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Abstract: A short-pulse-width repetitively Q-switched 2.7-µm Er:Y2O3 ceramic laser is demonstrated
using a specially designed mechanical switch, a metal plate carved with slits of both slit-width and
duty-cycle optimized. With a 20% transmission output coupler, stable pulse trains with durations
(full-width at half-maximum, FWHM) of 27–38 ns were generated with a repetition rate within the
range of 0.26–4 kHz. The peak power at a 0.26 kHz repetition rate was ~3 kW.
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1. Introduction

Laser radiation at ~2.7-µm is important for practical applications and scientific research. Being
regions of water absorption and molecular fingerprints, laser sources at ~2.7-µm are useful for biomedical
therapy [1,2] and atmospheric sensing [3]. In addition, these lasers are utilized for generating 3–5-µm laser
emission [4,5], which corresponds to an atmosphere transparent window. Lasers at ~2.7-µm also facilitate
studies of laser materials that is suitable to generate deep-infrared lasing [6,7]. Both the applications and
research require versatile ~2.7-µm laser sources with short pulse duration and high repetition rate.

A simple approach to generate ~2.7-µm pulses is Q-switching ion-based (as Er3+, Ho3+, Dy3+ and
Cr2+) lasers. Er-based lasers operating on the transition between 4I11/2 and 4I13/2 energy levels are
most often utilized because of the mature pump sources of flashlamps and ~976-nm laser diodes (LDs).
With 50 atom % Er:YAG (Y3Al5O12), 30 atom % Er:YSGG (Y3Sc2Ga3O12), and 15 atom % Er:YLF (LiYF4)
laser materials, ~2.7-µm pulses at durations of tens of nanoseconds have been obtained. However,
the repetition rates of these lasers are generally limited to several Hertz due to the severely thermal
effects generated during laser operations [8–11]. Laser pulses at ~2.7-µm with repetition rates at the
kilohertz scale have been generated from Er:ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) fiber lasers, which are
more thermally advanced [12,13]. However, the pulse durations are hundreds of nanoseconds because
fibers have limited energy storage capability. So far, short pulses at ~2.7-µm with high repetition rates
are rare.

The use of Er-based sesquioxides is promising in terms of obtaining ~2.7-µm laser pulses with short
pulse durations and high repetition rates. As ~2.7-µm laser oscillation can be realized from Er-based
sesquioxides with low doping concentrations (lower than ~7 atom %) [14,15], the thermal effects
generated during laser operation are greatly alleviated. In addition, sesquioxides have high thermal
conductivity, which decreases slightly with increasing doping concentration [16]. Furthermore, Er-based
sesquioxides have long ~2.7-µm fluorescence lifetimes (e.g., an order of magnitude longer than that of
Er:YAG), making them beneficial for energy storage [17]. Unfortunately, sesquioxides have extremely
high melting points (>2400 ◦C), imposing serious challenges for traditional single-crystal-growth
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approach. In this aspect, polycrystalline ceramics are superior to single crystals since they can be sintered
at much lower temperatures. Moreover, transparent ceramics have advantages over crystals in terms of
their rapid fabrication in large scale and composite structures, flexible doping concentrations, and good
thermo-mechanical properties [18]. Recently, sesquioxide ceramics have been successfully fabricated and
mainly explored to realize continuous-wave (CW) laser operation at ~2.7-µm. A passively Q-switched
~2.7-µm Er:Y2O3 ceramic laser with a pulse duration of 4.47 µs and a pulse repetition rate of 12.6 kHz
was realized, aiming to demonstrate the broadband availability of black-phosphorus [19]. For actively
Q-switched operation, an acousto-optically Q-switched Er:Y2O3 ceramic laser was demonstrated,
generating pulses with durations of 41–190 ns in the range of 0.3–10 kHz [20]. Due to the scarcity of
~2.7-µm acousto-optic and electric-optic Q-switches, mechanical Q-switching is commonly used in a
wavelength range of ~2.7-µm [21,22], which does not require high voltages or drive power and has
avoidable insert losses.

Here we report a short-pulse-width repetitively Q-switched Er:Y2O3 ceramic laser at ~2.7-µm
using a specially designed mechanical switch, a metal plate carved with slits of both slit-width
and duty-cycle optimized. The laser performances with output couplers (OCs) of 5%, 8% and 20%
transmissions are compared in both CW and Q-switched operation modes. In the CW operation mode,
the 8% transmission OC yields an output power of over 1.8 W. In the Q-switched operation mode,
the 20% transmission OC yields pulse trains with durations (FWHM) of 27–38 ns and energies of
80.8–27.5 µJ with repetition rates in the range of 0.26–4 kHz. The corresponding peak power at the
0.26 kHz repetition rate is ~3 kW. To the best of our knowledge, the laser offers the shortest pulse
durations among ~2.7-µm Q-switched lasers with pulse repetition frequency (PRF) above several Hertz.

