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Abstract: In order to study the base pounding effects of base-isolated structure under earthquake
excitations, a base pounding theoretical model with a linear spring-gap element is proposed. A finite
element analysis program is used in numerical simulation of seismic response of based-isolated
structure when considering base pounding. The effects of the structure pounding against adjacent
structures are studied, and the seismic response of a base-isolated structure with lead-rubber bearing
and a base-isolated structure with friction pendulum isolation bearing are analyzed. The results
indicate that: the model offers much flexibility to analyze base pounding effects. There is a most
clearance unfavorable width between adjacent structures. The structural response increases with
pounding. Significant amplification of the story shear-force, velocity, and acceleration were observed.
Increasing the number of stories in a building leads to an initial increase in impact force, followed by
a decrease in such force. As a result, it is necessary to consider base pounding in the seismic design
of base-isolated structures.

Keywords: base isolation; isolated structure; base pounding model; time-history analysis; seismic
response; impact response

1. Introduction

As one of the most destructive natural disasters, an earthquake can cause heavy casualties,
and great damage to buildings, bridges, and roads. One of the most devastating earthquakes in
recent years is the 2008 Sichuan earthquake, which killed more than 69,000 people, left more than
18,000 missing, and caused a direct economic loss of 845.1 billion yuan. Earthquakes can cause great
damage. Therefore, the study and application of seismic engineering are of great significance. With the
development of science and technology, many meaningful anti-seismic methods, including energy
dissipation, vibration control, and based isolation were developed [1–5]. Since the base isolated system
was first applied in the 1970s, a lot of relevant research has been conducted [6–10]. Energy dissipation
devices [11–13], which can dissipate seismic energy and efficiently reduce structural damages, are set
between the foundation and the superstructure. Lead-rubber bearing and friction pendulum isolation
bearing are usually used as energy dissipation device for base isolation. However base-isolated
structures usually experience large horizontal displacements during strong earthquakes due to their
weak horizontal stiffness. Hence, there is a great possibility of the structure pounding against adjacent
structures [14,15].

Studies on base pounding effects during a strong earthquake are rare. The earliest studies of the
width of clearance and foundation stiffness effects were was performed by Tsai [16] and Malhotra [17].
Other teams [18–26] conducted extensive research on response of the structures pounding against
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adjacent structures, and on how to reduce seismic energy through theoretical studies and numerical
simulations. Mavronicola and colleagues [27] used a smooth bilinear (Bouc-Wen) model to simulate
the seismic isolation system, while the Kelvin-Voigt [28] impact model and other models were adopted
in structural response analysis under strong excitations. The accuracy and flexibility of these impact
models were discussed. A typical four-story fixed-base RC building that was subjected to seismic
pounding was analyzed in Pant and Wijeyewichrema [29]. Three-dimensional finite element analyses
were conducted considering material and geometric nonlinearities. Fan et al. [30] considered pounding
responses with different system parameters, such as impact model, size of gap, and natural vibration
period. Many factors were considered in Ye’s study [31], including superstructure’s stiffness, impaction
stiffness, the mechanical properties of the bearing, and the different width of clearance.

On the basis of previous research work, a new base pounding theoretical model with linear
spring-gap element is proposed. Assuming that the superstructure is linear-elastic, the colliding
unit presented in Figure 1 adopts the linear spring with gap, and the collision analysis of the base
isolation structure under strong earthquakes is conducted. Seismic response analysis of base-isolated
structure considering base pounding by this model is discussed in this paper. In order to compare
the difference in response between the base-isolated structure with lead-rubber bearing and the
base-isolated structure with friction pendulum isolation bearing, two types of finite element models are
used in analysis. Finite element models with different gap have were used to determine the maximum
node acceleration in top story and the most unfavorable width of clearance between adjacent structures.
The values of impact force, story shear-force, displacement, velocity and acceleration are obtained.
Finally, such values are compared to previous research to verify its rationality.
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2. Models and Equations of Motion

2.1. Base Pounding Model

There are two methods to investigate impact behavior, the classical dynamics method and the
contact element method. The classical one cannot reflect the change of impact force, deformation and
collision duration and other elements. Furthermore, it is difficult to implement in finite element
analysis. Therefore, it has limited scope of use [32–34]. The contact element method is easy to
implement in software with high precision. Consequently, the contact element method is adopted
in this paper. Research conducted by Fan et al. [30] shows that linear viscoelastic model can provide
enough accuracy in engineering. Thus, a linear spring-gap element was used in this base pounding
theoretical model. Figure 1 presents the linear spring-gap element. Figure 2 and Equation (1) present
its force-displacement relation.

fp =

{
0

k
(
|xb| − xgap

) |x0| < xgap

|x0| ≥ xgap
, (1)

where fp is the impact force, k is the stiffness of linear spring-gap element, x0 is the relative
displacement, and xgap is the initial width of clearance.
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2.2. Equations of Motion

