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Abstract: Estimating the compressive strength of high strength concrete (HSC) is an essential
investigation for the maintenance of nuclear power plant (NPP) structures. This study intends to
evaluate the compressive strength of HSC using two approaches: non-destructive tests and concrete
core strength. For non-destructive tests, samples of HSC were mixed to a specified design strength
of 40, 60 and 100 MPa. Based on a dual regression relation between ultrasonic pulse velocity (UPV)
and rebound hammer (RH) measurements, an estimation expression is developed. In comparison to
previously published estimation equations, the equation proposed in this study shows the highest
accuracy and the lowest root mean square error (RMSE). For the estimation of compressive strength
using concrete core specimens, three different concrete core diameters were examined: 30, 50,
and 100 mm. Based on 61 measured compressive strengths of core specimens, a simple strength
correction factor is investigated. The compressive strength of a concrete core specimen decreases as
the core diameter reduces. Such a relation is associated with the internal damage of concrete cores
and the degree of coarse aggregate within the core diameter from the extracting process of the cores.
The strength estimation expressions was formulated using the non-destructive technique and the core
strength estimation can be updated with further test results and utilized for the maintenance of NPP.

Keywords: high strength concrete; nuclear power plant; estimation of compressive strength;
Nondestructive test; dual regression; concrete core; strength correction factor

1. Introduction

Nuclear power plants (NPPs) have been promoted as a green power source because they are a
stable supply of electricity and diminish greenhouse gases relative to other power sources. Recently,
environmental events like earthquakes or typhoons have threatened the safety of NPPs; there has
already been a big disaster at the Fukushima Daiichi NPP in Japan. Even though there is a serious
risk of radiation, increasing the use of NPPs is regarded as a common strategy to satisfy the enormous
need for electricity in the future.

One possible way of preventing the disastrous leakage of radiation from NPP failure is to build
stronger plants, by using innovative materials such as high strength concrete (HSC). In South Korea,
one of the more proactive nations in the research and development of NPP facilities, innovative research
associated with high strength concrete has been consistently performed; since 2010, researchers have
strived to achieve a target concrete compressive strength of 42 MPa at 28 days [1]. Increasingly,
NPPs are being constructed using HSC, which naturally creates a need for an appropriate maintenance
method for NPPs. After all, during the NPP service life the structural condition should be monitored
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by investigating the compressive strength of concrete. One of the main techniques for the estimating
compressive strength of concrete is to apply a non-destructive test (NDT) [2,3]. Another possible
strength-assessing method is the core strength test, which is a partially destructive test.

Two significant non-destructive methodologies for estimating the compressive strength of concrete
are the rebound hammer (RH) test and the ultrasonic pulse velocity (UPV) method. These estimating
methods are simple and effective. Thus, they have been used to estimate concrete compressive
strength since 1960 [4,5]. Recently, research on a new estimating equation for NDTs has been carried
out [6-8]. For NDT methods, it was reported that the rebound or ultrasonic velocity could be
substantially impacted by void condition, age and the humidity of the concrete [9]. Accordingly,
large or small variations can exist in the estimation results and a statistical approach should be
employed to develop the estimation equation. Due to its simplicity and practicality, most of the
approaches for estimating the compressive strength of concrete are usually based on the statistical
regression method. This is widely used because it can obtain a simple, deterministic equation from the
tested data. Previous studies have pointed out that using the multiple linear regression method [10-12]
and the combined method [13-15] in combination with ultrasonic pulse velocity and rebound hammer
values (or including other influencing factors) can provide more accurate and reliable prediction of the
compressive strength of concrete. Another advanced approach, using an artificial neural network can
effectively improve the reliability of the estimating result by excluding the out of data [16]. Even though
there have been many research efforts that aimed to estimate the strength of high strength concrete,
few of the proposed equations use data from the rebound hammer test and ultrasonic pulse velocity
method [17]. Thus, there is still not enough experimental data for estimating the compressive strength
of HSC that is stronger than 40 MPa.

