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Abstract: Recent developments and studies in brain-computer interface (BCI) technologies have
facilitated emotion detection and classification. Many BCI studies have sought to investigate, detect,
and recognize participants’ emotional affective states. The applied domains for these studies
are varied, and include such fields as communication, education, entertainment, and medicine.
To understand trends in electroencephalography (EEG)-based emotion recognition system research
and to provide practitioners and researchers with insights into and future directions for emotion
recognition systems, this study set out to review published articles on emotion detection, recognition,
and classification. The study also reviews current and future trends and discusses how these
trends may impact researchers and practitioners alike. We reviewed 285 articles, of which 160 were
refereed journal articles that were published since the inception of affective computing research.
The articles were classified based on a scheme consisting of two categories: research orientation
and domains/applications. Our results show considerable growth of EEG-based emotion detection
journal publications. This growth reflects an increased research interest in EEG-based emotion
detection as a salient and legitimate research area. Such factors as the proliferation of wireless
EEG devices, advances in computational intelligence techniques, and machine learning spurred
this growth.

Keywords: brain-computer interface; electroencephalogram; emotion detection; affective computing;
emotion recognition; systematic literature review

1. Introduction

A Brain Computer Interface (BCI) is a system that takes a biosignal, measured from a person, and
predicts (in real-time) certain aspects of the person’s cognitive state [1,2]. At the outset, BCIs started
as assistive technological solutions for individuals with significant speech anomalies. However, the
research was rooted in a subject’s desire to communicate through either speech or writing or to control
his or her immediate environment. BCI systems have also used computer-based recreational activities
to stimulate a subject’s innate ability to overcome physical disabilities.

Today, BCI-based research has been expanded to include people with and without physical
disabilities. The entire system underscores how adaptive systems can enhance analytic methods and
application areas. This assistive ability has created a widespread awareness among potential users and
researchers alike. In the past 15 years, the increasing numbers of BCI research groups, peer-reviewed
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journals, conference abstracts, and attendees at relevant conferences are indicators of the rapid growth
of interest in this field. Aside from these indicators, numerous companies are collaborating with
research groups to develop BCI-related technologies. These companies have further defined clear
roadmaps for BCI-related technologies.

There are a number of annual conferences in human-computer interaction (HCI) and BCI fields,
which bring together prominent researchers to present their research projects, such as the ACM
Conference on Human Factors in Computing Systems (CHI), the ACM International Conference
on Multimodal Interaction (ICMI), the International Conference on Intelligent User Interfaces (IUI),
Computer Supported Cooperative Work (CSCW), and the IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). These conferences hold many Workshops, case studies, and courses
that are conducted by industry experts, practitioners, and researchers.

The phenomenal growth of BCI research is aligned with an influx of researchers from diverse
disciplines, including clinical neurology and neurosurgery, rehabilitative engineering, neurobiology,
engineering, psychology, computer science, mathematics, medical physics, and biomedical engineering.
The interdisciplinary nature of BCI research has resulted in the development of BCI systems with
different target applications.

Research on BCIs has shown that brain activity can be used as an active or passive control
modality [3]. In an active BCI, the user controls a device using brain signals and patterns through
a direct and conscious generation of commands that are wired to external applications. In contrast,
passive BCIs are systems wherein brain signals yield outputs without any voluntary control. Emotional
states, such as levels of meditation, engagement, frustration, excitement, and stress, are examples of
affective and cognitive feedback in passive BCIs.

The concept of passive BCI has been applied in various fields, such as affective computing,
which aims to improve the communication between individuals and machines by recognizing human
emotions, and to develop applications that adapt to changes in user state, and thereby enrich the
interaction. The entire communication process enriches the interaction, leading to a natural and
effective user experience. Motivated by a new understanding of brain functions and advances in
computer interface devices, countless research studies on emotion detection in real-time procedures
for patients and clinicians have been undertaken (e.g., [4–6]). Furthermore, similar advancements
are under development for additional cognitive mental states, such as attention and workload.
These cognitive mental states correspond to affective states. These and many other advances in BCI
technologies have piqued scientific interest in BCI technology and its application in different contexts.

The volume of studies, research, and publications on BCI emotion-based recognition systems has
surged in recent years. A plethora of studies with varied research methodologies has led to a broad
range of results, depending on the datasets, recording protocol, emotion elicitation technique, detected
features, temporal window, classifiers, involved modality, number of participants, and emotion models.

While BCI research encompasses a wide spectrum of applied domains, our research interest is
specifically focused on electroencephalography (EEG)-based emotion detection, although objective
measures of emotion can also be acquired from physiological cues derived from the physiology
theories of emotion. Instruments that measure blood pressure responses, skin responses, pupillary
responses, brain waves, heart responses, facial recognition, speech, and posture are often used as
objective measures in affective computing [7]. This review will seek to understand EEG-based emotion
recognition trends. The review will examine published literature with the aim of providing insights
for future emotion recognition systems to practitioners and researchers.

According to the Gartner’s 2016 Hype Cycle report on trending research topics, both
Brain-Computer Interface and Affective Computing are at the Innovation Trigger stage. These researchers
predict that mainstream adoption will occur in 5–10 years for Affective Computing, and in more than
10 years for BCI research. This phenomenon is captured in Figure 1.
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Figure 1. Gartner Hype Cycle for Emerging Technologies 2016; Brain-computer interface and affective 
computing are noted by the arrows (Source: Gartner’s 2016 Hype Cycle for Emerging Technologies, 
http://www.gartner.com/newsroom/id/3412017). 
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analysis of articles is difficult since different journals and different scientific domains have different 
research focuses and methodologies. 

Accordingly, the main objective of this review is to classify and summarize research that is 
relevant to emotion recognition systems and to provide conceptual frameworks for integrating and 
classifying emotion recognition articles. This system of classification will be useful for literature 
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The following sections illustrate our proposed classification framework for emotion recognition 
literature reviews based on research articles. In Section 2, we outline our research methodology. 
Section 3 describes our proposed classification framework for emotion-recognition-based literature 
reviews. Section 4 presents our discussion. In Section 5, we provide insights for future research and 
discuss the challenges and trends in EEG-based emotion recognition. Finally, in Section 6, we present 
the study’s conclusions. 

2. Research Methodology 
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Figure 1. Gartner Hype Cycle for Emerging Technologies 2016; Brain-computer interface and affective
computing are noted by the arrows (Source: Gartner’s 2016 Hype Cycle for Emerging Technologies,
http://www.gartner.com/newsroom/id/3412017).

During our literature review, we observed that articles on emotion recognition cut across
various disciplines, including clinical neurology, rehabilitation, neurobiology, engineering, psychology,
computer science, medical physics, and biomedical engineering. Hence, conducting a comparative
analysis of articles is difficult since different journals and different scientific domains have different
research focuses and methodologies.

Accordingly, the main objective of this review is to classify and summarize research that is relevant
to emotion recognition systems and to provide conceptual frameworks for integrating and classifying
emotion recognition articles. This system of classification will be useful for literature reviews on
emotion recognition research.

The following sections illustrate our proposed classification framework for emotion recognition
literature reviews based on research articles. In Section 2, we outline our research methodology.
Section 3 describes our proposed classification framework for emotion-recognition-based literature
reviews. Section 4 presents our discussion. In Section 5, we provide insights for future research and
discuss the challenges and trends in EEG-based emotion recognition. Finally, in Section 6, we present
the study’s conclusions.

