoothing is typically not reflected in
these metrics. A recently proposed metric, the Modulation Spectrum (MS) [40], allows visualizing
the spectral content of predicted time sequences. For instance, showing oversmoothing as a
rolloff of higher modulation frequencies. We are mainly interested in the lower band of the MS
(e.g., <25 Hz), because the higher band of the reference (natural singing) can be overly affected
by noise in the parameter estimation. To obtain a single scalar metric, we use the Modulation
Spectrum Log Spectral Distortion (MS-LSD) between the modulation spectra of a predicted
parameter sequence and a reference recording.

• Voiced/unvoiced decision metrics: In singing voice, there is a notable imbalance between voiced
and unvoiced frames due to having many long, sustained vowels. As both false positives
(unvoiced frames predicted as voiced) and false negatives (voiced frames predicted as unvoiced)
can result in highly noticeable artifacts, we list both False Positive Rate (FPR) and False Negative
Rate (FPR) for this estimator. All silences are excluded.

• Timing metrics: Metrics for the timing model are relatively straight forward, e.g., Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE) or Pearson correlation coefficient r between onsets
or durations. We list errors for note onsets, offsets and consonant durations separately to ensure
the fitting heuristic affects the results only minimally.

• F0 metrics: Standard F0 metrics such as RMSE are given, but it should be noted that these metrics
are often not very correlated to perceptual metrics in singing [41]. For instance, starting a vibrato
slightly early or late compared to the reference may be equally valid musically, but can the cause
the two F0 contours to become out of phase, resulting in high distances.

• Modulation Spectrum (MS) for log F0: Similar to timbre, we use MS-based metrics to get a sense
of how close the generated F0 contours are in terms of variability over time. The MS of F0 is
computed by first segmenting the score into sequences of continuous notes, without rests. Then,
for each sequence, the remaining unvoiced regions in the log F0 curve are filled using cubic
spline interpolation. We apply a Tukey window corresponding to a 50 frame fade in and fade out,
and subtract the per-sequence mean. Then, the modulation spectra are computed using a Discrete
Fourier Transform (DFT) size 4096, and averaged over all sequences.

4.3.2. Listening Tests

For the listening tests, all stimuli were downsampled to 32 kHz, which is the lowest common
denominator between the different systems.

• Mean Opinion Score (MOS): For the systems trained on natural singing, we conducted a
MUSHRA [42] style listening test. The 40 participants, of which 8 indicated native or good
knowledge of Japanese, were asked to rate different versions of the same audio excerpt compared
to a reference. The test consisted to 2 short excerpts (<10 s) for each of the 3 validation set songs,
in 7 versions (reference, hidden reference, anchor and 4 systems), for a total of 42 stimuli. The scale
used as 0–100, divided into 5 segments corresponding to a 5-scale MOS test. The anchor consisted

Appl. Sci. 2017, 7, 1313 13 of 23

of a distorted version of the NPSS synthesis, applying the following transformations: 2D Gaussian
smoothing (σ = 10) of harmonic, aperiodic and F0 parameters, linearly expanding the spectral
envelope by 5.2%, random pitch offset (±100 cents every 250 ms, interpolated by cubic spline),
and randomly “flipping” 2% of the voiced/unvoiced decisions. We excluded 59 of the total
240 tests performed, as these had a hidden reference rated below 80 (ideally the rating should
be 100). We speculate that these cases could be due to the relative difficulty of the listening test for
untrained listeners.

• Preference Test: For the systems trained on pseudo singing, we conducted an AB preference test.
The 18 participants were asked for their preference between two different stimuli, or indicate no
preference. The stimuli consisted of two short excerpts (<10 s) of one song per voice/language.
Versions with and without background music were presented. We perform pairwise comparisons
between our system and two other systems, resulting in a total of 24 stimuli.

5. Results

5.1. Quantitative Results

For systems trained on natural singing, Tables 1–3 list quantitative metrics related to timbre,
timing and pitch models respectively. Examples of different modulation spectra for timbre and pitch
are shown in Figures 5 and 6. For systems trained on pseudo singing, Table 4 lists quantitative metrics
related to timbre models.

Table 1. Quantitative results for the timbre models trained on natural singing. Note that for the IS16
system the Modulation Spectrum Log Spectral Distortion (MS-LSD) and Voiced/Unvoiced (V/UV)
metrics are omitted as it does not use predicted harmonic features (MS-LSD is computed from predicted
features, not analyzed features) or V/UV decision. The HTS system is only considered when comparing
systems trained on pseudo singing, but should be roughly equivalent to Sinsy-HMM.

