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Abstract: This study proposes electrocardiogram (ECG) identification based on non-fiducial feature
extraction using window removal method, nearest neighbor (NN), support vector machine (SVM),
and linear discriminant analysis (LDA). In the pre-processing stage, Daubechies 4 is used to remove
the baseline wander and noise of the original signal. In the feature extraction and selection stage,
windows are set at a time interval of 5 s in the preprocessed signal, while autocorrelation, scaling,
and discrete cosine transform (DCT) are applied to extract and select features. Thereafter, the window
removal method is applied to all of the generated windows to remove those that are unrecognizable.
Lastly, in the classification stage, the NN, SVM, and LDA classifiers are used to perform individual
identification. As a result, when the NN is used in the Normal Sinus Rhythm (NSR), PTB diagnostic,
and QT database, the results indicate that the subject identification rates are 100%, 99.40% and 100%,
while the window identification rates are 99.02%, 97.13% and 98.91%. When the SVM is used, all of
the subject identification rates are 100%, while the window identification rates are 96.92%, 95.82%
and 98.32%. When the LDA is used, all of the subject identification rates are 100%, while the window
identification rates are 98.67%, 98.65% and 99.23%. The proposed method demonstrates good results
with regard to data that not only includes normal signals, but also abnormal signals. In addition,
the window removal method improves the individual identification accuracy by removing windows
that cannot be recognized.

Keywords: electrocardiogram; ECG identification; biometrics; window removal method; non-fiducial
technique

1. Introduction

Biometrics refers to the recognition of individuals based on physiological or behavioral
characteristics [1]. Representative biometric traits include the face, fingerprints, retina, iris, and voice.
Various methods use these information sources to recognize individuals [2–4]. These traditional
identification technologies have limitations, such as a limited scope recognition, as well as vulnerability to
loss and duplication. Therefore, for systems that require higher security, studies of the distinct biometric
features of the principal subject to verification are actively being conducted. Electrocardiogram (ECG)
involves information about the structural and functional cardiac muscle activities, and it is a simple and
effective representative of a noninvasive diagnostic method. Every individual has characteristic ECG
features, such as universality, uniqueness, and liveness detection. Such signals provide strong protection
against forgery [5]. However, in biometric recognition using ECG, signal irregularities may exist due to
the individual’s illness, and the procedure could be hampered by difficulties, such as a long waiting time
for data collection [6–8]. Nevertheless, studies on ECG biometrics can be used in extensive fields, such as
commercial environments, security, health management, and systems like smart cards [9]. Thus, it is
necessary to enhance the accuracy of recognition.
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As a biometric study using ECG, fiducial point-based studies were performed as follows:
Israel et al. [10] suggested ECG-based recognition system using temporal features. After removing
the noise in an ECG signal, P wave, QRS complex, and the T wave were detected and by extracting
15 fiducial point features, linear discriminant analysis (LDA) was used for classification. As a result of
experimenting with 29 subjects, the results indicated a 100% subject identification rate and an 82% ECG
beat identification rate. Biel et al. [11] extracted 30 fiducial point features of ECG signals and then used
soft independent modeling of a class analogy (SIMCA) classifier to compare the unlabeled data with
the data of a trained group, and suggested a method of classification into the most well-matched class.
A test experiment was conducted on 20 subjects in total, which demonstrated a 100% recognition
rate. Wang et al. [12] suggested a method of combining the time between ECG beats, amplitude
features, and R wave features. Fiducial point detection was performed to measure the time and
waveform distance in the pre-processed ECG signal and principal component analysis (PCA), or LDA
was used to extract the morphological features. In case that the two types of features were combined
for performance, there was a 100% subject identification rate and a beat identification rate of 99.43%;
98.90% were identified with regard to the 13 subjects of the NSR and PTB database (DB), respectively.
However, the problem with the fiducial-based algorithm is that it misses the morphological features of
ECG signals. In addition, these features may increase the overall complexity of a biometric system
due to the lack of universally accepted rules for the precise detection of the fiducial points for ECG
waveforms [13,14]. In the detection of R peaks among various ECG waveforms, the detection criteria for
waveforms other than those of R peaks are not clearly defined [15,16].