2. Research Methodology

Articles on emotion recognition systems are scattered across journals of various disciplines
and were found in both medical and non-medical journal publications, including clinical neurology,
rehabilitation engineering, neurobiology, engineering, psychology, computer science, medical physics,
and biomedical engineering.

We searched Web of Science (WoS), https://webofknowledge.com, to obtain a comprehensive
bibliography of the academic literature on emotion-recognition-based BCI. The Web of Science Core
Collection database provides us with quick, powerful access to the world's leading citation databases,
such as Science Direct (Elsevier), IEEE/IEE Library, ACM Digital Library, Springer Link Online
Libraries, and Taylor & Francis.

The following subsections describe the procedure we followed in extracting articles, along with
our article selection criteria and filtering processes.

http://www.gartner.com/newsroom/id/3412017
https://webofknowledge.com
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2.1. Data Sources and Procedures for the Extraction of Articles

We searched our selected database (Web of Science Core Collection database) for articles over a
span of eleven years, 2005–2016. We used Basic Search to look for topics that fall into our research
scope. Using basic search settings, we input search terms and phrases, such as: affective or emotion;
emotion detection or recognition; EEG or Electroencephalography; and, Brain-computer interface,
Passive BCI or BCI. According to Web of Science search result templates, auto-generated search terms
are a result of searches covering articles, meeting abstracts, book chapter(s), and proceedings papers.

The initial search resulted in 766 articles. Table A1 in Appendix A shows a broad categorization
and distribution of our search results. We further refined our search based on some predetermined
criteria. The following section illustrates our selection criteria.

2.2. Selection Criteria

Three criteria were used to select and accept emotion recognition articles for further review.
Articles were excluded if they did not meet the following selection criteria:

• Articles must address one of the Gartner Hype Cycle 2016 trending research topics. To meet this
criterion, they must be relatively current. In this regard, we chose articles that were published
between 2005 and 2016. This 11-year period could be considered to correspond to the main
research period of emotion recognition systems.

• We excluded meeting abstracts, book chapters, conference proceedings, workshop descriptions,
masters and doctoral dissertations, and non-English articles. Notably, the number of conference
papers in this domain was 322, the number of book chapters was 3, and the number of meeting
abstracts was 6.

• We also ensured that only peer-reviewed journal articles were included. The logic behind this
is that practitioners and academics frequently use journals to both obtain and spread research
findings. Thus, journal articles contain the highest level of research.

2.3. Filtering/Reviewing Process

In this step, each article was manually reviewed in three rounds. This was done to eliminate
non-emotion-recognition-based works and non-BCI-based works. After that step, we classified the
filtered articles according to our classification scheme.

During our first round of review, we excluded articles based on our predetermined selection
criteria. We excluded all articles that did not address EEG-based emotion recognition systems.
After applying our selection criteria, we were left with 435 articles. We directly imported all of the
articles into an online EndNote database that facilitated, managed, assessed, and reviewed our result
articles. The remaining articles were then scanned and filtered, as described in the next subsection.

Our second round of review involved the manual scanning of titles, abstracts, authors, keywords,
and conclusions. This round of review excluded articles in which the central theme of the discussion
was centered on subjects other than emotion recognition systems, with emotion recognition systems
only being mentioned in passing. By the end of this round, we were left with 340 articles.

The final round involved reading the full texts and analyzing each article according to our
classification scheme. This scheme is described in the next section. The infographic in Figure 2 shows
the procedure used to filter and extract articles that meet our predetermined criteria.
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To systematically reveal and examine research insights on EEG-based emotion recognition,
a literature classification scheme was developed. This classification scheme was based on categorizing
the research focuses of the 285 selected articles that remained after the filtering processes. A graphical
representation of these categories and subcategories and their relationships is presented in Figure 3.
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3.1. Application Domain and Field

EEG-based emotion detection applications can be categorized into two broad domains:
Medical and Non-medical. They are further described in the following subsections.

3.1.1. Medical Context

EEG emotion recognition is medically contextual if the system is designed to provide assistance,
enhancement, monitoring, assessment, and diagnosis of human psychiatric and neurological diseases.

3.1.2. Non-Medical Context

Includes emotion recognition systems based on EEG signals that are designed to entertain, educate,
monitor, or play games.

4. Results and Discussion

We extracted 285 articles on emotion recognition systems from 29 online databases with
160 different journals. Each article was reviewed and classified according to our classification scheme.
Although the extensity of our search was limited, it offers a comprehensive insight into EEG-based
emotion recognition system research. Furthermore, we provided a descriptive overview of temporal
trends of these types of publications, along with a description of publication domains (e.g., publication
research area, online database and journal) in Appendix B.

4.1. Classification of Articles by Paper Orientation

When we classified journal articles according to paper orientation, we found 20 review articles
and 265 experimental design innovation articles.

4.1.1. Review Paper

We found twenty review papers. Seventeen of the articles were narrative reviews, and three
were systematic reviews. We classify these papers according to their focus: general/background,
signal processing, classification, application, and others. We found seven general reviews, including
neuroimaging techniques, emotion modeling, and applications. We also found three signal processing
reviews, one classification method, seven application reviews, and two reviews that covered the
training protocols, validity in the EEG-neurofeedback optimal performance field, and evidence of
neurofeedback learning. Table 1 shows the review article classifications.

Table 1. Review article classifications.

Focus Description References

General/background

Review recent studies that investigate the recognition of
affective states from EEG signals. Aim to present a general
discussion on one or more aspects, such as the neuroimaging
techniques, emotion representation models, physiological
signals, stimulus, feature extraction, and classification, and
discuss their current achievements and applications.

Liberati et al., 2015 [7],
Verma et al., 2014 [8],
Rule et al., 2013 [9],
Keysers and Fadiga, 2008 [10],
Grossmann and Johnson, 2007 [11],
Muthukumaraswamy and
Johnson, 2007 [12],
Schupp et al., 2006 [3]

Signal Processing

Survey the recent developments in the field of EEG signal
processing, including filtering and artifact processing, signal
enhancement methods, feature extraction methods, and
channel selection methods.

Alotaiby et al., 2015 [13],
Jenke et al., 2014 [14],
Knyazev, 2007 [15]

Classification
Survey the recent developments in the field of machine
learning, including the classification methods, performance
evaluation approaches, and post-processing methods.

Kim et al., 2013 [16]
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Table 1. Cont.

Focus Description References

Application

Medical

Schizophrenia Isaac et al., 2016 [17],
Campos et al., 2016 [18]

Disorders of consciousness Harrison et al., 2013 [19]

Depression Acharya et al., 2015 [20]

Autism Bhat et al., 2014 [21]

Non-medical
Games Bontchev and Boyan, 2016 [22]

Traffic Safety Reyes-Munoz et al., 2016 [23]

Other
Include a review of the training protocols, validity in the
EEG-neurofeedback optimal performance field, and
evidence of neurofeedback learning.