The core strength test is a partially destructive test that extracts the core specimen from the
massive concrete member. For normal strength concrete, some in situ core tests were carried out [18,19].
However, such tests are rare for high strength concrete members. Because there are still hazard
problems during the extracting process of the cores, some codes like ASTM and British Standards
(BS) strongly recommend a minimum core diameter of 100 mm, satisfying the condition that the
diameter of the core is at least three times larger than the maximum coarse aggregate size in the
concrete mixture [20,21]. For a few special cases, some standards allow smaller diameters, down to
50 mm [22,23]. Having a smaller core size than that of standard specimen (100 x 200) is a very
useful and practical way to estimate the compressive strength of concrete without causing possibly
serious damage to concrete members during the extraction process of the cores. It can also save on
the in situ drilling time due to the high strength of concrete. Moreover, a smaller core is much more
appropriate for high reinforced concrete members (such as nuclear power plant structures), in which
the reinforcement space is relatively narrow. When the core is extracted from the concrete member,
a correction factor should be examined as compared with the compressive strength of standard
concrete specimens with a cylinder or cube type. The correction factor is mainly affected by varying the
slenderness ratio (Length/Diameter). For a core size of 46 and 69 mm, the mixed strength decreased
by around 70% as equal to 14 and 24 MPa with a maximum coarse aggregate of 22 mm at 28 days [24].
Another study found that the maximum aggregate size and the slenderness ratio increases as the
core strength decreases [25]. Microcore strength tests were conducted on concrete with a compressive
strength ranging from 20 to 50 MPa, using a core diameter of 28 mm and the strength reduction
showed up to 79% [26]. For high strength concrete, one significant study reported that the core
strength was about 95% of the total cylinder strength in concrete with 20 MPa compressive strength,
whereas in 50 MPa concrete, the core strength was about 85% of the total cylinder strength [27]. For the
special case of concrete with very high compressive strength, around 120 MPa, the discrepancy was
between 72% and 85% of the standard cylinder specimen for cores with diameters between 25 and
100 mm [28]. In contrast with concrete cylinders, core strength tests can result in somewhat large
variation in the prediction of the strength. In order to guarantee the applicability of the core strength
test for testing high strength concrete, further investigation on correction factor is needed. In particular,
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comparing core specimens (including small-size core specimens) with the standard cylinder strength
of the concrete should be investigated.

This study proposes two methods for evaluating the compressive strength of HSC for the
maintenance of NPP structures. One method is to use non-destructive techniques such as UPV and
RH. The other is the partially destructive, concrete core strength test. The mix proportions of the
HSC are designed to result in strengths of 40, 60, and 100 MPa, and three different core diameters
are examined: 30, 50, and 100 mm. The compressive strength test of the concrete cylinder and core
was carried out at 28 days and the correlation relationship between the tested and predicted strength
using NDT was investigated. The estimation equation for the HSC cylinder was statistically obtained
using a double linear regression method for better accuracy of prediction and superior validation.
Furthermore, the strength correction factor between the cylinder and core (including small-size cores)
specimen is examined.

2. Research Significance

This study proposes an estimation equation for high strength concrete with a compressive strength
over 40 MPa. To improve prediction accuracy, the equation is based on a multivariable regression
model of the NDT data from the ultrasonic pulse velocity and the rebound number. This equation
can be useful in estimating strength for the maintenance of NPP structures made of high strength
concrete. Besides, this study investigates the correlation factors between concrete cylinders and core
specimens including specimens with diameters smaller than 100 mm. By using smaller core specimens,
a reasonable strength estimation of high strength concrete NPP members is possible while minimizing
partial destruction during practical testing.

3. Experimental Program

3.1. Materials

The cement used in this study was Ordinary Portland Cement (OPC) with a bulk density of
3150 kg/m3, produced by Ssangyong Cement Co. of Busan, South Korea. Normal weight coarse and
fine aggregates were used to form ready mixed concrete (RMC). A blend of natural white, crushed
sand was used as the fine aggregate. The bulk densities of the fine (sand) and coarse (20 mm limestone)
aggregate were 2610 and 2690 kg/m3, respectively. The maximum size of the coarse aggregate was
20 mm. In order to complete the high strength concrete mixing, two types of mineral admixture such
as fly ash and silica fume were used in the mixing design.