Assuming that the stiffness of the floor slabs in-plane is infinite and the masses of the floor slabs
are lumped at the floor levels, base pounding models were built with linear spring-gap elements.
Figures 3 and 4 present the models of a base-isolated structure with lead-rubber bearing and with
friction pendulum isolation bearing, respectively. The equations of motion of the superstructure are
expressed in Equation (2). 

m1
..
x1 + c1

.
x1 − c1

.
x0 + f1 − f2 = −m1

..
xg

mi
..
xi + ci

.
xi + fi − fn = −mi

..
xg

mn
..
xn + cn

.
xn + fn = −mn

..
xg

, (2)

where
.
xi,

..
xi(i = 1, 2 · · · n) are the relative velocities and accelerations of floor i, respectively,

..
xg is the

earthquake ground motion acceleration, mi(i = 1, 2 · · · n) and ci(i = 1, 2 · · · n) are the mass and
damping of floor i, respectively. The restoring force of floor i is expressed by the following equation:

fi = ki(xi − xi−1) , (i = 1, 2 · · · n), (3)

where ki is the stiffness of floor i, and xi is the relative displacement of floor i.
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Rayleigh Damping is calculated by the following equation:

ci = αmi + βki , (i = 1, 2 · · · n), (4)

where α, β are calculated by Equation (5) if the damping ratios ξi and ξ j associated with specific
frequencies ωi, ωj are known.{

α = 2ωiξ j(ωjξi −ωiωj)/(ωj
2 −ωi

2)

β = 2(ωjξ j −ωiξi)/(ωj
2 −ωi

2)
, (5)

Equations of motion for the isolation layer (the base-isolated structure with lead-rubber bearing)
are given as,

m0
..
x0 + (c0 + c1)

.
x0 − c1

.
x1 + f0 − f1 + fp = −m0

..
xg, (6)

where m0 is the mass of isolation layer,
.
x0,

..
x0 are relative the velocities and accelerations of the isolation

layer, respectively, c0 is the damping coefficient of the isolation layer, f0 and fp are the restoring and
the impact force the of isolation layer, respectively.

Equations for the restoring force have been built using the Bouc-wen model:

f0 = α0k0x0 + (1− α0)k0xyz0, (7)

where k0 is the isolation layer’s initial stiffness, α0 is the ratio of the yield stiffness to the pre-yield
stiffness of bearing, x0 is the displacement of the isolation layer, z0 is the hysteretic displacement of the
isolation system, and xy is the yield displacement.

The first order differential equation of the hysteretic displacement is given as,

.
z0 = (−γ0

∣∣ .
x0
∣∣z0|z0|n0−1 − β0

.
x0|z0|n0 + A0

.
x0)/xy, (8)

where β0, A0, γ0, and n0 are related to the amplitude of hysteretic displacement, initial stiffness, and
hysteretic shape.

Equations of motion of the isolation layer (the base-isolated structure with friction pendulum
isolation bearing) is given as,

m0
..
x0 + c1

.
x0 − c1

.
x1 + f0 − f1 + fp + f f = −m0

..
xg, (9)
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Restoring force can be calculated by Equation (10).

f0 = k0x0, (10)

where k0 is the stiffness of bearing, x0 is the displacement of isolation layer.
Friction can be expressed as,

f f = µNzssgn(
.
x0), (11)

where µ is the coefficient of sliding friction of bearing, N is the weight of superstructure (N =
n
∑

i=1
mig),

zs is a parameter related to hysteresis characteristics, and zs is expressed in Equation (12).

.
Yzs = Au− γ|u|zs|zs|η−1 − βu|zs|η (12)

In Equation (12), Y is the elastic shear deformation of bearing before sliding, u is the ground
velocity of bearing, and β, A, γ, and n are related to amplitude of hysteretic displacement, initial
stiffness, and hysteretic shape.

3. Engineering Case and Numerical Simulation

As mentioned previously, two finite element models were developed. Finite element model A
is modeled after a building in Tibetan Qiang Autonomous Prefecture of Ngawa, Sichuan Province,
China. The structure of the building is the base-isolated frame structure with lead-rubber bearing.
Model A consists of 40 lead-rubber bearings of the same type. The mass of the isolation layer is 2490.55
tons. The equivalent horizontal stiffness is 4.418 × 105 N/mm. The damping ratio of the isolation
layer is 0.23. Figure 5 presents the arrangement of the bearings. Figure 6 presents the arrangement
of the beams and pillars. Figures 7 and 8 present the structure’s front elevation and side elevations,
respectively. Table 1 presents the parameters of each story.

Table 1. Parameters of story.