Gruzelier et al., 2014 [24]
Harmon-Jones et al., 2009 [25]

The objectives of the earliest reviews (2007 and 2008) were to understand the mirror neurons;
cover the EEG correlates of emotions, brain rhythms, and functions; and, present a framework and
suggestions for a research program [3,12]. We also found two published review articles that aim mainly
to highlight an emerging field, such as the neuroscience of culture in [9] and social neuroscience in [10].

Other review articles were published in medical fields. These articles focused on EEG applications
and how to use EEGs to diagnose and assess medical conditions. These articles also explored the
relationships between symptoms and affective states, such as schizophrenia [17,18], depression [20],
disorders of consciousness [19], and autism [21].

4.1.2. Design Innovation (Experimental) Paper

A number of design innovation papers (265) were published in the period of 2005–2016.
Technical aspects of design and design implications are important, and there are still many
technological challenges and obstacles to the growth of EEG-based emotion detection systems.
Therefore, information was extracted from each study on the following aspects: affective states
investigated, emotion elicitation method, number of participants, acquisition technique, and emotion
recognition techniques, including feature extraction, type of classifier, performance of the classifier,
and online (real-time) vs. offline classification.

Emotion model: Emotions are traditionally classified on the basis of two models: the discrete and
dimensional models of emotion. Dimensional models of emotion propose that emotional states can be
accurately represented as combinations of several psychological dimensions. Most dimensional models
incorporate valence and arousal. Valence refers to the degree of ‘pleasantness’ that is associated with an
emotion, whereas arousal refers to the strength of the experienced emotion. Discrete theories of emotion
propose the existence of small numbers of separate emotions, as characterized by coordinated response
patterns in physiology, neural anatomy, and morphological expressions. Six basic emotions that are
frequently specified in research papers are happiness, sadness, anger, disgust, fear, and surprise.

Another emotion model is the appraisal model. The appraisal model of emotion is based on
the evaluation of currently remembered or imagined circumstances. Basically, the appraisal model
proposes that thought precedes emotion and that emotion precedes behavior. The majority of the
papers (172 articles, 64.91%) clearly specify that they used a dimensional model, whereas (34 articles,
12.83%) used a discrete model; and, 21.89% of articles used a different model or did not specify which
emotion model they used.

Emotion elicitation technique: Different emotion elicitation techniques have been developed and
reported. Critical examples of emotion elicitation techniques include standardized emotional stimuli
(e.g., pictures, films, and audio), imagination techniques (e.g., guided imagery and autobiographic
recall), present social interactions (e.g., games), and directed facial action tasks. We found that
researchers have used different methods to elicit target emotions. In addition, other researchers
have found that the use of multiple stimuli is more effective in eliciting emotions than the use of
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single stimuli. Table 2 shows the numbers of articles that used a combination of different emotion
elicitation techniques.

Table 2. Emotion elicitation techniques.

Technique Number of Articles Domain (Medical, Non-Medical)

Visual-based elicitation using images 88 26% , 73.9%
Prepared task 43 25.6%, 47.4%
Audio-visual elicitation using short film video clips 38 18.4%, 81.6%
Audio-based elicitation using music 29 17.2%, 82.8%
Multiple techniques 19 26.3%, 73.9%
Other 17 11.7%, 88.2%
Imagination techniques/memory recall 10 20%, 80%
Social interactions 4 25%, 75%

When using elicitation techniques to evoke emotions, the emotional stimuli (image, audio,
and video) are usually taken from reputable sources, such as the International Affective Picture
System (IAPS) database and the International Affective Digitized Sounds (IADS). In addition, other
databases and video clips can be collected from various resources on the internet (e.g., YouTube and
Facebook). Other modalities, such as the recall paradigm, where the subject is asked to repeatedly
recall emotional instances from their life, and dyadic interaction, where a facilitator helps to induce
various emotions, are also used by researchers.

Although the affective information from image, video, and audio stimuli has been extensively
studied, olfactory stimuli [26], written words [27–32], food stimuli (enriched by emotional stimuli) [33],
and games have been used as elicitation methods in a number of studies as ways to assess human
emotional state by investigating physiological signals [34–37].

Single/multimodality: Recently, many studies have shown that combinations of modalities
can significantly enhance the emotion recognition accuracy in comparison with single modalities.
For example, combining eye movements, which are measured using an eye tracking method, and EEG
can considerably improve the performance of emotion recognition systems [38,39]. Moreover, in [40],
the researchers proposed a multi-modal emotion recognition system using four sensing methods: EEG,
heart inter-beat interval, galvanic skin response, and stressor level lever. The purpose of this study
was to measure the human stress response during using a powered wheelchair. It also provided a
comprehensive background for multi-modal emotional state and proposed a frame work and discussed
the feasibility and utility of using the multi-modal approach. In [8], the researchers used multimodal
physiological signals EEG, Galvanic skin response, blood volume pressure, respiration pattern, skin
temperature, electromyogram, and electrooculogram to classify and predict depression. They proved
the potential of the multimodal approach and achieved 85.46% accuracy using support vector machine
(SVM). The work in [41] proposes an approach for multi-modal video-induced emotion recognition,
based on facial expression and EEG technologies. In [42], the researchers proposed an emotion
recognition system that used a large number of modalities: galvanic skin response, heart rate, blood
volume pulse, electrocardiogram, respiration, facial electromyograph, and EEG, while the subjects were
watching the affective eliciting materials to distinguish six different kinds of emotions (joy, surprise,
disgust, grief, anger, and fear). They stated that the integration of these methods facilitates a more
detailed assessment of human affective state, which also improved accuracy and robustness. In [43],
the researchers examined the role of emotional arousal on subsequent memory in school-age children.
They used EEG, heart rate, and respiration. Their findings endorsed the value of combining multiple
methods to assess emotion and memory in development.

Most previous research into emotion recognition used either a single modality or multiple
modalities of different physiological signals. The former method allows for the limited enhancement
of accuracy, and the latter has the disadvantage that its performance can be affected by head or body
movements. Furthermore, the latter causes inconvenience to the user due to the sensors that are
attached to the body. In our review, we found that the majority of the papers (218 articles, 82.3%) used
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a single modality, namely, EEG signals, as an objective method in their studies, whereas (45 articles,
17%) used multiple modalities.

Recognition model: The analysis and classification of the EEG signal can be performed either
online or offline. The performance time begins when features are extracted and ends when classification
has been completed. The number of electrodes that are used during experimentation in emotion
detection situations imposes time constraints on the algorithms. For example, in [44], the authors
built a system that detects current user affective states and obtained a classification accuracy of 65%.
In [45,46], they tested their method online and offline. We observed that the majority of the 187 articles
mentioned that they were using offline analysis, whereas only 15 articles used online analysis.

EEG device: A number of EEG devices have been used in EEG-based BCI research in medical and
academic settings. We found up to 48 different devices from different companies all over the world.
In Table 3, we specify the most commercially available and widespread devices that have been used in
more than five articles.

Table 3. Electroencephalography (EEG) devices.