Non-fiducial point-based studies have been conducted in order to overcome the disadvantages of
the fiducial point method. Unlike the fiducial point-based method, the non-fiducial approach-based
method does not require precise boundaries of the waveforms. It extracts differential data among ECG
waveforms without obvious fiducial points. As a non-fiducial point-based study, several studies were
performed as follows: Coutinho et al. [17] proposed a non-fiducial method of ECG recognition using
a band pass filter with a 1–30 Hz frequency for the ECG signal to remove the noise, applying an n-bit
uniform quantization and using a string similarity measure. As a result of using the data acquired
from 26 subjects and the PTB DB from 51 people, 99.94% was identified in the data acquired and
99.39% was identified in the PTB DB. Agrafioti et al. [18] acquired data from 56 subjects from the NSR,
MIT-BIH arrhythmia database, and PTB DB, and selected the features using LDA in order to perform
human recognition using ECG signals. Thereafter, nearest neighbor (NN) was used to classify
the features. As a result, the beat identification rate was 96.2% and the subject identification rate was
96.42%, indicating a relatively high accuracy. Chan et al. [19] suggested a non-fiducial feature extraction
framework using a distance measuring set that includes the wavelet transform distance. Data was
collected from 50 subjects by using a button electrode between the thumb and index finger. The result
of 89% accuracy was shown by applying the wavelet transform distance method. Chiu et al. [20]
suggested an individual identification method by using a Euclidean classifier and a 512 point feature
extraction by applying a wavelet transform. The suggested method demonstrated a 100% recognition
rate on 35 subjects, with a normal signal and an 81% recognition rate on 10 subjects with arrhythmia.
Loong et al. [21] proposed a biometric recognition system using a spectrum coefficient obtained
through linear predictive coding (LPC). Data was acquired from 15 subjects by using one electrode.
In the acquired data, features were extracted by using an LPC spectrum. The beat identification rate
was 99.52% and the subject identification rate was 100% by using the neural network classifier.

The non-fiducial approach-based method extracts features based on the time interval of
the window. Other unnecessary types of signals may have been included other than those of the normal
ECG in the window leading to decreased overall recognition rates. Thus, most of the previous studies
including those mentioned above, performed with or without using data containing abnormal signals,
showed poor results during ECG identification. In particular, non-fiducial-based studies, such as
those of Wang et al. [12], Plataniotis et al. [14], and Afrafioti et al. [18] can extract features using
a window of time intervals. In the identification process using a window, a window is set at specific
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time intervals in the ECG signal, and classification is performed on all of the windows. Based on
the results of the window identification rate, the subject class is finally determined by window majority
voting. When setting the window of the time interval, a window may be generated, which interferes
with the identification performance because a disease signal or a distorted signal may be present.
As a result, this can lead to a decrease in the overall identification rate as well as a decrease in
the window identification rate. This problem can be solved by examining all of the generated windows
and removing the ones that are not recognizable or those that contain other unnecessary signals.
In applying discrete cosine transform (DCT) to the windows that are generated at specific time intervals,
spectrum differences may have occurred between the windows that contained the normal ECG and
those with the distorted signals, causing differences in the energy distribution of the signals [18].
Therefore, in this study, it is possible to increase the overall identification rate by applying DCT to all
of the generated windows and then removing the unnecessary windows that do not fit the condition,
by applying the window removal method using the threshold setting.