System
Harmonic Aperiodic V/UV

MCD (dB) MS-LSD (<25 Hz/Full, dB) BAPD (dB) FPR (%) FNR (%)

IS16 6.94 - 3.84 -
Sinsy-HMM 7.01 8.09/18.50 4.09 15.90 0.68
Sinsy-DNN 5.41 13.76/29.87 5.02 13.75 0.63
NPSS 5.54 7.60/11.65 3.44 16.32 0.64

Table 2. Quantitative results for the timing models trained on natural singing. The table lists Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE), both in 5 ms frames, and Pearson
correlation coefficient r. Note that the Sinsy-DNN system uses the same HMM-based duration model
as the Sinsy-HMM system, so it is excluded from the comparison. The IS16 system used durations
predicted by the NPSS system. The HTS system is only considered when comparing systems trained
on pseudo singing, but should be roughly equivalent to Sinsy-HMM.

System
Note Onset Deviations Note Offset Deviations Consonant Durations

MAE RMSE r MAE RMSE r MAE RMSE r

Sinsy-HMM 7.107 9.027 0.379 13.800 17.755 0.699 4.022 5.262 0.589
NPSS 6.128 8.383 0.419 12.100 18.645 0.713 3.719 4.979 0.632

Appl. Sci. 2017, 7, 1313 14 of 23

Table 3. Quantitative results of pitch models trained on natural singing. Table shows log F0 Modulation
Spectrum Log Spectral Distortion (MS-LSD) in dB. The F0 Root Mean Squared Error (RMSE) in cents
and Pearson correlation coefficient r are also given for reference. The IS16 and HTS systems are
excluded from this comparison because they are not suitable for modeling F0 from natural singing.

System MS-LSD (<25 Hz, dB) RSME (Cents) r

Sinsy-HMM 5.052 81.795 0.977
Sinsy-DNN 2.858 83.706 0.976
NPSS 2.008 105.980 0.963

7.00 7.25 7.50 7.75 8.00 8.25 8.50
Time (s)

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75
2nd MGC coefficient

Natural singing
Sinsy-HMM
Sinsy-DNN
NPSS

7.00 7.25 7.50 7.75 8.00 8.25 8.50
Time (s)

200

100

0

100

200

300

F0
 (c

en
ts

)

F0
Natural singing
Sinsy-HMM
Sinsy-DNN
NPSS

100 101 102

Modulation frequency (Hz)

0

5

10

15

20

25

30

35

M
od

ul
at

io
n

m
ag

ni
tu

de
 (d

B)

Average modulation spectrum of 2nd MGC coefficient
Natural singing
Sinsy-HMM
Sinsy-DNN
NPSS

100 101 102

Modulation frequency (Hz)

5

0

5

10

15

20

25

30

M
od

ul
at

io
n

m
ag

ni
tu

de
 (d

B)

Average modulation spectrum of 6th MGC coefficient
Natural singing
Sinsy-HMM
Sinsy-DNN
NPSS

Figure 5. Comparing the average modulation spectrum of harmonic Mel-Generalized Coefficient
(MGC) features. In the plotted excerpt, the relation between pitch and timbre during vibratos can be
observed.

5 10 15 20 25
Modulation frequency (Hz)

50

60

70

80

90

100

M
od

ul
at

io
n

m
ag

ni
tu

de
 (d

B)

Natural singing
Sinsy-HMM
Sinsy-DNN
NPSS

Figure 6. Comparing the average modulation spectrum of log F0 contours predicted by various systems
and natural singing.

Appl. Sci. 2017, 7, 1313 15 of 23

Table 4. Quantitative results for the timbre models trained on pseudo singing, separated by
voice/language. The IS16 system is excluded from the quantitative metrics because removing
utterances from the dataset to use for testing would mean missing diphones would have to be replaced.
The Sinsy-HMM and Sinsy-DNN systems were excluded from this comparison, as the only available
models are trained on natural singing. The listed metrics are Mel-Cepstral Distortion (MCD) and
Modulation Spectrum Log Spectral Distortion (MS-LSD) for harmonic features, Band Aperiodicity
Distortion (BAPD) for aperiodic features, and False Positive Rate (FPR) and False Negative Rate (FNR)
for voiced/unvoiced (V/UV) features.

Voice (Language) System
Harmonic Aperiodic V/UV

MCD (dB) MS-LSD (<25 Hz/Full, dB) BAPD (dB) FPR (%) FNR (%)

M1 (Eng.) HTS 4.95 11.09/22.44 2.72 16.10 2.46
NPSS 5.14 7.79/8.18 2.44 11.22 2.65

F1 (Eng.) HTS 4.75 10.25/22.09 4.07 15.60 1.01
NPSS 4.95 5.68/9.04 3.83 15.79 0.56

F2 (Spa.) HTS 4.88 11.07/22.28 3.62 1.85 2.21
NPSS 5.27 8.02/6.59 3.38 1.40 3.20

These metrics show that, for some of the framewise metrics, such as harmonic MCD, our system
is slightly behind. For some other metrics, such as the timing errors or aperiodic BAPD, our system
is slightly ahead. For systems trained on pseudo singing the differences tend to be a little bigger,
we argue that this is due that predicting averages for this kind of data results in good results for these
kind of metrics. However, in all metrics based on the modulation spectrum, which considers variations
in time, NPSS shows an improvement over the other systems.