3.2. Concrete Mixing

Table 1 presents the three different mix proportions of the concrete used in this study. The specific
compressive strength of the concrete at 28 days was specified to be 40, 60, or 100 MPa. The fundamental
approach for obtaining high strength is to have a low water to cement ratio. For high strength concrete
(up to 100 MPa), high pozzolan ingredients were added to the mixing design. These additives can
the effect of delaying concrete strengthening, by delaying the full hydration reaction. The water to
cement ratio varied from 0.43 to 0.27 as the target strength increased. Slump was set to 150 £ 20 mm.
After several trial mixtures, the optimum dosage of the admixture was finally determined. Class F fly
ash meeting ASTM C 618 [29] was used in all mix proportions. In a special case, silica fume with high
pozzolanic properties was used only in mix 3, which resulted in the highest compressive strength of
concrete in this study.
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Table 1. Mix proportions of concrete (unit: kg/m?3).

Mix f. W/B S/a Silica a
Types (MPa) (%) (%) Water  Cement Sand Gravel Fly-Ash Fume AE
Mix 1 40 385 52 160 374 358 537 849 42 - 3.74
Mix 2 60 31 51 165 479 328 492 809 53 - 4.52
Mix 3 100 21 46.5 165 613 189 440 743 79 94 14.93

 air-entraining admixture.
3.3. Experimental Test

3.3.1. Compressive Strength Test

The compressive strength test was carried out using a universal test machine (UTM) by
Dong-Ah Co. (Yangsan-city, South Korea) with 1000 kN capacity in compliance with ASTM C39M [30].
The type of concrete cylinder specimen had dimensions of ®100 x 200 mm. For core specimens,
the length of the entire core specimen was cut to result in a slenderness of 2.0 prior to the destructive
test. The compressive strength was automatically measured by a data acquisition system.

3.3.2. Rebound Hammer Test (RHT)

The rebound hammer test was carried out using a shmidt hammer by Proceq Co. (Zurich,
Switzerland) also known as a Schmidt Hammer. This is a well-known NDT technique and is widely
used for evaluating the compressive strength of concrete, based on the surface hardness of the concrete.
A hammer impact was applied on to the side surface of the cylinder specimen, which was vertically
restrained with 10% of the ultimate load of the compressive strength test (Figure 1a). This approach
is quite useful because it makes sure that the cylinder specimen is fastened horizontally against the
impact load of the hammer. The impact angle is zero (purely horizontal). A previous study has
employed this method when applying a rebound hammer test to a concrete specimen. The impacts
were applied to twenty points around the perimeter of the concrete cylinder then averaged, excluding
the data points that exceeded a value 20% above or below the average.

(b)

Figure 1. Non-destructive test for the concrete cylinder specimen. (a) Rebound hammer test; (b) Direct
ultrasonic pulse velocity method.

3.3.3. Ultrasonic Pulse Velocity Method (UPVM)

Ultrasonic Pulse Velocity Method (UPVM) uses the relationship between travel length (L) and
time (T) of an ultrasonic pulse wave. The measurement is made using a transmitter and receiver.
Evidently, less faults inside the concrete results in a high speed of the UP, whereas more faults (caused



Appl. Sci. 2017, 7, 1249 50f 16

by pores, cracks or poor quality) reduces the UPV. Ultrasonic velocity is affected by the choice of
measuring type such as the direct or indirect method. Indirect UPVM is usually used for in situ
measurements and a calibration factor of 1.05 between direct and indirect UPVM was employed in a
previous study [31]. The BS 1881-203 (1986) [32] suggests that the effect of steel reinforcement bars
occurs parallel to direction of the pulse path. For a/L, where a is the concrete cover and L is the length
of the ultrasonic pulse path, the influence of the reinforcement becomes negligible when a/L reaches
0.2 to 0.25. In case where a/L is under 0.2, Equation (1) is employed to correct the influence of steel
reinforcement on the ultrasonic pulse velocity. In this study, direct UPVM was employed to measure
the concrete cylinders and core specimens as shown in Figure 1b. UPVM was conducted three times
for each cylinder specimen and the data was averaged to give the representative value.