In addition to the above-mentioned problem, most of the previous studies performed identification
on small sample sizes. Experiments with small sample sizes may be insufficient to evaluate
an algorithm’s effectiveness. In addition, individual identification has effects on the resulting
classification, such as signal processing and pattern recognition. The performance of the entire
algorithm could be influenced depending on how the features of the original signal were extracted
or how many features were selected [21]. Therefore, it is possible to improve the reliability of
the algorithms by performing an analysis according to the feature numbers and classifiers, as well as
demonstrating a high accuracy by performing experiments with diverse sample DBs.

This study proposes a new method of increasing the individual identification rate by extracting
features based on a non-fiducial technique and applying window removal method in order to remove
windows that are difficult to identify. The main consideration of this study is to evaluate whether
the proposed window removal method is efficient for improving the identification rate according
to the NSR, PTB, and QT DB, to analyze the recognition performance according to the NN, SVM,
and LDA classifiers, and to evaluate whether it is robust in environments containing normal, as well as
abnormal, signals.

2. Methods

The experimental method of this study is shown Figure 1. A wavelet is used to pre-process
the ECG signal and autocorrelation, scaling, and DCT are applied to the pre-processed signal.
Thereafter, the window removal method is applied to remove the unnecessary window and the NN,
SVM, and LDA classifiers are used to perform the individual identification.

Figure 1. Block diagram of proposed method. EGG: electrocardiogram; NN: nearest neighbor;
SVM: support vector machine ; LDA: linear discriminant analysis.

2.1. Database

The Normal Sinus Rhythm Database [22], PTB Diagnostic Database [23], and QT Database [24]
are used in this paper. To verify the robustness and efficiency of the proposed algorithm, we use
three well-known DBs. The three DBs are described below.
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2.1.1. Normal Sinus Rhythm Database (NSR DB)

The Normal Sinus Rhythm Database was collected at the Arrhythmia Laboratory at Beth Israel
Hospital in Boston. The NSR DB contains 18 ECG records, sampled at 128 Hz, and includes five males
aged 26 to 45 years and 13 females aged 20 to 50 years.

2.1.2. PTB Diagnostic Database (PTB DB)

The PTB DB contains 549 records from 290 subjects (aged 17 to 87, 209 men, and 81 women;
ages were not recorded for one female and 14 male subjects). It is provided by the National Metrology
Institute of Germany. The signal was sampled at 1000 Hz with a 16 bit resolution with 0.5 µV, 16 input
channel, and 0–1 kHz bandwidth. It was collected from Benjamin Franklin University Hospital,
Cardiology Department of Cardiology, Berlin, and contains the ECG data of various healthy and
diseased patients.

2.1.3. QT Database (QT DB)

The QT DB contains a selection of ECG signals to represent various QRS and ST-T morphologies.
This record was primarily selected from existing ECG databases, including the MIT-BIH arrhythmia DB,
the European Heart Association ST-T DB, and several other ECG databases that were collected at Boston’s
Beth Israel Deaconess Medical Center. The QT DB contains a total of 105 fifteen-minute excerpts of
two channel ECGs, sampled at 250 Hz, and a total of 3622 beats are summarized by a cardiologist.

2.2. Pre-Processing

In order to remove the baseline wander and power line of the ECG signal, daubechies 4 is used.
Daubechies 4 is similar to ECG signal and is able to remove efficiently [25]. After decomposing
level 7 using daubechies 4, the lowest Level 7 high frequency components (H7) are set as 0 then
inverse wavelet with Level 7 low frequency components (L7) is performed to create the components of
CA6 (inverse wavelet of L7, H7). Inverse wavelet is performed repeated until the upper level 2 to create
the components of CA1. Then, CA1 components are removed in the level 1 low frequency components
(L1). Finally, level 1 high frequency components (H1) are set as 0 and by performing inverse wavelet
of L1 − CA1 , the signal with removed noise is reconstructed.

Reconstructed signal = IW{L1 − CA1, H1(zero set)}
CA1 = IW{CA2, H2(zero set)}

...