When we compare an example of generated harmonic parameters during a vibrato in the left two
subplots of Figure 5, we notice the features predicted by NPSS having more detail than Sinsy-HMM
and Sinsy-DNN. In particular the framewise conditioning of harmonic features on F0 in NPSS, causes
the harmonic features to modulate along the vibrato, similar to what happens in the reference recording.
In the modulation spectrum analysis on the right-hand side of Figure 5, we can see that overall NPSS
tends to follow the modulation spectrum of the reference recording a little closer than Sinsy-HMM and
Sinsy-DNN in lower modulation frequencies. Compared to especially Sinsy-DNN, NPSS has less rolloff
in higher modulation frequencies, indicating less oversmoothing over time. However, all systems have
less high frequency modulation spectrum content than the reference recording, indicating none of the
systems are able to reproduce all the details of the original signal.

The analysis of the modulation spectrum of the log F0 predicted by different systems is shown in
Figure 6. We can see that overall NPSS matches the modulation spectrum of the reference recording
similarly or slightly better than Sinsy-HMM, but notably better than Sinsy-DNN. When we focus our
attention to the range of modulation frequencies corresponding to vibratos in this voice, 5–7 Hz, we see
that Sinsy-HMM and Sinsy-DNN have a sharp peak at 5 Hz, whereas for NPSS this whole range has
increased energy, similar to the reference. This may indicate that NPSS produces a wider range of
vibrato rates, similar to a real singer. In Sinsy-HMM and Sinsy-DNN vibrato parameters (rate and
depth) are modeled separately from the base F0, which may explain their tendency to produce very
controlled, regular vibratos.

5.2. Qualitative Results

Results of the listening tests comparing different systems trained on natural singing are listed in
Table 5. For systems trained on pseudo singing, results of the preference listening test are shown in
Figure 7.

Appl. Sci. 2017, 7, 1313 16 of 23

Table 5. Mean opinion scores for systems trained on natural singing, displayed on a 1–5 scale with
their respective 95% confidence intervals. The HTS system is only considered when comparing systems
trained on pseudo singing, but should be roughly equivalent to Sinsy-HMM.

System Mean Opinion Score

Hidden reference 4.76 ± 0.04
IS16 2.36 ± 0.11
Sinsy-HMM 2.98 ± 0.10
Sinsy-DNN 2.77 ± 0.10
NPSS 3.43 ± 0.11

NPSS/HTS
(acapella)
NPSS/HTS

(mix)
NPSS/IS16
(acapella)

NPSS/IS16
(mix)

80% 2%18%

67% 7%26%

53% 28%19%

56% 19%25%

NPSS HTS IS16 no pref.

Figure 7. Results of the preference test for systems trained on pseudo singing. The Sinsy-HMM and
Sinsy-DNN systems were excluded from this comparison, as the only available models are trained on
natural singing.

In the listening tests, NPSS is clearly ahead of competing systems. In the MOS test for systems
trained on natural singing, NPSS is around a third between the second best rated system (Sinsy-HMM)
and the reference. Here, it should be noted that the concatenative system, IS16, performs worst,
showing that this kind of system is poorly suited for this kind of data. In contrast, the preference test
for systems trained on pseudo singing, shows a strong preference for NPSS over the HTS system, and
a moderate preference over the IS16 system, which was designed for this kind of data. The correlation
between the qualitative results and the quantitative metrics based on the modulation spectrum indicate
that this may be a metric with higher perceptual relevance than the framewise metrics such as MCD.

In our experience NPSS, HMM and DNN systems all produce quite coherent timbres.
The concatenative system in contrast tends to produce more discontinuous timbres, especially when
using a dataset of natural singing, or other artifacts at concatenation boundaries, e.g., in fast singing or
when phonetic segmentation is not perfect. We found NPSS to generally produce less static features
over time, and less coloring of timbre. Compared to HMM and DNN systems, the autoregressive
generation of NPSS seems to help in reproducing rapidly varying consonants, although these can
occasionally sound better still in the concatenative system. In terms of expression, the HMM system
produces very coherent behavior, which while perhaps a little less human, tends to generally sound
quite pleasant. NPSS on the other hand, seems to be more varied, but this also means that results are
sometimes better than other times. One notable quality of NPSS is that the framewise conditioning
of timbre on pitch means that vibratos produce natural, synchronized modulations in both pitch and
timbre (see, e.g., Figure 5), unlike in the other systems which condition on note pitch.