EEG Device Number of Articles References

Quik-cap, NuAmps (Compumedics NeuroScan Inc., El Paso, TX, USA) 33 [4,28,47–77]
Active-electrodes (BioSemi Inc., Amsterdam, Netherlands) 28 [5,6,34,35,78–101]
EPOC (Emotiv Inc., San Francisco, CA, USA) 24 [2,39,102–123]
Geodesic Sensor Net (Electrical Geodesics Inc., Eugene, OR, USA) 22 [26,30,124–143]
actiCAP, EASYCAP, BrainCap (Brain Products Inc., Munich, Germany) 22 [29,31,44,144–162]
EasyCap (FMS, Herrsching-Breitbrunn, Germany) 15 [27,37,163–175]
Electro-Cap (Electro-Cap International Inc., Eaton, OH, USA) 9 [176–184]
g.MOBIlab, g.EEGcap (g.tec Guger Technologies Inc., Graz, Austria) 7 [33,45,185–189]

Electrodes: When considering the number of electrodes, time interval required to set up an
EEG device, comfort level of subjects, system usability, and number of features to be processed, it is
advised, from this standpoint, that fewer electrodes be utilized; for example, five channels were used
in [176,190]. Nonetheless, most current EEG devices still require a relatively large number of electrodes;
for example, 64 channels were used in [93,95], and 32 channels were used in [43,71,191]. We found
that the maximum number of electrodes that were used when recording EEG signals was 257 in [141],
whereas the minimum number was one in [192]. In this study, the electrode was placed at the Fpz
according to the international 10–20 system, and two reference electrodes were located on the left
and right ear lobes. Notably, other physiological signals were recorded in this study, including facial
electromyogram, electroencephalography, skin conductivity, and respiration data.

Benchmark EEG emotional databases: Only a small number of benchmark emotional EEG
databases with categorized emotions are publicly available for use and to test a new system.
These datasets are available to the academic community via a web-based system and have been
used in a number of research studies to test and explore proposed systems. Table 4 lists the benchmark
datasets, along with descriptions and references to the articles that have used them. However, most
of the reviewed articles (239 articles, 88.7%) recorded their own EEG signals and used them during
their experiments.

Moreover, in [193], the authors evaluated their approach on three benchmark databases:
DEAP, MAHNOB-HCI, and USTC-ERVS. USTC-ERVS is an EEG dataset that contains 197 EEG
responses to 92 video stimuli from 28 users, along with users’ emotional self-assessments. However,
the USTC-ERVS dataset is no longer available online. Either its page was moved or the URL was
completely expunged from the initial database location.
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Table 4. Benchmark EEG emotional databases.

Dataset Description References

DEAP

It is a multimodal dataset for the analysis of human affective states.
The electroencephalogram (EEG) and peripheral physiological signals of
32 participants were recorded as each watched 40 one-minute-long excerpts
of music videos. Participants rated each video in terms of the levels of
arousal, valence, like/dislike, dominance, and familiarity. For 22 of the
32 participants, frontal face video was also recorded. The database is
described in [92] and is available online at
http://www.eecs.qmul.ac.uk/mmv/datasets/deap/.

[92,194–205]

SEED

The EEG signals of 15 subjects were recorded while they were watching
emotional film clips. For the feedback, participants were told to report their
emotional reactions to each film clip by completing a questionnaire
immediately after watching each clip. To investigate neural signatures and
stable patterns across sessions and individuals, each subject was required to
perform the experiments for three sessions. The time interval between two
sessions was one week or longer. Facial videos and EEG data were recorded
simultaneously. The database is available online at
http://bcmi.sjtu.edu.cn/~seed/download.html.

[206]

MAHNOB

It is a multimodal database for emotion recognition and implicit tagging.
It includes the physiological signals from 27 participants in response to
20 stimulus videos. Subjects’ emotional self-assessments are nine-scale
evaluations, from 1 to 9, for both valence and arousal. The database is
described in [101] and is available online at
http://www.ibug.doc.ic.ac.uk/resources/mahnob-hci-tagging-database/.

[41,207,208]

eNTERFACE06_EMOBRAIN

It is a multimodal database for emotion recognition. It contains
physiological signals from both the peripheral (galvanic skin response,
respiration, and blood volume pressure) and central (EEG and frontal fNIRS)
nervous systems from five subjects in response to picture stimuli. The
database is available online at http://www.enterface.net/enterface06/docs/
results/databases/eNTERFACE06_EMOBRAIN.

[209]

Participants: The number of participants can vary based on the experiment type and field. In our
review, we found that the minimum number of participants was one. In [137], an EEG investigation
was carried out on a patient with complete cortical blindness who presented with affective blindness.
The maximum number of participants was 300 in [42]. In this study, EEG-based physiological signals
of Chinese college students were recorded to establish a large effective physiological signal database.

Moreover, different age groups ranging from infants [132,143,169], children [6,43,75,84,89,103,
125,126,128–130,140,183,184,210–213], adolescents [59,65,70,135,139], and elderly [105,214] in different
experiments were considered as study samples. Some studies were conducted on a single gender,
such as those investigating women's emotions during motherhood and parental status [133,134,164]
and a study of men [215]. Some studies targeted a specific type of subject, such as healthy people or
patients, to investigate and observe the differences in emotions between two different groups, such as
control and healthy groups in [76,107,135], groups of women and men in [46,97,177], young adults
versus older adults in [87,216], or children versus adults in [126,143].

EEG correlates of emotion (signals): Numerous research studies have examined neural correlates
of emotion in humans. Frontal EEG asymmetry, event-related desynchronization/synchronization,
event-related potentials, and steady-state visually evoked potentials have been found to be associated
with emotional states. We found that the majority of the 130 articles used event-related potentials,
whereas 48 articles used Frontal EEG asymmetry in their analysis, six articles used event-related
desynchronization/synchronization, and four articles used steady-state visually evoked potentials.

Emotion types and numbers: Human feelings and emotions can be quantified for various emotional
states. However, only certain types of emotions can be recognized using EEG. Moreover, finding
key emotional states to be recognized is mandatory; for example, six emotions were detected
in [42,45,106,120,122,192], whereas in [108], a real-time EEG signal to classify happy and unhappy
emotions was proposed, and in [113], a fear evaluation system was proposed. In our review, we found
that most of the articles aim to detect unpleasant, pleasant, and neutral emotions, such as in [105,217],

http://www.eecs.qmul.ac.uk/mmv/datasets/deap/
http://bcmi.sjtu.edu.cn/~seed/download.html
http://www.ibug.doc.ic.ac.uk/resources/mahnob-hci-tagging-database/
http://www.enterface.net/enterface06/docs/results/databases/eNTERFACE06_EMOBRAIN
http://www.enterface.net/enterface06/docs/results/databases/eNTERFACE06_EMOBRAIN
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or positive, negative, and neutral emotions that are based on the valence-arousal dimensional emotion
model, as in [159,206].

Computational methods to estimate affective state: Various techniques and approaches have
been proposed in the literature in the processing steps to estimate the emotional state from the
acquisition signals. Reviewing recent publications and comparing computation methods and results
was conducted on a sample of the papers collected. The selection was based on the year 2015–2016
as a timeframe for publication to reflect recent trends and methodologies for emotion detection.
The computational methods to extract and classify emotional features from EEG are summarized
in Table 5.

Table 5. Computational methods to extract and classify emotional features from EEG.