CA6 = IW{L7, H7(zero set)}

(1)

where IW is inverse wavelet, Ln is low frequency of nth level, and Hn is high frequency of nth level.

2.3. Feature Extraction and Selection Based on the Non-Fiducial Approach

In the extraction and selection stage, windows are generated by setting intervals of 5 s in the ECG
signal. Autocorrelation represents the correlation value of the time difference, and it utilizes the time
difference value of the ECG signal. In this study, autocorrelation is defined as Equation (2), and is
applied to the 5 s window. Thereafter, to reduce the difference between the signals and to balance them,
a scaling between 0 to 1, defined as Equation (3), is performed, and the DCT, defined as Equation (4),
is used to extract the coefficient.

Rxx[m] =
N−|m|−1

∑
i=0

x[i]x[i + m]

i = 0, 1, . . . (N − |m| − 1), m = 0, 1, . . . (M− 1)M� N

(2)
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where x[i] represents an window, and x[i + m] represents time shift of window.

Y(s) =
[

X(s)− X(s)min
X(s)max − X(s)min

]
(3)

where Y indicates the scaled data matrix and X(s) indicates the sth sample vector.

C[u] = α[u]
N−1

∑
x=0

f [x] cos
(2x + 1)uπ

2N
u = 0, 1, 2, . . . , N − 1 (4)

where N indicates the total length of the signal and α[u] is defined as Equation (5).

α[u] =


√

1
N f or u = 0√
2
N f or u 6= 0

(5)

2.4. Window Removal and Identification Method

Unlike windows, which only contain a normal signal, windows containing noise or distorted
signals may have a different DCT value [18]. Due to the repetitive feature of ECG signals, the DCT
energy of normal signals is reflected to a certain extent, but the DCT energy for signals other
than normal ones tends to reduce rapidly. Such energy changes can be used to remove unnecessary
signals. Therefore, in this study, DCT coefficients are used to remove windows that are difficult
to be identified due to the noise or distorted signals. Window removal is defined as Equation (6),
and the threshold is determined as the value that can obtain the best result through the experiment.
First, the unnecessary windows are removed by applying Equation (6) in training windows. Thereafter,
all of the test windows are checked by applying Equation (6) with the remaining training windows.
The absolute value of the difference between the DCT coefficient’s maximum and minimum value of
the test window is more than 1.1 times the average value of the difference between the maximum and
minimum value of the training windows. Additionally, the standard deviation of a test window is
more than 1.1 times the average standard deviation of training windows. A test window that meets
the above conditions is removed. The flow chart of the window removal method is shown in Figure 2.

It is possible to derive various identification results based on the classifier. NN, SVM, and LDA
classifiers are used in various fields, not only the ECG field, but also mechanical systems, EEG and
vision. These classifiers are performed simply and quickly [26–28]. In this study, Euclidean-based
NN, SVM, and LDA classifiers are applied to analyze the individual identification result according to
the classifier. In order to perform classification, half of each of the subjects of the NSR, PTB, and QT
DB are set as the training data, and the remaining data is set as test. Euclidean distance, as a method
of obtaining the distance between two points, is defined as Equation (7) and SVM, as a method
of determining the optimal classification plane with minimum error, is defined as Equation (8).
Furthermore, LDA, which involves determining the W that maximizes the rate between classes and
minimizes the rate within each class is defined as Equations (10)–(12).

IF
|Max(DCT coe f f icient)−Min(DCT coe f f icient| > Average(max−min)× 1.1
AndSD(DCT coe f f icient) > Average(SD)× 1.1
THEN
remove window

(6)
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Figure 2. Flow chart of window removal method. SD: standard deviation; DCT: discrete cosine transform.

dx.y =

√
(x1 − y1)

2 + (x2 − y2)
2 (7)

f (x) = wTx + b (8)

With regards to the hyper plane of Equation (8), the random feature vector, xi satisfies Equation (9).

yi =

{
1, wTxi + b ≥ 0
−1, wTxi + b < 0

(9)

SB =
c

∑
i=1

Ni(µi − µ)(µi − µ)T (10)

SW =
c

∑
i=1

∑
xk∈Xi

(xk − µi)(xk − µi)
T (11)

where µi indicates the average of class Xi and µ indicates the global average. Ni indicates the number
of data within class Xi.