6. Conclusions

We presented a singing synthesizer based on neural networks, which can generate synthetic
singing voice given a musical score with lyrics. From a single set of relatively few songs, the system is
able to learn both timbre and expression. Separate, but interconnected models learn phonetic timing,
pitch and timbre. The core building block of the system is a variant of the WaveNet architecture,
modified to allow generating features obtained from a parametric vocoder. This autoregressive
approach offers improved reproduction of consonants and a more natural variation of predicted
parameters over time, compared to competing approaches such as statistical parametric systems.

Appl. Sci. 2017, 7, 1313 17 of 23

Compared to concatenative approaches, our model allows for greater flexibility and is more robust
to small misalignments between phonetic and acoustic features in the training data. In listening test
our system was rated to reduce the gap between the second best system and the reference recording
by about a third. While correlating this with quantitative metrics is challenging, metrics that take
into account variations over time, such as the modulation spectrum, do seem to corroborate this.
The relatively small CPU, memory and disk footprint allows for many practical applications of our
system. We hope that in the near future we can evaluate our model trained on natural singing for a
wider range of languages and datasets. Further exploring the flexibility offered by this neural approach,
such as the area of multispeaker training is also promising, as it might help to overcome the issue of
limited dataset sizes typical of singing voice.

Acknowledgments: We gratefully acknowledge the support of NVIDIA Corporation with the donation of
the Titan X Pascal GPU used for this research. We thank Nagoya Institute of Technology for providing the
NIT-SONG070-F001 dataset (licensed under CC BY 3.0), Zya for providing the English datasets, and Voctro Labs
for providing the Spanish dataset and the implementation of the fast generation algorithm. This work is partially
supported by the Spanish Ministry of Economy and Competitiveness under the CASAS project (TIN2015-70816-R).

Author Contributions: Jordi Bonada and Merlijn Blaauw designed and implemented the proposed system; Jordi
Bonada implemented the fast generation algorithm; Jordi Bonada and Merlijn Blaauw designed the experiments;
and Merlijn Blaauw performed the experiments and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Details Constrained Gaussian Mixture

The output mixture density we call Constrained Gaussian Mixture (CGM), is a mixture of
K = 4 Gaussians,

p(x) =
K−1

∑
k=0

wkN (x; µk, σ2
k) . (A1)

The 12 mixture parameters wk, µk, σk for k = 0, 1, . . . , K− 1 are computed from four free parameters:
location ξ, scale ω, skewness α and shape β (see Figure 3 for some example distributions). Assuming
the network predicts four outputs with linear activations, a0, a1, a2, a3, we apply some nonlinearities to
obtain the free parameters in suitable ranges,

ξ = 2 sigm(a0)− 1 range [−1, 1] (A2)

ω =
2

255
e4 sigm(a1) range

[
2

255
,

2e4

255

]
(A3)

α = 2 sigm(a2)− 1 range [−1, 1] (A4)

β = 2 sigm(a3) range [0, 2] . (A5)

Then, we map predicted location ξ, scale ω, skewness α and shape β to Gaussian mixture
parameters µk, σk, wk for k = 0, 1, . . . , K− 1,

σk = ωe(|α|γs−1)k (A6)

µk = ξ +
k−1

∑
i=0

σkγuα (A7)

wk =
α2kβkγk

w

∑K−1
i=0 α2iβiγi

w
, (A8)

Appl. Sci. 2017, 7, 1313 18 of 23

where γu, γs and γw are constants tuned by hand,

γu = 1.6 (A9)

γs = 1.1 (A10)

γw =
1

1.75
. (A11)

A temperature control is achieved by first shifting component means towards their global
weighted average,

µ̄ =
K−1

∑
k=0

µkwk (A12)

µ̂k = µk + (µ̄− µk)(1− τ) , (A13)

where 0 < τ ≤ 1 is the temperature. Then, the component variances are scaled by the temperature,

σ̂k = σk
√

τ . (A14)

Appendix B. Details Tuning Postprocessing

The principal idea behind the tuning correction postprocessing is simple; apply the difference
between the perceived pitch of a note, given its predicted F0 contour, and the pitch of the corresponding
note in the score. However, robustly estimating the perceived pitch of a note from the corresponding
F0 contour is nontrivial. In singing voice there are many factors that affect F0, but may not influence
the perceived note pitch. These factors include vibratos, scoops, releases, transitions, microprosody
due to consonants and so on. Therefore, simple estimators, such as directly taking the mean of the
framewise F0 over the note duration, will typically yield poor results.

To obtain a more robust estimate of the perceived note pitch, F0, we compute a weighted average
of the predicted F0 over the note’s duration,

F0 =
∑i F0iwi

∑i wi
, (A15)

where F0i and wi correspond to the i-th frame within a given note of the predicted F0 vector and
weighting vector respectively. To simplify notation, throughout this section “F0” refers to log F0 in
semitones. The weighting vector in Equation (A15) is composed of a number of different factors that
correspond to different heuristics designed to make the estimate more robust,

w = wewdwpwt . (A16)

The first of these factors, we, is a weighting to reduce the influence of the edges of the note, where
most of the transition effects will typically be located. We compute we as a Tukey window with α = 0.5.
That is, we apply a cosine-taper weighting along the first and last 25% of the note duration.