2 _ 2
7= L o )iV

1
Vs VsVe @

where,
V. = ultrasonic pulse velocity in the plain concrete
Vs = ultrasonic pulse velocity in the steel

3.3.4. Core Strength Test

For the core strength test, this study considers the standard size of the core to be 100 mm in
diameter and 200 mm in length, which is same size as the concrete cylinder. In general, conducting
a core strength test using specimens above the standard size may cause harmful damage to the
constructed concrete members, due to the partial destruction of concrete and steel reinforcement, which
occurs when the spacing of the reinforcement is not sufficiently large to avoid hitting the core drill bit.

According to an inspection manual [33], smaller core strength tests (with diameters less than
100 mm) are allowed in the estimation of the compressive strength of concrete. However, this is only
permitted when the maximum aggregate size is less than 10 mm. As concrete core size decreases,
the possibility of damage to the concrete members is minimized. It is quite important for the
maintenance of a critical facility such as NPP.

In order to investigate the compressive strength effect due to variation in the core size, square
concrete blocks without steel rebar were fabricated with a target strength of either 40, 60 or 100 MPa.
Their geometry was 600 mm long, 600 mm wide and 200 mm thick, as shown in Figure 2. They were
cured under the same conditions as the concrete cylinder specimens. The concrete core diameters used
in this study were 100, 50, and 30 mm and their slenderness (Length/Diameter) was fixed at 2.0.

Figure 2. Fabrication of concrete cylinder specimens and concrete block for a core strength test.
(a) Complete of test specimens; (b) Extracting process of the cores.
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4. Non-Destructive Test Results and Comparisons

4.1. Experimental Results and Strength Prediction of Concrete Cylinder

After finishing water curing under a constant temperature and humidity for 28 days, the
compressive strength tests were conducted using a 1000 kN UTM. The compressive strength of
the concrete cylinder was measured by averaging nine separate cylinder specimens for each mix
design (Table 2 summarizes the compressive strength results). The test results of mix 1 and mix 2
show a compressive strength of 53.1 and 66.2 MPa, respectively, and they exceeded their intended
mixed design strength at 28 days. Mix 3, however, did not reach the intended mixed design strength
of 100 MPa but stopped at 68.6 MPa, (a strength level of 69%). This phenomenon may be due to the
pozzolanic reaction with high pozzolan ingredients; the strength occurrence was somewhat delayed
until the full hydration reaction was completed.

Table 2. Measured compressive strength of concrete cylinder according to the case of mix proportion.

Mix Types f. (MPa) Average (MPa)
Mix 1 52.3,53.8,52.2,52.9,54.5 53.1
Mix 2 62.4,70.4,61.9,73.8,60.2,65.7, 65.0, 69.8 66.2
Mix 3 64.4,65.3,67.8,66.2,76.8 68.6

Figure 3 shows the relationship between the tested compressive strength and the strength
predicted by the ultrasonic pulse velocity and rebound hammer tests. For high strength concrete,
UPV ranged between 4.5 and 5.0, for a concrete with a compressive strength ranging from 50 to 80 MPa.
The relatively high speed of the UPV is due to the high level of density in high strength concrete.
The results of the rebound hammer test presented wider scatter of hammer values, even though the
predicted strength range was same as that predicted by UPV. This discrepancy might be caused by
predicting the compressive strength from the surface impact of the concrete specimen. This is because
the surface is not regular and the impact test is largely depended on the testing workability.
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Figure 3. Relationship between tested compressive strength of concrete cylinder and predicted by the
non-destructive test.
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For better accuracy and practicability, multivariable linear regression analysis (MRA) was
employed as a statistical approach. MRA intends to simultaneously certify two or more independent
influencing parameters. The general MRA equation is given in Equation (2), which the dependent
variable being a linear equation of more than an independent variable.