J(W) = argmax w

∣∣WTSBW
∣∣

WTSWW
(12)

Generally, in the case of multiple classes, one vs all (OAA) is used a lot but if the training set
is unbalanced, classification is difficult in OAA. Therefore, this study uses the one vs one (OAO)
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method. OAO, as a method of inspecting two classes by creating the classifier of M (M− 1)/2,
uses a hierarchical method of OAO to be used in individual identification. Hierarchical OAA is shown
in Figure 3.

Figure 3. Hierarchical one vs. one (OAO).

3. Results and Discussion

NSR, PTB, and the QT DB are used to perform the method proposed in this study. 18 subjects
in the NSR DB, 50 subjects in the PTB DB, and 36 subjects in the QT DB are used. The total number
of windows in each DB is 184 (Unmeasured portions were excluded), 600 and 432. At random
for each subject, half of the window is set to training data, and the rest is set to testing data to
perform the window recognition. Thereafter, the subject class is determined using a majority voting.
The experimental setting is shown in Table 1.

Table 1. Experimental setting. DB: database; NSR: normal sinus rhythm; PTB: ptb diagnostic; QT: qt database.

DB Record Number of
Subjects

Number of
Windows

NSR 16265, 16272, 16273, 16420, 16483, 16539, 16773, 16786, 16795, 17052, 17453, 18177,
18184, 19088, 19090, 19093, 19140, 19830 18 184

PTB
15, 17, 20, 21, 22, 26, 28, 36, 39, 43, 45, 46, 47, 52, 53, 54, 58, 62, 65, 66, 80, 83, 87, 88, 89,
90, 92, 99, 100, 102, 105, 109, 110, 111, 112, 125, 129, 132, 135, 141, 142, 147, 420 ,425,
441, 488, 489, 546, 548, 549

50 600

QT

sel34, sel100, sel103, sel116, sel123, sel213, sel230, sel231, sel301, sel302, sel306, sel307,
sel310, sel803, sel808, sel811, sel820, sel840, sel847, sel853, sel872, sel873, sel883,
sel891, sel14157, sel16265, sel16272, sel16273, sel16420, sel16483, sel16539, sel16773,
sel16786, 16795, sel17152, sel17453

36 432

Figure 4 demonstrates the results of pre-processing. Figure 4a shows the original signal and
Figure 4b shows the result of the noise removal by applying Daubechies 4. Figure 5 shows the result
of applying autocorrelation and scaling in the pre-processed signal, and Figure 6 shows the result of
the DCT application.



Appl. Sci. 2017, 7, 1205 8 of 14

Figure 4. Pre-processing result: (a) Original signal; (b) Signal with daubechies used.

Figure 5. Signal with autocorrelation and scaling used.

Figure 6. Signal with discrete cosine transform (DCT) used.

The result of this study’s experiment is indicated by the window and subject identification rate.
The window identification rate refers to the ratio of windows with correct recognition out of all
the windows of the respective subject. The subject identification rate refers to the ratio of the number of
correctly identified subjects among the total subjects after the subjects are determined using a majority
vote by examining the generated windows.

Table 2 shows the test results of the method proposed in this study. As shown in Table 2, when
the NN classifier is used in the NSR, PTB and QT DB, the subject identification rates are 100%, 99.40%
and 100%, while the window identification rates are 99.02%, 97.13% and 98.91%. When the SVM
classifier is used, the subject identification rates are 100% in all of the DBs, while the window
identification rates are 96.92%, 95.82% and 98.32%, respectively. When the LDA classifier is used,
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the subject identification rates are 100% in all of the DBs, while the window identification rates are
98.67%, 98.65% and 99.23%, respectively.