The second factor, wd, is a weighting depending on the derivative of the F0 contour. The idea is
that the portion of the note where F0 is mostly flat will contribute more to the perceived pitch than
portions where F0 fluctuates due to transitions or microprosody. We first estimate the derivative by
convolving the signal with a 3rd order 1st derivative Savitzky-Golay FIR filter, sd, with a length of 11
frames (55 milliseconds),

dF0 = F0 ~ sd , (A17)

where ~ denotes the convolution operator. Then, we compute the weighting factor, wd, as follows,

wd,i =
1

min(1 + 27|dF0i|, 15)
, (A18)

Appl. Sci. 2017, 7, 1313 19 of 23

where the constants were obtained empirically.
The third factor, wp, is a weighting depending on the phoneme corresponding to each frame pi,

wp,i =

2, for pi ∈ {vowel, syllabic consonant}
0, for pi ∈ {silence, pause, breath}
1, otherwise.

(A19)

The idea is that frames corresponding to vowels typically contribute more to the perceived pitch
than consonants, which often contain microprosody effects.

The last factor, wt, is a weighting depending on the distance from the target pitch, based on the
assumption that detuning in the perceived pitch will typically be caused by relatively small deviations.
Other factors, such as scoops or microprosody, may cause relatively big deviations, but these tend not
to contribute to the perceived detuning. We use a pitch deviation of ±1 semitone as a threshold,

wt,i =

{
1, for |F0tar − F0i| ≤ 1

1/|F0tar − F0i|, otherwise.
(A20)

Finally, the required amount of pitch correction, cF0, is computed for each frame in a note
as follows,

cF0i = F0tar − F0 , (A21)

where F0tar is the note’s target pitch, as is written in the score. For rests, we do not apply any correction,
cF0i = 0. These framewise correction vectors are then concatenated for all notes and rests in the
sequence. As the resulting vector may be discontinuous, we smooth it by zero-phase filtering with a
Gaussian window with a length of 30 frames (150 milliseconds).

As the above method computes a notewise correction, it is based on the assumption that the
detuning will be approximately constant along a note. However, this is not always the case, especially
for longer notes. There can for instance be a pitch trend along a note’s duration, which may sound like
the singer is slowly trying to reach the correct pitch. To reduce this kind of detuning, we divide longer
notes in smaller sub-note segments, and compute the per-segment correction as described above.
However, prior to the final smoothing step, instead of a constant correction per segment, we obtain the
framewise correction by linearly interpolating each segment’s correction at its center.

Appendix C. Model Hyperparameters

Table A1 lists the hyperparameters for the timbre model and pitch model, which both use the
same modified WaveNet architecture. Table A2 list the hyperparameters for timing models, which use
a simpler architecture. All models are trained using the Adam optimizer [43] with standard parameters
β1 = 0.9, β2 = 0.999, ε = 1× 10−8; initial learning rates and inverse time decays are listed in the tables.
Training a complete system takes around 10 h on a single Titan X Pascal GPU. While we found these
settings to work well experimentally, they have not been exhaustively optimized.

Table A1. Hyperparameters for networks based on WaveNet architecture.

Hyperparameter
Timbre Model Pitch Model

Harmonic Aperiodic V/UV F0

Feature dimensionality 60 4 1 1

Additional inputs (dim.) - harmonic (60) harmonic (60)
aperiodic (4) -

Appl. Sci. 2017, 7, 1313 20 of 23

Table A1. Cont.

Hyperparameter
Timbre Model Pitch Model

Harmonic Aperiodic V/UV F0

Control inputs

prev. phn. identity (one-hot)
cur. phn. identity (one-hot)
next phn. identity (one-hot)

pos.-in-phn. (coarse)
F0 (coarse)

prev. phn. class (one-hot)
cur. phn. class (one-hot)
next phn. class (one-hot)

pos.-in-phn. (coarse)
prev. note pitch (one-hot)
cur. note pitch (one-hot)
next note pitch (one-hot)
prev. note dur. (coarse)
cur. note dur. (coarse)
next note dur. (coarse)
pos.-in-note (coarse)

Input noise level λ 0.4 0.4 0.4 0.4

Generation temperature τ
piecewise linear

(0,0.05; 3,0.05;
8,0.5; 60,0.5)

0.01 - 0.01

Initial causal convolution 10× 1 10× 1 10× 1 20× 1

Residual channels 130 20 20 100

Dilated convolutions 2× 1 2× 1 2× 1 2× 1

Num. layers 5 5 5 13

Num. layers per stage 3 3 3 7

Dilation factors 1, 2, 4, 1, 2 1, 2, 4, 1, 2 1, 2, 4, 1, 2 1, 2, 4, 8, 16, 32, 64,
1, 2, 4, 8, 16, 32