Method Number of Articles References

Fe
at

ur
e

ex
tr

ac
ti

on

Frequency domain: power spectral density,
band power >> using Fourier Transform 29 [26,49,63,74,104,105,107,116,123,149,161,169,176,

193,197,200,203,204,207,208,216,218–225]

Time domain: Activity, mobility and
complexity >> using Hjorth Parameters,
Fractal dimension >> using Higuchi Method

11 [107,117,200,203,204,206,213,216,220,222,224]

Wavelet domain: Entropy, Energy >> using
Wavelet Transform 7 [186,201,203,213,216,217,226]

Statistical features: Median, Standard
deviation, Kurtosis symmetry, etc. 6 [6,104,117,200,204,226]

C
la

ss
ifi

ca
ti

on Support Vector Machine (SVM) 24 [49,104,106,107,116,117,157,176,186,190,193,196,
197,202–204,213,216,218,220,225–228]

K-Nearest Neighbor (k-NN) 10 [49,104,107,190,204,207,213,216,218,228]

Linear Discriminant Analysis (LDA) 4 [26,123,176,227]

Artificial Neural Network (ANN) 7 [105,176,190,204,216,223,227]

It is noteworthy to mention that a single feature extraction technique is not optimal across all
of the applications. Besides, existing signals are not enough for high accuracy feature extraction.
Several approaches introduce more features in different analysis domains to capture extra information
about the state of the brain [107,117,200,203,213,216,224]. Consequently, feature extraction is one of
the major challenges in designing BCI systems; it is determined based on the features and on the
appropriate transformation. Although the answer to what are the most emotion-relevant EEG features
is still under investigation, power features from different frequency bands are still the most popular in
the context of emotion recognition. Studies [26,197,218] have shown that power spectral density (PSD)
extracted from EEG signals performs well on distinguishing affective states.

Several machine learning algorithms have been used as emotion classifiers, such as support
vector machine (SVM), K-nearest neighbors (K-NN), linear discriminant analysis (LDA), random
forest, Naïve Bayes (NB) and Artificial Neural Network (ANN). In general, therefore, the choice of
which classification algorithm can be used when designing a BCI depends largely on both the type
of brain signal being recoded and the type of application that is being controlled. However, SVM
based on frequency domain features as power spectral density (PSD) is shown as the most commonly
used method.

Recently, Deep learning methods have been applied to the EEG-based emotion recognition
filed. In [49], they proposed a deep belief network (DBN) classifier to recognize three categories of
emotions (positive, neutral, and negative). Their experimental results show that the DBN models
obtain higher accuracy than SVM and K-NN methods. Also, recurrent neural networks have been used
in [74,208,229]. In [206], Chai et al. proposed auto-encoder-based deep learning method to investigate
emotion recognition on the SEED dataset.
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4.2. Classification of Articles by Application Domain and Field

We further classified the 285 articles that we extracted into areas of real-life application.
Notably, we classified them into medical and non-medical fields of application. The following criteria
were used to classify the articles under the medical field:

• the paper discussed a medical condition (disorder/disease), such as a psychiatric or neurological case;
• the participants of the experiment were patients or it involved two groups: one consisting of

healthy people, the other of patients;
• the experiment was conducted in a clinical setting; and/or,
• the paper was directed toward the medical community and suggested a new method for assistance,

enhancement, monitoring, or diagnosis using emotion-based recognition.

After evaluating all 285 articles according to the medical classification criteria listed above,
we found that 67 articles, or 23.51%, were medical articles. The remaining 218 articles, or 76.5%, were
non-medical. Distributions of medical and non-medical articles according to year of publication are
presented in Figure 4. We further classified the articles into areas of application within each domain.
Figure 5 shows a treemap of the 285 articles, classified according to field and application domain.
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4.2.1. Medical Applications

In the medical field, EEG-based emotion detection systems are used for assisting, monitoring,
enhancing, or diagnosing patients’ affective states. These medically adapted EEG systems are also
used to analyze different types of neurodevelopmental disorders. Some of these neurodevelopmental
disorders affect the memory, emotion, learning ability, behavior, and communication of persons
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suffering from these conditions. The most common cases are Schizophrenia, Autism, Depression,
Huntington’s disease (HD), and a myriad of psychiatric and neurological diseases.

Table 6 shows a classification of medical articles into areas of application, including Assessment
(22 articles, 32.8%), Assistance (13 articles, 19.4%), Diagnosis (8 articles, 11.9%), Monitoring (20 articles,
29.9%), and Other (4 articles, 6%).

Table 6. Medical application classification.

Domain Description References

Assessment

These articles assess the performance in terms of health and
non-health. The data from these articles can be used in
evaluating severity level and monitoring progress and
attainment. Moreover, information from these studies is
used to develop a scoring system to assess emotionality.

[4,47,72,79,94,106,118–120,133,135,145,
153,167,212,213,230–235]

Assistance

These articles provide insight into technologies/resources
for a patient with a disorder/learning problem by means of
assistive tools. Assistance occurs after the emotion
detection methods have been used to identify skills and
limitations of potential users.

[6,33,90,103,125,140,146,165,168,180,
221,236,237]

Diagnosis

These articles describe how doctors use EEG in the
interpretation of medical conditions. EEG is used by
clinicians as a diagnostic tool for patients with psychiatric
and neurological disorders. EEG studies produce
conclusive results as per the symptoms experienced by the
patients. Most of these symptoms are emotional; hence,
they are difficult to diagnose using subjective means.
The goal of these systems is to objectively detect medical
anomalies in a patient’s emotional affective state.

[20,62,66,76,137,183,226,228]

Monitoring

These articles outline the performances of patients who are
monitored during emotion processing to understand the
deficits in emotion and cognition. The data are used to
understand neural activity and correlates of emotions in
patients with different conditions/disorders using different
stimulus types.

[5,52,54,73,75,81,98,99,107,114,121,122,
124,126,156,181,211,238–240]

Other

These are review studies that report previous research
efforts. They serve as avenues for increasing the awareness
of EEG emotional response studies. They also increase the
awareness of how EEG may be used in clinical practice to
uncover potential neurophysiologic abnormalities.

[17–19,21]

Generally, neurological studies seek to understand how defects in neurobiological processes
result in problems associated with neural functioning. These studies are conducted with the goal of
understanding how individual differences in brain structure and function influence affective, cognitive,
and behavioral outcomes.

Different approaches have been proposed, and several research groups have developed EEG-based BCI
systems that aim to detect these affective states. Examples of medical applications are hereunder identified.

Depression is a mental disorder that is related to a state of sadness and dejection. It affects the
emotional and physical state of a person. Using EEG-based emotion recognition as a diagnostic test for
depression produces conclusive results. A number of studies are based on the automated classification of
normal and depression-related EEG signals. This proposed automatic classification system could serve
as a useful diagnostic and monitoring tool for the detection of depression [20,79,133,135,226,228,231].

Persons with schizophrenia exhibit drab facial expressions and rarely show positive emotions.
These abnormal personality traits may impact social functioning and communication. Whether these
deficits reflect an aberrant sensory anomaly, an inability to retain information in their memory, or a
dysfunctional integration of these two functions remains unclear. However, studies have shown that
sensory processing and memory functioning may be affected in schizophrenic patients [5,17,18,54,62,
66,72,73,90,94,98,180,233,236]. These studies’ experimental protocols were intended to clarify patient
deficits in processing emotional faces.
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Persons with Parkinson's disease have shown deficits in emotional recognition abilities.
Research findings on the reason for this are inconclusive. Nine articles discussed the idea of using
EEG-based emotion detection to provide assistance, monitoring, assessment, and diagnosis of
Parkinson’s disease in patients [47,106,107,114,118–122].