Table 2. Results of proposed method. NN: nearest neighbor; SVM: support vector machine; LDA: linear
discriminant analysis.

Classifier Subject Number
Subject Identification Rate (%) Window Identification Rate (%)

NSR PTB QT NSR PTB QT

NN
NSR: 18 PTB: 50 QT: 36

100 99.40 100 99.02 97.13 98.91
SVM 100 100 100 96.92 95.82 98.32
LDA 100 100 100 98.67 98.65 99.23

Each NSR, PTB, and QT DB are derived from a different acquisition environment and sampling
frequency; thus, the results would vary depending on the number of features. Additionally, it is
possible to derive various identification results that are based on the classifier selection in the personal
identification, such as signal processing and pattern recognition. Therefore, this study also compares
the results by applying various feature numbers according to the classifiers in the NSR, PTB, and QT
DB. As shown in Tables 3–5, the window recognition rate slightly varies according to the classifiers of
NN, SVM, and LDA, as well as the number of extracted features. Further, it can be confirmed
that the highest recognition rate is shown, when the optimum number of features is found for
each piece of data, and the recognition rate is lowered, when the number is smaller or larger
than the optimum number. It is difficult to determine the classifier and the optimal number of
features for each DB. However, experimental results show that the best results are obtained when
the LDA classifier is used on the average in NSR, PTB, and QT DB, and the optimal number of features
are 40, 300 and 110, respectively. In particular, when comparing the average result with regards to
the window identification rate, the LDA classifier shows about a 0.50% and 1.83% higher recognition
rate than the NN and SVM classifier on average.

Table 3. Comparison of results according to the number of features with nearest neighbor (NN).

DB Subject Identification Rate (%) Window Identification Rate (%) Number of Features (%)

NSR
100 98.14 30
100 99.02 50

99.44 96.20 70

PTB
99.20 95.57 200
99.40 97.13 300
99.40 96.78 400

QT
100 97.56 50
100 98.91 70
100 98.75 90

Table 4. Comparison of results according to the number of features with support vector machine (SVM).

DB Subject Identification Rate (%) Window Identification Rate (%) Number of Features (%)

NSR
100 95.05 20
100 96.92 40
100 95.04 60

PTB
99.60 95.57 200
100 95.82 300

98.80 94.15 400

QT
100 97.57 30
100 98.32 50
100 97.91 70
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Table 5. Comparison of results according to the number of features with linear discriminant analysis (LDA).

DB Subject Identification Rate (%) Window Identification Rate (%) Number of Features (%)

NSR
97.22 85.17 20
100 98.67 40

94.44 97.41 60

PTB
99.80 98.44 200
100 98.65 300

99.80 98.40 400

QT
100 98.89 90
100 99.23 110
100 98.54 130

In order to demonstrate the efficiency of the proposed window removal method, the experiment
results are compared before and after the application. As shown in Table 6, there is no significant
difference between the results before and after applying the window removal method, because
the subject recognition rate is already high in all of the data and classifiers. However, it confirms
that the results of the window recognition rate after applying the window removal method are better
than those before applying the window removal method in all data. It also confirms that the results of
all classifiers used in the experiment have improved. Therefore, the window removal method proposed
in this study can improve the ECG identification rate by efficiently removing unnecessary windows.

Table 6. Comparison of the results with and without the window removal method.