Y=a+b1Xi+b2X]'+...kani€ (2)

where,

Y = dependent variable

a =Y intersect

b1, x = slopes related with X;;

Xij, ... n = values of independent variables

e = error

In order to evaluate the degree of accuracy for the prediction equations, the root mean square
error (RMSE) value was employed. When two data sets, for example, one set is from the observed
or tested value and the other is the theoretical calculation or prediction, are compared, root means
square can serve a measure how far on average the error is from 0. The standard deviation indicates
the variability of the difference, where the RMSE is meaningful measure of the error. The common
expression of RMSE is introduced in Equation (3).

n
RMSE = , /% Y (X —x;)? )
i=1
where,

X; = tested compressive strength of concrete (MPa)
x; = predicted compressive strength of concrete (MPa)
n = number of specimens

Based on a multiple regression analysis, this study suggests a dual variable regression equation for
estimating the compressive strength of high strength concrete in practical applications (see Equation
(4)). Table 3 summarizes the comparison results between the tested and predicted compressive
strength of concrete obtained from single and dual linear regression expressions. As a result, RMSE
values of 4.9 obtained by the dual linear regression equation was closer to the tested strength values,
compared to the RMSE value of the single linear regression equation for UPV (7.3) and RH (5.0).
The discrepancy in RMSE between the single and dual linear regression is somewhat small. However,
it is possible that the RMSE will increase when the number of datasets increases. The previous literature
review found that the number of influencing factors is deeply related to improving the accuracy of
predicting the compressive strength of concrete. In any case, a dual linear regression must have better
prediction accuracy than a single linear regression approach. Figure 4 plots Equation (4) and the
experimental results.

fl = 38.7055 — 9.5194 x vp + 1.6678 x R, (4)

where,
" = estimated compressive strength of concrete cylinder at 28 days
c p g y y

vp = ultrasonic pulse velocity (km/s)
Ry = rebound hammer value
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Table 3. Experimental results and estimated compressive strength for non-destructive tests.

Experimental Results Estimated Strength (MPa)
Specimen Single Single Dual Regression
Number fe MPa) v, (km/s) Ro Regression by v,  Regression by Ry by v, and Ry
1-1 52.3 4.89 37.6 64.3 56.5 54.8
1-2 53.8 4.73 38.4 63.3 57.7 57.7
1-3 522 4.82 38.6 63.9 58.1 57.1
1-4 529 4.60 37.0 62.5 55.6 56.6
1-5 54.5 4.84 37.0 64.0 55.6 54.3
2-1 62.4 4.69 40.8 63.1 61.6 62.1
2-2 70.4 4.79 40.9 63.7 61.8 61.3
2-3 61.9 4.63 40.9 62.7 61.8 62.9
2-4 73.8 4.66 42.8 62.9 64.8 65.7
2-5 60.2 4.59 41.8 62.5 63.1 64.6
2-6 65.7 4.69 41.7 63.1 63.0 63.6
2-7 65.0 4.65 41.6 62.9 62.8 63.7
2-8 69.8 4.70 40.6 63.2 61.2 61.6
3-1 64.4 4.83 46.2 64.0 70.1 69.6
3-2 65.3 4.87 47.1 64.2 71.6 70.9
3-3 67.8 4.65 46.6 62.9 70.8 721
3-4 66.2 4.84 45.7 64.0 69.4 68.8
3-5 76.8 4.87 45.8 64.2 69.5 68.7
3-6 70.8 4.93 46.9 64.6 713 70.0

Experimental data
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Figure 4. Relationship between tested compressive strength of concrete cylinder and predicted by the
non-destructive test.

4.2. Comparison with Previous Equations

To validate the accuracy of the formula suggested in this study, the estimated compressive strength
of concrete results from the suggested formula were compared with those of other considered formulas
for UPV or RH (as summarized in Tables 4 and 5). The expression types are classified as 1st and 2nd
polynomial, power or exponential. The compressive strength of concrete ranged from 20 to 100 MPa,
however, most of the tested strength is limited to high strength concrete exceeding 40 MPa.