Receptive field (ms) 100 100 100 1050

Skip channels 240 16 4 100

Output stage tanh→ 1× 1
→ 60× CGMK=4

tanh→ 1× 1
→ 4× CGMK=4

tanh→ 1× 1
→ 1× sigmoid

tanh→ 1× 1
→ 1× CGMK=4

Batch size 32 32 32 64

Num. valid out timesteps 210 210 210 105

Learning rate
(initial, decay, interval)

5× 10−4,
1× 10−5, 1

5× 10−4,
1× 10−5, 1

5× 10−4,
1× 10−5, 1

1× 10−3,
-

Num. epochs (updates) 1650 (82,500) 1650 (82,500) 1650 (82,500) 235 (11,750)

Table A2. Hyperparameters for timing networks.

Hyperparameter Note Timing Phoneme Duration

Input features

note duration (one-hot)
prev. note duration (one-hot)
1st phoneme class (one-hot)

note position in bar (normalized)
note is rest

num. coda consonants prev. note
prev. note is rest

phoneme identity (one-hot)
phoneme class (one-hot)

phoneme is vowel
phoneme kind (onset/nucleus/coda/inner)

note duration (one-hot)
prev. note duration (one-hot)
next note duration (one-hot)

Target range (frames) [−15,14], [−30,29] for rests [5, 538]

Target discretization 30 bins, linear 50 bins, log scale

Appl. Sci. 2017, 7, 1313 21 of 23

Table A2. Cont.

Hyperparameter Note Timing Phoneme Duration

Architecture

input→ dropout (0.81)
1× 1→ 256× ReLU→ dropout (0.9)
1× 1→ 64× ReLU→ dropout (0.9)

1× 1→ 32× ReLU→ dropout (0.81)
1× 1→ 30-way softmax

input→ dropout (0.8)
3× 1→ 256× gated tanh→ dropout (0.8)

3× 1 (dilation = 2)→ 64× gated tanh
→ dropout (0.8)

1× 1→ 32× gated tanh→ dropout (0.64)
1× 1→ 50-way softmax

Batch size 32 16

Learning rate 2× 10−4 2× 10−4

Number of epochs 140 210

References

1. Bonada, J.; Umbert, M.; Blaauw, M. Expressive singing synthesis based on unit selection for the singing
synthesis challenge 2016. In Proceedings of the 17th Annual Conference of the International Speech
Communication Association (Interspeech), San Francisco, CA, USA, 8–12 September 2016; pp. 1230–1234.

2. Bonada, J.; Serra, X. Synthesis of the Singing Voice by Performance Sampling and Spectral Models.
IEEE Signal Process. Mag. 2007, 24, 67–79.

3. Saino, K.; Zen, H.; Nankaku, Y.; Lee, A.; Tokuda, K. An HMM-based singing voice synthesis system.
In Proceedings of the 9th International Conference on Spoken Language Processing (ICSLP—Interspeech),
Pittsburgh, PA, USA, 17–21 September 2006; pp. 2274–2277.

4. Oura, K.; Mase, A.; Yamada, T.; Muto, S.; Nankaku, Y.; Tokuda, K. Recent development of the HMM-based
singing voice synthesis system—Sinsy. In Proceeedings of the 7th ISCA Workshop on Speech Synthesis
(SSW7), Kyoto, Japan, 22–24 September 2010; pp. 211–216.

5. Van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.W.;
Kavukcuoglu, K. WaveNet: A generative model for raw audio. CoRR arXiv 2016, arXiv:1609.03499.

6. Blaauw, M.; Bonada, J. A neural parametric singing synthesizer. In Proceedings of the 18th Annual
Conference of the International Speech Communication Association (Interspeech), Stockholm, Sweden,
20–24 August 2017; pp. 1230–1234.

7. Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. In Proceedings of the 4th
International Conference on Learning Representations (ICLR), San Juan, Puerto Rico, 2–4 May 2016.

8. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 34th
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 770–778.

9. Reed, S.; van den Oord, A.; Kalchbrenner, N.; Bapst, V.; Botvinick, M.; de Freitas, N. Generating Interpretable
Images with Controllable Structure; Technical Report; Google DeepMind: London, UK, 2016.

10. van den Oord, A.; Kalchbrenner, N.; Vinyals, O.; Espeholt, L.; Graves, A.; Kavukcuoglu, K. Conditional image
generation with PixelCNN decoders. In Proceedings of the Advances in Neural Information Processing
Systems 29 (NIPS), Barcelona, Spain, 5–10 December 2016; pp. 4790–4798.

11. van den Oord, A.; Kalchbrenner, N.; Kavukcuoglu, K. Pixel recurrent neural networks. In Proceedings
of the 33rd International Conference on Machine Learning (ICML), New York, NY, USA, 19–24 June 2016;
Volume 48, pp. 1747–1756.