Method

Without Window Removal Method With Window Removal Method

Subject Identification Rate (%) Window Identification Rate (%) Subject Identification Rate (%) Window Identification Rate (%)

NSR PTB QT NSR PTB QT NSR PTB QT NSR PTB QT

NN 100 99.40 100 95.85 96.80 97.18 100 99.40 100 99.02 97.13 98.91
SVM 100 100 100 95.11 95.76 96.32 100 100 100 96.92 95.82 98.32
LDA 100 100 100 97.13 98.40 97.87 100 100 100 98.67 98.65 99.23

Lastly, random selection is performed and it is compared to the results of other algorithms in order
to evaluate the performance of the proposed method. NSR, PTB, and the QT DB are short data recorded
within 60 s. A small number of training and test windows are generated because the window is set
at 5 s time intervals. Therefore, it is difficult to apply 10 fold cross-validation. The performance of
the proposed algorithm is verified by averaging random selection 10 times. The random selection is
performed by selecting the training window at random and selecting the rest as the testing window.
Table 7 shows the accuracy for each trial after performing it 10 times, as well as the number of correctly
recognized windows and the total number of windows. For each trial, it can be shown that the number
of test windows is slightly different due to the application of the window removal method. As shown
in Figure 7 and Table 7, LDA, SVM, and NN classifiers show high results, but LDA shows higher overall
results than NN and SVM, except for the NSR DB. In Table 8, when compared to the results of the other
studies, the proposed method shows high results in both the subject and window identification rates,
except for the study by Wang et al. [12] and Loong et al. [21]. However, in the study by Wang et al. [12]
and Loong et al. [21], experiments were formed with a small sample size. On the other hand, this study
is performed with a larger sample size when compared to the two studies, and shows significantly
higher results. In addition, the PTB DB includes abnormal signals, such as myocardial infarction and
cardiomyopathy. Such abnormal signals may cause a reduction in recognition rate. When compared to
the results containing abnormal signals by Wang et al. [12], Coutinho et al. [17], and Agrafioti et al. [18]
using PTB in Table 8, the proposed method shows relatively high results in not only the subject
identification rate, but also in the window identification rate with regards to the various DBs.



Appl. Sci. 2017, 7, 1205 11 of 14

Table 7. Random selection results.

DB Classifier
1 2 3 4 5 6 7 8 9 10

Accuracy (%) (Number of Correctly Recognized Windows/Total Number of Windows)

NSR

NN 97.80
(89/91)

97.83
(90/92)

100
(89/89)

100
(89/89)

100
(89/89)

100
(91/91)

100
(91/91)

97.83
(90/92)

98.88
(88/89)

97.83
(90/92)

SVM 97.83
(90/92)

96.74
(89/92)

96.74
(89/92)

97.75
(87/89)

93.26
(83/89)

97.80
(89/91)

95.60
(87/91)

96.70
(88/91)

100
(91/91)

96.74
(89/92)

LDA 100
(92/92)

100
(92/92)

97.83
(90/92)

100
(89/89)

95.51
(85/89)

100
(91/91)

97.80
(89/91)

100
(91/91)

97.80
(89/91)

97.83
(90/92)

PTB

NN 95.99
(287/299)

96.60
(284/294)

96.66
(289/299)

97.28
(286/294)

96.95
(286/295)

98.66
(294/298)

97.62
(287/294)

97.98
(291/297)

97.29
(287/295)

96.32
(288/299)

SVM 96.66
(289/299)

96.26
(283/294)

94.98
(284/299)

93.88
(276/294)

96.61
(285/295)

95.97
(286/298)

95.24
(280/294)

96.63
(287/297)

96.61
(285/295)

95.32
(285/299)

LDA 98.66
(295/299)

98.64
(295/299)

98.66
(295/299)

97.96
(288/294)

98.98
(292/295)

98.99
(295/298)

98.98
(291/294)

98.65
(293/295)

98.64
(291/295)

98.33
(294/299)

QT

NN 98.56
(205/208)

98.11
(208/212)

98.13
(210/214)

98.14
(211/215)

98.56
(206/209)

98.59
(210/213)

100
(211/211)

100
(209/209)

100
(209/209)

99.05
(209/211)

SVM 98.53
(201/204)

98.10
(207/211)

98.09
(206/210)

98.10
(207/211)

100
(209/209)

98.10
(207/211)

100
(209/209)

97.60
(203/208)

97.58
(202/207)

97.13
(203/209)

LDA 98.52
(200/203)

100
(207/207)

98.10
(206/210)

98.57
(207/210)

100
(208/208)

99.51
(205/206)

100
(206/206)

99.03
(205/207)

98.55
(204/207)

100
(207/207)
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Figure 7. Random selection results: (a) NSR random selection result; (b) PTB random selection result;
and (c) QT random selection result.