Figure 5 presents a summary of the test to predicted ratio for the average compressive strength of
concrete. The results indicate that most of the considered formulas are conservative in their predictions
of the compressive strength of high strength concrete, based on data from the UPV and RH methods.
These results can give safer prediction but may be impractical with respect to the factor of safety
resulting from the strength evaluation. Consequently, the formula suggested by the dual linear
regression expression showed the best accordance with the test results. Tables 6 and 7 include the
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analysis results in terms of RMSE. Figure 6 plots the entire comparison, revealing which formula has
the smallest RMSE, thus showing the highest accuracy in the prediction of the compressive strength of
high strength concrete. With the exception of the formulas of Kim and Kwon, most of the considered
formulas presented relatively large RMSE. Consequently, the estimation equation suggested in this
study showed the lowest RMSE among the considered formulas. This proves that the dual linear
regression expression used in this study can give a good prediction for the strength evaluation of HSC
by combining two significant influencing factors: measured UPV and RH.

Table 4. Previous equations for the rebound hammer test.

References Regression Formula (MPa) Strength Limit (MPa) Expression Types
AJJ [4] fL=0.73Ry +10.0 45 1st polynomial
Ali-benyahia [34] f{ = —15.034 + 0.9874R, 21.9 1st polynomial
Atici [10] fl = 3.34exp?05%8Ro 36.4 Exponential
Kim [35] fl =1.267Ry + 9.7868 60 1st polynomial
Kwon [36] fl =259Ry — 515 65 1st polynomial
Mohammed [37] f! = 9.5879exp"0384Ro 40 Exponential
Qasrawi [13] f{ =1.353Ry — 17.393 42 1st polynomial
Rashid [38] fl= f0.0SR% +8.37Ry — 157.54 52 2nd polynomial
Willetts [39] fl = 0.00935R3 + 0.8R, — 12.06 - 2nd polynomial

Table 5. Previous equations for the ultrasonic pulse velocity method.

References Regression Formula (MPa) Strength Limit (MPa) Expression Types
AlJ [4] fl=215V, - 62 45 1st polynomial
Ali-benyahia [34] fl = 0.6401V;654 21.9 Power
Atici [10] fl = 0.0316exp'3"> 36.4 Exponential
Del Rio [40] f1 = el(=5:40.8)+(0.00185:0.00018) ;] 34.0 Exponential
Khan [17] fl = 05208V 100 Power
Kim [10] fi =50.163V, —178.2 60 1st polynomial
Najim [11] f{ =0.0136V, —21.34 50 1st polynomial
Qasrawi [13] fl= 32.72V, — 129.077 42 1st polynomial
Rashid [38] fl= 38.05V3 —316.76V,, + 681.62 52 2nd polynomial
Trinik et al [16] fl = 0.854exp! 2882V, 50 Power

Table 6. Comparison results of compressive strength of concrete by rebound hammer test.

References Test/Predicted Standard Deviation = Root Mean Square *
ATJ [4] 1.6 0.13 23.6
Ali-benyahia [34] 24 0.21 37.5
Atici [10] 15 0.21 224
Kim [35] 1.0 0.08 5.1
Kwon [36] 11 0.11 8.7
Mohammed [37] 1.3 0.12 159
Qasrawi [13] 1.6 0.13 24.6
Rashid [38] 1.2 0.09 124
Willetts [39] 17 0.16 25.9
Dual linear 1.0 0.08 49

regression

* calculated by using the results in Table 3.

Table 7. Comparison results of compressive strength of concrete by ultrasonic pulse velocity method.

Reference Test/Predicted Standard Deviation = Root Mean Square *
AlJ [4] 1.6 0.20 29.5
Ali-benyahia [34] 1.8 0.23 24.5

Atici [10] 42 0.72 48.7
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Table 7. Cont.