12. Salimans, T.; Karpathy, A.; Chen, X.; Kingma, D.P. PixelCNN++: Improving the PixelCNN with discretized
logistic mixture likelihood and other modifications. In Proceedings of the 5th International Conference on
Learning Representations (ICLR), Toulon, France, 24–26 April 2017.

13. Blaauw, M.; Bonada, J. A Singing Synthesizer Based on PixelCNN. Presented at the María de Maeztu
Seminar on Music Knowledge Extraction Using Machine Learning (Collocated with NIPS). Available online:
http://www.dtic.upf.edu/~mblaauw/MdM_NIPS_seminar/ (accessed 1 October 2017).

14. Ranzato, M.; Chopra, S.; Auli, M.; Zaremba, W. Sequence level training with recurrent neural networks.
In Proceedings of the 4th International Conference on Learning Representations (ICLR), San Juan, Puerto Rico,
2–4 May 2016.

http://www.dtic.upf.edu/~mblaauw/MdM_NIPS_seminar/

Appl. Sci. 2017, 7, 1313 22 of 23

15. Wang, X.; Takaki, S.; Yamagishi, J. A RNN-based quantized F0 model with multi-tier feedback links
for text-to-speech synthesis. In Proceedings of the 18th Annual Conference of the International Speech
Communication Association (Interspeech), Stockholm, Sweden, 20–24 August 2017; pp. 1059–1063.

16. Taylor, P. Text-to-Speech Synthesis; Cambridge University Press: Cambridge, UK, 2009; Chapter 9.1.4, p. 229.
17. Umbert, M.; Bonada, J.; Blaauw, M. Generating singing voice expression contours based on unit

selection. In Proceedings of the 4th Stockholm Music Acoustics Conference (SMAC), Stockholm, Sweden,
30 July–3 August 2013; pp. 315–320.

18. Mase, A.; Oura, K.; Nankaku, Y.; Tokuda, K. HMM-based singing voice synthesis system using pitch-shifted
pseudo training data. In Proceedings of the 11th Annual Conference of the International Speech Communication
Association (Interspeech), Makuhari, Chiba, Japan, 26–30 September 2010; pp. 845–848.

19. Nakamura, K.; Oura, K.; Nankaku, Y.; Tokuda, K. HMM-based singing voice synthesis and its application to
Japanese and English. In Proceedings of the 39th IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 265–269.

20. Arik, S.Ö.; Diamos, G.; Gibiansky, A.; Miller, J.; Peng, K.; Ping, W.; Raiman, J.; Zhou, Y. Deep voice 2:
Multi-speaker neural text-to-speech. In Proceedings of the Advances in Neural Information Processing
Systems 30 (NIPS), Long Beach, CA, USA, 4–9 December 2017.

21. Morise, M.; Yokomori, F.; Ozawa, K. WORLD: A vocoder-based high-quality speech synthesis system for
real-time applications. IEICE Trans. Inf. Syst. 2016, 99, 1877–1884.

22. Morise, M. D4C, a band-aperiodicity estimator for high-quality speech synthesis. Speech Commun. 2016,
84, 57–65.

23. Tokuda, K.; Kobayashi, T.; Masuko, T.; Imai, S. Mel-generalized cepstral analysis—A unified approach
to speech spectral estimation. In Proceedings of the 3rd International Conference on Spoken Language
Processing (ICSLP), Yokohama, Japan, 18–22 September 1994.

24. Ueda, N.; Nakano, R. Deterministic annealing EM algorithm. Neural Netw. 1998, 11, 271–282.
25. Ramachandran, P.; Paine, T.L.; Khorrami, P.; Babaeizadeh, M.; Chang, S.; Zhang, Y.; Hasegawa-Johnson, M.;

Campbell, R.; Huang, T. Fast generation for convolutional autoregressive models. In Proceedings of the 5th
International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.

26. Arik, S.Ö.; Chrzanowski, M.; Coates, A.; Diamos, G.; Gibiansky, A.; Kang, Y.; Li, X.; Miller, J.; Raiman, J.;
Sengupta, S.; et al. Deep voice: Real-time neural text-to-speech. In Proceedings of the 34th International
Conference on Machine Learning (ICML), Stockholm, Sweden, 10–15 July 2017; pp. 195–204.

27. Kalchbrenner, N.; van den Oord, A.; Simonyan, K.; Danihelka, I.; Vinyals, O.; Graves, A.; Kavukcuoglu, K.
Video pixel networks. CoRR arXiv 2016, arXiv:1610.00527.

28. Kalchbrenner, N.; Espeholt, L.; Simonyan, K.; van den Oord, A.; Graves, A.; Kavukcuoglu, K. Neural machine
translation in linear time. CoRR arXiv 2016, arXiv:1610.10099.