Table 8. Comparison of results with other studies.

Methods Subject
Number DB Type Subject Identification

Rate (%)
Window/Heart Beat

Identification Rate (%)

Proposed method Non-fiducial /NN,
SVM, LDA

NSR: 18
PTB: 50
QT: 36

NSR, PTB, QT
NSR:100
PTB:100
QT: 100

NSR: 98.67
PTB: 98.65
QT: 99.23

Israel et al. [10] Fiducial/LDA 29 Acquisition
from lab. 100 82

Biel et al. [11] Fiducial/SIMCA model 20 SIEMENS
equipment 100 -

Wang et al. [12] Fiducial/NN, LDA NSR: 13
PTB: 13 NSR, PTB NSR:100

PTB:100
NSR: 99.43
PTB: 98.90

Coutinho et al. [17]
Fiducial & non
fiducial/string
matching, NN

51 PTB Fiducial: 99.85
Non-fiducial: 99.39 -

Agrafioti et al. [18] Non-fiducial/NN 56 NSR, PTB, MIT 96.42 96.20

Chan et al. [19] Non-fiducial/wavelet 50 Acquisition
from lab. 89 -

Chiu et al. [20] Non-fiducial/NN 35 QT 100 -

Loong et al. [21] Non-fiducial/
neural net 15 Acquisition

from lab. 100 99.52

The results of this study and the other studies may be difficult to objectively evaluate due to
the various differences in the data measurement environment, method, and DBs. However,
this study is able to enhance the reliability of the algorithm by considering the data that contain
normal, as well as abnormal, signals, and using multiple DBs instead of a single DB. As shown by
these results, the proposed method performs experiments with regards to three types of DBs and
demonstrates high results even in DBs containing abnormal signals. Consequently, the non-fiducial
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technique-based features proposed in this study are not influenced by obvious fiducial point detection,
unlike the fiducial technique-based method. In addition, the proposed algorithm can be executed
simply and the window removal method can be applied to remove windows that are difficult to
recognize. Thus, our method can enhance the overall identification rate.

The threshold value settings for the window removal method demonstrate excellent results with
regards to the various DBs, but this may not have been appropriate for all situations of ECG signals with
non-stationary characteristics. In addition, data including other diseases, such as commonly occurring
supraventricular tachycardia or atrial fibrillation, accompanied by irregularities other than the diseases
included in the PTB DB, may differ from the signals that are used in this experiment, thus, degrading
the performance of the proposed algorithm.

4. Conclusions

This study proposed ECG identification based on non-fiducial feature extraction using a window
removal method, NN, SVM, and LDA. Daubechies 4 was used to remove the baseline wander and
noise, and autocorrelation, scaling, and DCT were used for feature extraction and selection. In addition,
a window removal method was applied to remove windows that were difficult to recognize. Lastly, NN,
SVM, and LDA classifiers were used to perform individual identification. The proposed method
demonstrated high accuracy with regard to the NSR, PTB, and QT DB. Additionally, relatively good
results were shown even for the PTB DB, which contained abnormal signals. In addition, the ECG
identification rate could be improved by removing windows that could not be recognized due to signal
distortion or noise in the window by applying the window removal method using the threshold setting.
In the future, research using various test data other than the DBs that were used in this study needs
to be performed. Experiments on the data extracted from a real environment will also be necessary.
Furthermore, the development of an optimized algorithm for robustness and high accuracy in various
situations will be required.
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