EEG-based emotion detection systems for cochlear implant patients have been proposed
in [156,211,238]. EEG signals are used to estimate the ability of these patients to recognize emotional
sounds by using EEG signals and different stimuli. Three studies compared the emotional approaches
of two groups of study participants. In one group, which was comprised of children with normal
hearing, the participants displayed a withdrawal/approach model, whereas the cochlear implant users
did not.

Other medical cases include autism [6,21,75,140,212,213], bipolar disorder [124,145],
epilepsy [230,234,235], attention-deficit/hyperactivity disorder [103,165], bulimia nervosa [33,168],
borderline personality disorder [167], pervasive developmental disorder [81], and eye movement
desensitization and reprocessing [125].

4.2.2. Non-Medical Applications

EEGs have been utilized in numerous non-medical applications. These applications are employed
for both healthy and physically challenged individuals. Non-medical fields where EEGs have been
applied include entertainment, education, monitoring, and gaming. Table 7 shows a classification of
non-medical articles into areas of application: Monitoring (95 articles, 43.6%), New method (60 articles,
27.5%), Entertainment (25 articles, 11.5%), Marketing (4 articles, 1.8%), Education (2 articles, 0.9%),
Assistance (10 articles, 4.6%), and Other (22 articles, 6.4%).

Table 7. Non-medical application classification.

Domain Description References

Monitoring

These articles explored the effects of different types of
stimuli, test emotions, and elicitation methods. They also
investigated how different types of stimuli induce specific
emotional reactions. They identified efforts in brain
lateralization, which aims to define regions of the brain and
the functioning of specific behaviors and cognitive skills.
They also compared emotional responses between genders
and during human developmental stages.

[26–32,35,43,45,46,48,51,55,56,59,60,64,
65,67–70,74,77,78,80,82–87,89,91,93,96,
97,113,127–129,132,134,138,139,141–
144,147,148,150,155,158,159,161,163,
164,166,169–172,175,177–179,182,184,
187,192,210,215,241–261]

New method

These articles proposed approaches for detecting affective
states using single/multi-modality signal processing
methods, including feature extraction and selection,
machine learning and pattern recognition methods.
These proposed systems aim to explore or improve
EEG-based emotion recognition systems.

[2,39,41,42,49,50,57,61,63,92,104,108,
109,117,131,136,149,152,157,173,174,
185,186,189,191,195–209,217,219,223–
225,229,262–275]

Entertainment

These articles observed relationships between multimedia
data (music/video) and human emotions. For example, they
explored the effects of different types of music on subjects of
different ages or genders. In gaming research, some articles
sought to detect gamers’ affective states to adapt to specific
game features, such as the levels of difficulty, punishment,
and encouragement. All of these were investigated using
EEG-based emotion recognition systems.

[34,37,44,53,58,71,88,100,101,110–112,
115,116,151,154,190,193,216,220,222,
276–279]

Marketing
These articles sought to understand consumer responses
toward marketing stimuli by using imaging techniques and
recognition of neurophysiological parameters.

[102,123,218,280]

Education These articles tracked students’ engagement and learning. [38,281]

Assistance

These articles explored how assistive technologies or
learning resources were provided to individuals.
Thereafter, they were used to identify skills, user experience,
and limitations of potential users. They were used to
improve behavior, cognition, and emotion regulation.

[1,40,95,105,139,194,214,227,282,283]
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Table 7. Cont.

Domain Description References

Others
Other articles explored
different aspects, such as

workload; [176,188,284]

social interaction and
cultural differences; [9,36,130,160,162]

review studies that reported
previous research efforts. [3,7,8,10–16,22–25]

Different approaches have been proposed, and several research groups have developed
EEG-based BCI systems that aim to detect affective state. Examples of non-medical applications
are hereafter identified.

Recently, a new research area appeared in the marketing field: neuro-marketing. The goal of this
new area is to understand consumer responses toward marketing stimuli by using imaging techniques
and the recognition of physiological parameters. Because customer feelings in sales areas are strongly
influenced by the perception of the surroundings, recognition of emotional responses can reveal true
consumer preferences and improve and assist in the (buying) process. Four articles have presented
this idea in different applications [102,123,218,280].

Similarly, an EEG-based experimental study [144] is also used to identify the temporal point at
which smokers’ responses to health warnings begin to differ. Basically, they aim to determine the
effects of graphic pictorial cigarette package health warnings by assessing the selective attentional
orientation and measuring emotional processing; they reported that smokers are less sensitive to the
emotional content of cigarette health warnings. Therefore, future health warning development should
focus on increasing the emotional salience of the pictorial health warning content among smokers.

Three research groups have explored EEG emotion detection systems for emotion (stress)
monitoring during self-driving of a powered wheelchair [40,227,285]. These studies aim to investigate
the ability to assist and enhance BCI-based wheelchairs by integrating emotion detection while
controlling a wheelchair.

The relationship between music genres and human emotions has been investigated in several
recent BCI studies. In these studies, brain signals were recorded using an EEG headset while the subject
listens to music [44,53,58,100,110,112,115,116,151,154,190,205,216,220,222,235,276,279]. Moreover, the
subjects’ emotions were recognized as displayed by EEG signals. These signals were then used to
tag multimedia data [71,101,193,277]. These studies also investigated methods for implicit tagging,
wherein users’ responses to interactions with the multimedia content are analyzed to generate
descriptive tags [71].

Recent BCI research from different disciplines approaches EEG emotion detection and recognition
via diverse methods. Some of these methods include feature extraction and selection, machine
learning, and pattern recognition methods. These different methods are used to build EEG-based
emotion recognition systems. Several research groups (63 articles, 21%) have proposed novel/effective
methods for building improved EEG-based emotion recognition systems. Three articles have proposed
and described EEG emotion database benchmarks [42,92,101].

Another non-medical application of EEG-based emotion recognition is word processing.
Because individual emotional differences impact word processing, differences in interpreting a string
of words may elicit different emotional responses. These varying emotional responses are caused
by involuntary (implicit) semantic processing, lexical decision tasks (LDTs), and interpretations of
perceived positive or negative emotional words [29,31,32,150,160].

Several research groups have explored EEG emotion detection systems as means for monitoring
levels of attention and measuring workload [176,188]. One important use is to monitor the level
of alertness in security-critical tasks such as driving and surveillance. For example, the Air Force
Multi-Attribute Task Battery was used as a realistic, ecologically valid multitask environment, in which
a participant's workload could be varied [188].
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Recently, EEG-based emotion recognition was proposed as a technique that can be used to
support a classification task, such as the EEG-based emotional state clustering task [50], image
classification [219], and Odor Pleasantness Classification Using Brain and Peripheral Signals [26].

Other non-medical applications of EEG-based emotion recognition include, lie detection
applications, security-critical tasks, and driving. For instance, EEG emotion applications are used
in untangling criminal cases in legal proceedings and to tell whether an individual is telling the
truth [97,139,274,284].