Story Story Height (mm) Mass of Story (ton) Stiffness of Story (106 N/mm)

6 4100 231.6 0.231
5 4500 2079.3 1.266
4 3900 2170.5 1.494
3 3900 2184.2 1.676
2 3900 2515.3 1.740
1 4200 2006.1 1576
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Finite element model B is modeled after model A. The superstructure of model B is the same as
that of model A. However, the lead-rubber bearings in model A are replaced with friction pendulum
isolation bearings. For model B, the mass of the isolation layer is 2490.55 tons. The equivalent horizontal
stiffness is 1.6 × 105 N/mm, and the damping ratio of the isolation layer is 0.

3.1. Most Unfavorable Clearance Width

In order to study the pounding effects with different clearance width, a parametric study was
conducted. Two sets of strong earthquake records (El Centro (NS) and Taft (EW)), and a set of artificial
acceleration time-history curves are used as excitations in the simulations. According to the Code
for Seismic Design of Buildings of China (built on Site-class four, intensity 8) [35], 400 gal is adopted
as the peak ground acceleration for rare earthquakes. In order to analyze the tendency of absolute
acceleration with different clearance widths, the acceleration value (node 858) in the top story is
extracted for both models A and B.
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In Figures 9 and 10, the tendencies of absolute acceleration are similar while varying the different
clearance widths. First, the maximum value of acceleration increased with an increasing clearance
width, and then it decreased with continued increase in clearance width, and finally leveled off.
When the clearance width was approximately 20 mm, the value of acceleration was the highest.
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3.2. Effects of Pounding

The effects of the structure pounding against adjacent structures are studied from the perspective
of time-history of impact force, story shear-force, velocity, and acceleration. In order to obtain the
maximum response of the structure, the clearance width for both models A and B are set to 20 mm.

3.2.1. Impact Force

Figures 11 and 12 show the time-history curve of the impact force under El Centro earthquake
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On the basis of models A and B, models with 7, 9, and 12 stories were built to study the effects of
story and on pounding. Figure 13 shows the curve of impact force variation with the number of stories
under the El Centro earthquake excitation.
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In Figure 13, it can be seen that the impact force first decreases with an increasing number of
stories, but then decreases. This pattern also can be observed in under the other two excitations.
Therefore, the number of stories in a building is not a good standard to estimate the magnitude
of the impact force. More factors such as the type of structure, and material characteristics should
be considered.

3.2.2. Story Shear-Force

Figures 14 and 15 compare story shear-force with and without pounding. Tables 2 and 3 present
the maximum values of story shear-force for models A and B under different earthquakes. In Table 2,
for the base-isolated structure with lead-rubber bearing, it can be seen that there is a 3.59 to 5.06 times
growth of story shear-force for the El Centro earthquake, 2.04 to 3.13 times growth for the Taft
earthquake, and 1.03 to 2.63 times for the Artificial earthquake. In Table 3, for the base-isolated
structure with friction pendulum isolation bearing, 1.59 to 12.60 times growth of story shear-force can
be observed for the El Centro earthquake, as well as 1.30 to 10.93 times growth for the Taft earthquake,
and −0.18 to 3.24 times growth for the Artificial earthquake.

It can be inferred that there is a considerable amplification of the story shear-force under pounding
for both types of isolated structures. In particular, for the structure with friction pendulum isolation
bearing, the amplification of the shear-force in the first story is larger than that in other stories.
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Table 2. Maximum values of story shear-force for model A.

Earthquake Range of Maximum Value Without Pounding
(kN)

With Pounding
(kN) Times of Growth

El Centro
low limit 466 2828 5.06

upper limit 7573 34,770 3.59

Taft
low limit 539 2223 3.13

upper limit 8715 26,546 2.04

Artificial
low limit 450 1636 2.63

upper limit 8450 17,213 1.03

Table 3. Maximum values of story shear-force for model B.

Earthquake Range of Maximum Value Without Pounding
(kN)

With Pounding
(kN) Times of Growth

El Centro
low limit 238 3238 12.60

upper limit 12,350 32,000 1.59

Taft
low limit 240 2864 10.93

upper limit 13,080 29,950 1.30

Artificial
low limit 386 1636 3.24

upper limit 21,114 17,213 −0.18

3.2.3. Acceleration

Figures 16 and 17 show the acceleration time-history curves of node 858, where the maximum
values of acceleration were observed, under different earthquake excitations. The maximum
accelerations that were obtained in models A and B are presented in Tables 4 and 5.

When compared to cases without pounding, a large amplification can be observed in both models
A and B under pounding condition, according to Figures 16 and 17. Furthermore, the maximum values
of acceleration appear when excitations are strong.
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Table 4. Maximum acceleration values for model A.