Reference Test/Predicted Standard Deviation = Root Mean Square *
Del Rio [40] 2.2 0.47 34.4
Khan [17] 0.7 0.11 322
Kim [10] 1.1 0.15 9.3
Najim [11] 1.9 0.26 30.4
Qasrawi [13] 1.5 0.17 21.5
Rashid [38] 24 0.41 37.9
Trinik et al [16] 18 0.30 28.7
Dual linear 1.0 0.08 49
regression
* calculated by using the results in Table 3.
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5. Strength Correction Factor for Concrete Core Strength

For the maintenance of concrete strength evaluation, the concrete core specimen is generally
considered to be the direct representative specimen for evaluating the compressive strength of concrete
within an in situ structural member. According to the specifications British Standard Institution
(BSI) [21], International Union of laboratories and Experts in Construction Materials, Systems and
Structures (RILEM) [5] and Architectural Institute of Japan (Al]) [4] for NDT, a non-destructive test is
recommended for estimating the compressive strength of concrete members, based on the correlation
of the strength obtained by core strength tests. One of the most significant concerns in using a core
specimen is that it is easily damaged by the high speed drill bit during the extracting process of the
cores [41]. The core strength test essentially partially damages the target concrete member. A concrete
core diameter of 100 mm is generally used, however, the practical concrete core size is usually limited
by the installation of internal reinforcement, such as pre-stressed tendon. Another limitation is the
position where the core concrete can be extracted from: it is necessary to minimize partial damage in
parts of the member where the stresses concentrate. In these conditions, a smaller core size specimen is
a useful option, because it is causes much less partial damage so that the structural integrity of concrete
member can be guaranteed after the extracting process of the cores. The use of a small-size core
specimen must be quite effective in the maintenance of NPP structures made of HSC. When estimating
the compressive strength of HSC using a small-size core specimen, the strength correction factor
between the smaller diameter specimen and the 100 mm concrete cylinder should be evaluated.

Figure 7 shows the three diameters of core specimen that were evaluated in this study. Concrete
core specimens were obtained from a square concrete block without steel reinforcement. The block is
600 mm long, 600 mm wide and 200 mm thick, as previously shown in Figure 2.

Figure 7. Extracted core specimens for diameter of 30, 50, 100 mm.

Table 8 summarized compressive core strength of concrete according to the mix types and core
diameters. Considering that the maximum size of the coarse aggregate is 20 mm, a minimum core
size of 30 mm is reasonable for investigating the compressive strength of concrete using a compressive
test. As the diameter size of the specimen decreases, the compressive strength of the core specimens
also decreases.
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Table 8. Compressive core strength of concrete according to the mix types and core diameters.

12 0of 16

f core (MPa)

Mix Type Concrete Block No.
30 mm 50 mm 100 mm
Mix 1 1 44.7,31.6 56.3,45.0,51.0 48.9,51.7
- 2 52.8,38.6 67.3,46.2 62.3,56.9
- 3 32.8,39.8 36.9,37.1,38.2 57.1,48.4,54.7
- Average 40.1 47.3 54.3
Mix 2 * 1 36.2,31.3 32.0,32.1 46.4,53.6
- 2 40.7,37.0 42.5 35.0, 33.3, 40.1
- 3 39.9,41.6 37.5,35.3,40.1 32.4,35.8,44.8
- Average 37.8 36.6 40.2
Mix 3 1 49.8,94.8 43.8 55.3,54.3
- 2 80.3,50.3 55.8, 67.7,54.0 78.7,76.2
- 3 427,419,553 449,429,445 54.2,58.8
- Average 59.3 50.5 62.9

* Mix 2 is not included for the evaluation of strength correction factor.

This trend is in agreement with previous research, including an observed higher coefficient of
variation (COV) [25]. This strength discrepancy is deeply related with degree of coarse aggregate.
Coarse aggregate is the source that enables excellent interlocking mechanisms within concrete members.
For instance, 25 mm diameter coarse aggregate is usually used for concrete mixing. If the concrete
core diameter decreases to below 25 mm, the probable chance of having 25 mm aggregate within the
core specimen also decreases. Accordingly, the estimated compressive strength of the concrete core
specimen must be lower, as there is less coarse aggregate to resist against the compressive loading.
The minimum size of the core diameter will have to be appropriately determined by considering the
maximum coarse aggregate used in the target concrete structures for core strength tests.