29. Mehri, S.; Kumar, K.; Gulrajani, I.; Kumar, R.; Jain, S.; Sotelo, J.; Courville, A.C.; Bengio, Y. SampleRNN:
An unconditional end-to-end neural audio generation model. In Proceedings of the 5th International
Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.

30. Sotelo, J.; Mehri, S.; Kumar, K.; Santos, J.F.; Kastner, K.; Courville, A.; Bengio, Y. Char2Wav: End-to-End
speech synthesis. In Proceedings of the 5th International Conference on Learning Representations (ICLR),
Toulon, France, 24–26 April 2017.

31. Wang, Y.; Skerry-Ryan, R.J.; Stanton, D.; Wu, Y.; Weiss, R.J.; Jaitly, N.; Yang, Z.; Xiao, Y.; Chen, Z.;
Bengio, S.; et al. Tacotron: A fully end-to-end text-to-speech synthesis model. In Proceedings of the
18th Annual Conference of the International Speech Communication Association (Interspeech), Stockholm,
Sweden, 20–24 August 2017; pp. 4006–4010.

32. Zen, H.; Senior, A. Deep mixture density networks for acoustic modeling in statistical parametric speech
synthesis. In Proceedings of the 39th IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 3872–3876.

33. Zen, H.; Sak, H. Unidirectional long short-term memory recurrent neural network with recurrent output layer
for low-latency speech synthesis. In Proceedings of the 40th IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), South Brisbane, QLD, Australia, 19–24 April 2015; pp. 4470–4474.

34. Tokuda, K.; Yoshimura, T.; Masuko, T.; Kobayashi, T.; Kitamura, T. Speech parameter generation algorithms
for HMM-based speech synthesis. In Proceedings of the 25th IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Istanbul, Turkey, 5–9 June 2000; Volume 3, pp. 1315–1318.

Appl. Sci. 2017, 7, 1313 23 of 23

35. Oura, K.; Mase, A.; Nankaku, Y.; Tokuda, K. Pitch adaptive training for HMM-based singing voice synthesis.
In Proceedings of the 37th IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Kyoto, Japan, 25–30 March 2012; pp. 5377–5380.

36. Shirota, K.; Nakamura, K.; Hashimoto, K.; Oura, K.; Nankaku, Y.; Tokuda, K. Integration of speaker
and pitch adaptive training for HMM-based singing voice synthesis. In Proceedings of the 39th IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014;
pp. 2559–2563.

37. Nishimura, M.; Hashimoto, K.; Oura, K.; Nankaku, Y.; Tokuda, K. Singing voice synthesis based on deep
neural networks. In Proceedings of the 17th Annual Conference of the International Speech Communication
Association (Interspeech), San Francisco, CA, USA, 8–12 September 2016; pp. 2478–2482.

38. Zen, H.; Nose, T.; Yamagishi, J.; Sako, S.; Masuko, T.; Black, A.W.; Tokuda, K. The HMM-based speech
synthesis system (HTS) version 2.0. In Proceedings of the 6th ISCA Workshop on Speech Synthesis (SSW6),
Bonn, Germany, 22–24 August 2007; pp. 294–299.

39. Iglewicz, B.; Hoaglin, D.C. How to Detect and Handle Outliers; ASQC Basic References in Quality Control;
ASQC Quality Press: Milwaukee, WI, USA, 1993.

40. Takamichi, S.; Toda, T.; Black, A.W.; Neubig, G.; Sakti, S.; Nakamura, S. Postfilters to modify the modulation
spectrum for statistical parametric speech synthesis. IEEE/ACM Trans. Audio Speech Lang. Process. 2016,
24, 755–767.

41. Umbert, M.; Bonada, J.; Goto, M.; Nakano, T.; Sundberg, J. Expression control in singing voice synthesis:
Features, approaches, evaluation, and challenges. IEEE Signal Process. Mag. 2015, 32, 55–73.

42. ITU-R Recommendation BS.1534-3. Method for the Subjective Assessment of Intermediate Quality Levels of Coding
Systems; Technical Report; International Telecommunication Union: Geneva, Switzerland, 2015.

43. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the 3rd International
Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed System
	Overview
	Modified WaveNet Architecture
	Constrained Mixture Density Output
	Regularization

	Timbre Model
	Multistream Architecture
	Handling Long Notes

	Pitch Model
	Data Augmentation
	Tuning Postprocessing

	Timing Model
	Note Timing Model
	Phoneme Duration Model
	Fitting Heuristic

	Acoustic and Control Frontend
	Audio Generation Speed

	Related Work
	Experiments
	Datasets
	Compared Systems
	Methodology
	Quantitative Metrics
	Listening Tests

	Results
	Quantitative Results
	Qualitative Results

	Conclusions
	Details Constrained Gaussian Mixture
	Details Tuning Postprocessing
	Model Hyperparameters
	References