Earthquake Maximum Acceleration (gal)

Without Pounding With Pounding Amplification

El Centro 329.10 1934.98 4.88
Taft 398.47 1761.14 3.42

Artificial 323.13 1233.14 2.82

Table 5. Maximum acceleration values for model B.

Earthquake Maximum Acceleration (gal)

Without Pounding With Pounding Amplification

El Centro 172.46 2356.69 12.67
Taft 180.09 2119.20 10.77

Artificial −199.02 −1496.98 6.52

According to Tables 4 and 5, for model A under pounding conditions, there is a 4.88 times
growth in acceleration under the El Centro earthquake, a 3.42 times growth under the Taft earthquake,
and a 2.82 times growth under the Artificial earthquake. The amplification of model A is larger than
that of model B, which was 12.67 times growth under the El Centro earthquake, 10.77 times growth
under the Taft earthquake and 6.52 times growth under the Artificial earthquake.

There are great pounding effects on acceleration on top story acceleration of both the structure
with lead-rubber bearing and the structure with friction pendulum isolation bearing. However,
the acceleration amplification of the structure with friction pendulum isolation bearing is larger.

3.2.4. Velocity

Figures 18 and 19 show the velocity time-history curves of node 858 under different earthquakes.
The maximum value of velocity on node 858 of models A and B can be found in Tables 6 and 7.

The amplification of velocity under pounding in model A (1.07 times growth under the El Centro
earthquake, 0.47 times growth under the Taft earthquake and 0.31 times growth under the Artificial
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earthquake) can be obtained in Table 6. The amplification can also be observed in model B (2.00 times
growth under the El Centro earthquake, 1.19 times growth under the Taft earthquake and 0.25 times
growth under the Artificial earthquake, Table 7).

There are some effects of pounding on velocity in the top story of both types of isolated structure.
However, the amplification of acceleration is larger than that of velocity. In addition, the maximum
values of velocity appear when the excitations are strong.
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Table 6. Maximum velocity values for model A.

Earthquake Maximum Velocity (mm/s)

Without Pounding With Pounding Amplification

El Centro 568.41 1176.45 1.07
Taft 645.80 951.15 0.47

Artificial 460.34 602.81 0.31

Table 7. Maximum velocity values for model B.

Earthquake Maximum Velocity (mm/s)

Without Pounding With Pounding Amplification

El Centro 465.05 1398.14 2.00
Taft 501.82 1100.94 1.19

Artificial 553.26 690.54 0.25

3.2.5. Displacement

Figures 20 and 21 show the displacement time-history curves of node 858 under different
earthquake excitations. It can be inferred that there is little amplification of displacement, while the
structure was undergoing pounding under the El Centro and the Taft earthquake excitations.
Furthermore, the displacement decreased while the structure was undergoing pounding under
the artificial earthquake. For model A (Table 8), 0.55 times growth was observed for the El Centro
earthquake, 0.09 times growth for the Taft earthquake, and 0.19 times decrease for the Artificial
earthquake). For model B (Table 9), 0.21 times growth was observed for the El Centro earthquake,
0.03 times growth for the Taft earthquake, and 0.52 times decrease for the Artificial earthquake).

There is little effect of pounding on displacement due to the restriction of adjacent structures.
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Figure 21. Structural displacement under different earthquakes (model B). (a) El Centro earthquake;
(b) Taft earthquake; and, (c) Artificial excitation.

Table 8. Maximum structural displacements for model A.

Earthquake Maximum Displacement (mm)

Without Pounding With Pounding Amplification

El Centro 81.80 126.98 0.55
Taft 109.34 118.73 0.09

Artificial 100.04 81.19 −0.19

Table 9. Maximum structural displacements for model B.

Earthquake Maximum Displacement (mm)

Without Pounding With Pounding Amplification

El Centro 106.82 129.20 0.21
Taft 125.73 129.58 0.03

Artificial 177.13 85.39 −0.52

4. Conclusions

A base pounding theoretical model with linear spring-gap element is proposed in this paper. On
the basis of this theoretical model, the finite element models of a structure with lead-rubber bearing
and friction pendulum isolation bearing are built to analyze their seismic response. Some meaningful
conclusions obtained are as follows:

(1) The base pounding theoretical model proposed in this paper can be applied easily and efficiently
to analyze base-isolated structures when considering base pounding.

(2) There is a most unfavorable clearance width between adjacent structures and the response of
base-isolated structures increases in pounding.
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(3) The number of stories in a building should not be uniquely considered to estimate the magnitude
of impact force. More considerable factors should be considered, such as the type of structure
and the material characteristics

(4) Significant amplification of the story hear-force, velocity, and acceleration were observed in the
analysis, which can bring many risks to base-isolated structures. Therefore, it is necessary to
consider base pounding in the seismic design of base-isolated structure.
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