Figure 8 exhibits the strength correction factor between concrete core specimens and the 100 mm
standard concrete cylinder. For 100 mm specimens, the strength correction factor between the core and
cylinder ranged from 0.92 to 1.02. However, the 30 and 50 mm core specimens had lower evaluated
strength than those of the concrete cylinder specimens. One possible reason for the strength reduction
is that water particles inside the concrete are gradually eliminated due to drying and proceeding
hydration mechanism so that a number of micro voids remain. These pores within the structure may
develop a critical damage interface. Once the drill bit penetrates the concrete member, the high speed
rotating impact deeply affects the damage acceleration of concrete around the pores then the integrity
of concrete worsens compared to the standard concrete cylinder. There are a few research data on
strength correction factors between the concrete core and the standard cylinder, and also few data on
high strength concrete. Because of the uncertainty in the strength evaluation of the specimens obtained
from the extracting process of the cores, the strength correction factors between the concrete core and
the standard cylinder should be further investigated, and an empirical strength relationship needs to
be researched for the maintenance of high strength concrete structures. From Figure 8, as the concrete
strength went to mix 1, the average strength ratio was increased. Thus, the damage in extracting core
may be reduced rather than that of stronger specimen of mix 3. This can be explained that higher power
and rotating speed is needed for mix 3 specimens so it may affect even more damages inside concrete.
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Figure 8. Compressive core strength of concrete and strength ratio for the three types of
mix proportions.

Figure 9 classifies the average compressive strength according to the three different core diameters
used in this study. Core specimens made from mix 2 exhibited out of strength results, which might be
caused by some problems in the extracting process. Figure 10 shows the average strength correction
factor () defined as the ratio of the core strength (fcore) to the cylinder specimen strength (f{). Mix 2
specimens were excluded when calculating this strength correction factor, due to the reason stated
above. Therefore, the strength correction factor is obtained by following expression as v = feore/ fi.
The average y was obtained as 0.73 for 30 mm, 0.79 for 50 mm, and 0.94 for 100 mm. The <y equation
can simply convert the compressive strength of concrete core specimens to the compressive strength
of the concrete cylinders at 28 days. This correlation equation is convenient to use, without needing
destructive data on the in situ concrete cylinder, and the strength correction factor can be continuously
updated as the tested dataset increases. This equation can be used, in combination with smaller in situ
core specimens, as a maintenance strategy for evaluating the designed compressive strength of high
strength concrete within NPP structures.

100
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a 50 477 48.3 49.0
g 400 426
o 40 —37.8
()]
o
9 30 —
Z

20

©30 mm ®50 mm ©100 mm

Core diameter

Figure 9. Compressive strength of concrete according to the diameters of 30, 50, 100 mm.
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Figure 10. Average strength ratio for core specimens according to core diameter.

6. Conclusions

This study investigated the compressive strength of the high strength concrete and suggested the

estimation equation for non-destructive tests and core strength tests. The conclusions are as follows:

1.

In this study, the compressive strength of high strength concrete (greater than 40 MPa) was
evaluated and an estimation equation was suggested that uses a dual regression approach in
conjunction with rebound hammer tests and the ultrasonic pulse velocity method. In comparison
to previous formulas, the proposed estimation equation showed the highest accuracy and the
lowest RMSE in predicting compressive strength. Thus, the formula suggested in this study can
be effectively used to estimate the compressive strength of a high strength concrete member.
Analytical comparison of the concrete core and cylinder specimen revealed that the compressive
strength of the concrete core specimen was lower than that of the concrete cylinder. This must
be due to the inherent damage caused during the extracting process of the cores, and the
lower amount of coarse aggregates within the specimen. Thus, the strength correction factor of
high strength concrete should be further researched using more experimental tests or damage
image processing. Smaller-sized concrete core specimens can be reasonably used to estimate
the compressive strength of concrete with minimum destructive damage to high strength
concrete members.

This study investigated a strength correction factor () that converts the compressive strength
of concrete core specimens to the compressive strength of the concrete cylinder at 28 days.
The strength factor conversion coefficient was obtained by averaging the data from an entire mix
series for each specific core diameter. This value is not deterministic but is useful in estimating
the correlation between concrete cores and cylinder specimens made from high strength concrete.
This factor can be further updated and modified when more test results are available.

Using a combination of both estimation equation and strength correction factor for high strength
concrete may be a good strategy for the practical maintenance of NPP members made of the high
strength concrete.
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