Two articles discussed how EEG-based emotion detection systems could be used to monitor
the alertness of humans when performing security-critical tasks. The researchers proposed a
real-time low-level attention detection application that can measure a driver’s degree of attention [23].
Likewise, a driver’s emotional and stress levels can be monitored under different conditions [23,283].

5. Challenges and Future Directions

One challenge with regard to the detection and modeling of emotions in the context of
human-computer interaction (HCI), is that it remains complex and requires further exploration.
In this context, future research on EEG-based emotion recognition will be explored using the BCI
design. From our perspective, Figure 6 provides insights into future research, challenges, and trends in
EEG-based emotion recognition.

In general, there are many challenges that are associated with the BCI system. These challenges
can be classified as technology related and/or user related. There are differences between the two;
however, it is noted that technology-related challenges include, impedance with sensors, system
usability, and real-time constraints. When dealing with the device, there are other things to consider,
such as the perceived obtrusiveness, information transfer rate, and high error rates. When dealing with
user-related challenges, one needs to consider the unfamiliarity of the participating subjects or patients
with BCI technologies, discrepancies between ratings, and the duration of setup and preparation.
Testing requires assistance from the facilitator in applying the electrodes, which makes the training
phase time-consuming.

The BCI design requires multidisciplinary skills from such fields as neuroscience, engineering,
computer science, psychology and clinical rehabilitation to achieve the goal of developing an alternative
communication and control medium. The number of EEG-based emotion recognition research studies
in recent years has been increasing, yet EEG-based emotion recognition is still a new area of research.
The effectiveness and efficiency of these algorithms are somewhat limited. Computational methods are
being used to estimate emotional state; nevertheless, they can be further improved with technological
advancements in order to increase the effectiveness of these algorithms. Some examples of limitations
in current algorithms and approaches involve time constraints, accuracy, the number of electrodes, the
number of recognized emotions, and benchmark EEG affective databases.

Another limitation is the accuracy and reliability of sensory interfacing and translation
algorithms in BCI systems. These factors generally limit the usage of these technologies in clinical
settings. Other fields have limitations and challenges as well. For example, engineering challenges
focus on the low signal-to-noise ratio in noninvasive electroencephalography (EEG) signals.
Moreover, computational challenges include the optimal placement of a reduced number of electrodes
and the robustness of BCI algorithms to a smaller set of recording sites.

As we mentioned previously, the challenges currently facing EEG-based BCI systems are
two-pronged: technological and user related. We anticipate that some of these challenges
will be resolved in the future. For the convenience of description, we have categorized these
challenges according to the time that we predict it will take to resolve them: near-term (2–5 years),
mid-term (6–9 years), and long-term (10+ years). Although we have categorized these challenges,
possible trends and future solutions into three time phases, it is worth noting that some of these
anticipated future trends might come earlier, overshoot their time frame, be delayed, or never
be achieved.
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We anticipate that some of the challenges we have identified may be addressed in 2 to 5 years’
time. Some challenges that may be addressed include familiarity of BCI electronic gadgets to study
participants or patients; the proliferation of mobile devices’ mood and emotion apps; increased
multidisciplinary cooperation in BCI systems; and, formulating more accurate and precise definition
of the emotion processing in human and neurophysiological studies in EEG correlates of emotion as
noted by Kim et al. in [16].
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In addition to the above-stated trends, we anticipate extensive advancement in body sensors,
cameras, and head-mounted devices. Moreover, improving technology sensors is advancing at a rapid
rate, as noted by Alotaiby et al., in [13]. We estimate that these will contribute to the development of
rudimentary affective computing systems in approximately six to nine years’ time. In ten+ years’ time,
we anticipate better machine learning and pattern recognition algorithms, in addition to improved
accuracy, speed, and elimination of latency in BCI systems. Advances in computational methods have
been noted by researchers to reach a reasonable rate of diffusion and serve as key elements for practical
online emotion detection systems, as noted by Kim et al. in [16] and by Jenke et al. in [14].

Moreover, we believe that, there is potential for using hybrid approaches in classification and
feature extraction methods. Another aspect is sharing datasets and making them accessible to
researchers for further testing. Third, optimizing the number of electrodes is increasingly recognized as
important for computation. Also, combining different modalities with EEG. Together, these contribute
towards facilitating the work of future researchers in this domain.

6. Conclusions

Recent developments and studies in BCI technologies have facilitated emotion detection and
classification. These BCI studies set out to investigate, detect, and recognize a participant’s emotional
affective state. These studies also sought the application of research findings in varied contexts,
including communication, education, entertainment, and medical settings. However, increasing
numbers of BCI researchers are conducting novel experiments, such as considering different responses
in various frequency bands, different ways of eliciting emotions, and various models of affective states.
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These various approaches have been employed in gauging the emotional states of participants/patients
from BCI acquisition signals.

This study set out to review published articles on emotion detection, recognition, classification,
and current and future trends. Thereafter, it sought to provide insight into how current and future
trends will impact researchers and practitioners alike. To achieve this, we mined 29 online databases,
selected 160 journals, and extracted 285 articles on emotion recognition systems. Each article was
reviewed, analyzed, and categorized according to publication year, research methods, primary
contribution, and publication outlet.

Our classification and descriptive review provides quality reference sources for academics,
researchers, and practitioners that are working in the field of emotion detection and recognition.
This study also contributes to our understanding of various applied concepts of emotion recognition
using BCI in different contextual fields. Our results showed an explosive growth of the number
of EEG-based emotion detection journal publications. This reflects increased research interest in
EEG-based emotion detection as a salient and legitimate research area. Factors such as the proliferation
of wireless EEG devices, advanced computational intelligence techniques, and machine learning,
spurred this growth. In general, we expect exponential growth in the amount of EEG-based emotion
detection research in the near future. As would be anticipated of any new research field, the field
of EEG-based emotion detection and recognition is fraught with challenges. Our results show that
the challenges raised herein may be resolved in the near future, thereby causing further growth and
increased research interest in BCI systems.

As noted in Section 5, EEG-based emotion detection involves multiple dimensions that need to be
considered in research methodologies. Researchers would need to take into account the usability of
devices, accessibility of datasets, optimization of computational methods, and combining different
modalities in the design of their EEG based studies.

Regarding computational methods that can be used in feature extraction and classification phases,
it appears from our review that there is no particular feature extraction nor classification technique
that emerges as the single best choice for all of the applications. The choice depends on the specific
system paradigm and task.

It has been recommended to consider as many algorithms as possible to determine the validity
of the proposed process, including preprocessing and synchronization. In most cases, one should
compare performance with a range of features and techniques before settling on a choice that yields
adequate performance for the given application.
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Appendix A

Table A1. Distribution of the results according to the Web of Science categorization.

Range Field/Domain Number of Publications

>100 Neurosciences 202

10–100

Psychology Experimental 64

Psychology 62

Psychiatry 44

Clinical Neurology 43
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Table A1. Cont.

Range Field/Domain Number of Publications

Physiology 40

Computer Science Artificial Intelligence 37

Behavioral Sciences 34

Psychology Biological 25

Neuroimaging 24

Radiology Nuclear Medicine Medical Imaging, Multidisciplinary Sciences 23

Psychology Multidisciplinary 18

Computer Science Cybernetics 17

Psychology Developmental, Engineering Biomedical 14

Engineering Electrical Electronic 13

Computer Science Information Systems 10

1–9

Mathematical Computational Biology, Computer Science
Interdisciplinary Applications 9

Rehabilitation 7

Psychology Clinical 6

Robotics, Psychology Social, Pharmacology Pharmacy, Medical Informatics,
Audiology Speech-Language Pathology 5

Operations Research Management Science, Medicine Research Experimental,
Linguistics, Ergonomics, Computer Science Theory Methods, Computer
Science Software Engineering

4

Public Environmental Occupational Health, Pediatrics, Instruments
Instrumentation, Engineering Multidisciplinary, Education Special 3

Telecommunications, Medical Laboratory Technology, Electrochemistry,
Computer Science Hardware Architecture, Chemistry Analytical, Biology,
Automation Control Systems, Anesthesiology

2

Substance Abuse, Sport Sciences, Social Issues, Psychology Psychoanalysis,
Optics Otorhinolaryngology, Medicine General Internal, Materials Science
Multidisciplinary, Materials Science Biomaterials, Integrative
Complementary Medicine, Ethics, Endocrinology Metabolism, Geriatrics
Gerontology, Genetics Heredity, Imaging Science Photographic Technology,
Health Care Sciences Services, Education Educational Research,
Biotechnology Applied Microbiology, Chemistry Medicinal, Acoustics

1

Appendix B

Appendix B.1. Trends in Number of Publications for EEG-Based Emotion Recognition

Figure A1 is a line graph showing articles published in the time frame from 2005 to 2016.
Between 2005 and 2009, the graph shows a steady rise in EEG-based emotion detection publications.
Thereafter, article publications rose rapidly from 2010 to 2016. The rapid rise in EEG-based emotion
detection publications is expected due to increased knowledge of neurobiological processes, computers
with faster computational processing, greater availability of devices for recording brain signals, and
more powerful signal processing and machine learning algorithms. All of these factors positively
contributed to the development of improved affective BCI technology. Aligned with the Gartner Hype
Cycle, there was a marked increase in research articles related to Affective Computing.
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The graph also shows that, between 2005 and 2008, only 10 articles related to the subject were
published. After that, the volume of publications rose sharply, culminating in a spike in 2009, with
15 articles published. Post-2009, the volume of publications declined, with an average of 17 articles
published between 2010 and 2013. Soon after, the number of articles published increased from
46 articles in 2014 to 48 articles in 2015. By 2016, the number of published articles significantly
increased to 62.

Appendix B.2. Classification of Articles by Research Area

The distribution of the results, according to the Web of Science categorization, is shown in Table A1.
In this table, we can see that most of the articles were published in journals related to neuroscience,
biology, physiology, computer science, and electronic engineering.

To classify these articles by their research areas, we had to determine into which broad areas
they fit. Such areas as Neuroscience, Engineering, Computer Science, and Healthcare were analyzed.
In Figure A2 (shown below), we can see the inter-connectedness of EEG-based emotion detection
systems across several disciplines. To create this plot, we performed the following steps: (1) determine
a list of sub-subjects that could be related to EEG-based emotion detection; (2) research how each
subject is related to the others on an individual basis; and finally (3) visually display, using a Venn
diagram, not only how the subjects are related to one another but also how strongly they are related to
the main subject, which is the study of EEG-based emotion detection systems.

The strength of that relationship is directly related to the size of the bubble. The relationships
between subjects were obtained using Google Scholar and Web of Science. Different published papers
that are related to the sub-subjects show stronger correlations between various fields of study.Appl. Sci. 2017, 7, 1239  21 of 34 
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Appendix B.3. Classification of Articles by Online Database and Journal

There are a total of 285 articles, published by 34 online databases. Classifications of articles by
online database and journal are shown in Tables A2 and A3, respectively.

In Table A2, we specify our top ten online article databases. Each of these hosted a minimum
of five article publications that matched our search criteria. Of these, Science Direct had the highest
percentage of articles (103 articles, 36.1%). The likely reason for this is that Science Direct publishes
a coterie of different journals, such as Neurocomputing; International Journal of Psychophysiology;
Biomedical Signal Processing and Control; Computers in Biology, Medicine, Brain, and Cognition;
Brain Research; and Computers in Human Behavior. All of these journals publish EEG-based emotion
recognition system articles. Similarly, Springer Link also hosts a cross-section of journal articles
from various fields. Consequently, their database recorded the second-highest number of articles:
27 articles, or 9.5% of our total research articles. Other online databases are IEEE Xplore (23 articles,
or 8.1%), Frontiers (22 articles, or 7.7%), Taylor & Francis (16 articles, or 5.6%), and Wiley Online
Library (12 articles, or 4.2%).

Table A2. Classification of articles based on the online database.

Online Database Number of Articles Timeframe Online database Numbe of Articles Timeframe

Science Direct 103 2005–2016 Wiley Online Library 12 2007–2015
Springer Link 27 2006–2016 Plos.org 10 2012–2016
IEEE Xplore 23 2006–2016 World Scientific 8 2010–2016

Frontiers 22 2010–2016 Hindawi 6 2013–2016
Taylor & Francis 16 2006–2016 Oxford 6 2008–2016

Table A3 shows the number of articles in each journal publication. We only documented journals
with more than two published articles. Most of these journals were related to neuroscience, biology,
physiology, computer science, electronic engineering, and healthcare. Of these, PLOS ONE published
10 articles (or 3.5%); International Journal of Psychophysiology and IEEE Transactions on Affective
Computing each published 9 articles (or 3.2%).

Table A3. Classification of articles based on the journal.

Journal (Impact Factor IF, Citation C) Number of Articles

PLOS ONE (IF: 2.806, C: 188) 10

International Journal of Psychophysiology (IF: 2.582, C: 360), IEEE Transactions on
Affective Computing (IF: 3.149, C: 1593) 9

Frontiers in Human Neuroscience (IF: 3.209, C: 73), Neuroimage (IF: 5.835, C: 283),
Frontiers in Psychology (IF: 2.323, C: 71) 7

Neurocomputing (IF: 3.317, C: 185), Neuropsychologia (IF: 3.197, C: 321), Social
Neuroscience (IF: 2.255, C: 185) 6

Frontiers in Neuroscience (IF: 3.566, C: 102), Neuroscience Letters (IF: 2.180, C: 139),
Clinical Neurophysiology (IF: 3.866, C: 149) 5

IEEE Transactions on Information Technology in Biomedicine (IF: 2.493, C: 558),
Sensors (IF: 2.677, C: 30), Social Cognitive and Affective Neuroscience (IF: 3.937,
C: 99), Biological Psychology (IF: 3.070, C: 40), Brain and Cognition (IF: 2.432, C: 194),
Schizophrenia Research (IF: 3.986, C: 227)

4

IEEE Transactions on Autonomous Mental Development (IF: 1.638, C: 49), Journal of
Visualized Experiments (IF: 1.325, C: 5), Behavioural Brain Research (IF: 3.002, C: 39),
Computers in Human Behavior (IF: 3.435, C: 31), Psychiatry Research (IF: 2.528,
C: 18), Cognitive Affective & Behavioral Neuroscience (IF: 3.263, C: 42), Cognitive
Neurodynamics (IF: 1.828, C: 17), Journal of Neural Transmission (IF: 2.392, C: 86)

3
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