2. Experimental Details

Figure 1 shows the schematic layout of the pulsed Er:Y2O3 ceramic laser. A pig-tailed ~976-nm
LD with a fiber core diameter of 105-µm and a numerical aperture (NA) of less than 0.15 was used
to pump the Er:Y2O3 ceramic. The pump light was focused into the Er:Y2O3 sample with a ~420-µm
spot diameter through a 25-mm-focal-length lens F1 and a 100-mm-focal-length lens F2. The confocal
parameter was estimated to be ~26 mm. The physical length of the plane–plane cavity was 28 mm.
The input coupler (IC) was high-transmission coated at ~976 nm (T > 98%) and high-reflectivity coated
at ~2.7-µm (R > 99.8%). Three flat mirrors with transmissions of 5%, 8%, and 20% at ~2.7-µm and
high transmissions at ~976 nm were employed as OCs. The Er:Y2O3 ceramic (developed at Jiangsu
Normal university) was synthesized by the solid-state reaction method and vacuum sintering followed
by hot isostatic pressing [14]. The ceramic sample had a dimension of 2 × 3 × 12 mm and an Er-ion
concentration of 7 atom % and was uncoated. It was mounted in a copper block that was cooled by
water at ~13 ◦C to allow for effective heat removal. A dichroic mirror (DM) coated with high reflectivity
at the laser wavelength and high transmission at the pump wavelength was placed between the OC
and the detector to filter out the unabsorbed pump power.
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The mechanical Q-switch was a 1-mm-thick rotating metal plate carved with sagittal rectangular
slits (see the inset of Figure 1), of which the rotating speed and slit number were variable from 1 to
134 rounds per second and 1 to 30, respectively. It was placed close to the ceramic sample, where the
diameter of the laser mode was calculated to be ~470-µm. The modulation frequency was adjusted
by changing the slit number or (and) the rotating speed. The slit width was optimized to be 0.6 mm.
The duty ratio of the Q-switch was continually tunable by moving the plate along its radial direction.
Using such a mechanical Q-switch considerably increased the time for the inversion population
to accumulate.

3. Results

A comparison of CW laser performances with 5%, 8% and 20% transmissions OCs of the Er:Y2O3

medium was first made. Figure 2 shows dependences of output powers on the absorbed pump power.
The absorbed pump power was calculated by multiplying the incident pump power by the absorption
efficiency, which was measured under non-lasing condition (without existence of the laser resonator) to
be ~90%. The threshold pump powers for the 5%, 8% and 20% transmission OCs were ~1.1 W, ~1.4 W,
and ~3 W, respectively. At pump powers of less than 14 W, the output powers increased linearly with
the pump power for all three OCs, and the 8% OC yielded the highest slope efficiency of 10.2% with
respect to absorbed pump power. When the pump power was above 14 W, the laser became slightly
less efficient due to the increased thermally induced losses. Nevertheless, an output power of over
1.8 W was obtained at 19 W of pump power with the 8% transmission OC. According to the laser
properties with different output couplers, the distributed cavity losses (excluding the output coupling
loss) were calculated to be ~1.67% cm−1 using the well-known Findlay–Clay method, comprising
the thermally induced losses and the losses of the cavity mirrors and ceramic sample (~1.2% cm−1

estimated though the in-line transmission spectrum of a 1.3-mm-long Er:Y2O3 sample). The attainable
output power should be readily increased by improving the cooling system and reducing passive
losses of the ceramic sample.
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The Q-switched operation performances were studied with the same output couplers. An HgCdTe
detector (PVM-10.6, VigoSystem S. A) with a rise time of 1.5 ns and an oscilloscope (DSO104A, Keysight)
with a bandwidth of 1 GHz were utilized to measure the pulse characters. The threshold for Q-switched
operation was the same as that for the CW operation. Not too far above the threshold, stable pulse
trains were observed for all three OCs. The pulse characters were then optimized by changing the
distance between the center of the mechanical switch and the optical axes of the cavity, and the
optimal distance was found to be ~50 mm. The pulse duration and pulse energy as functions of
the pulse repetition frequency for all three OCs are shown in Figures 3 and 4. With the 5% and 8%
transmission OCs, single pulses with 40 ns duration and 30.8 µJ energy, and 37 ns duration and 46.1 µJ
energy were obtained at a 0.26 kHz pulse repetition frequency (corresponding to the rotating speed of
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130 rounds per seconds and a slit number of 2) under a pump power of 3.2 W. With the increase in
repetition frequency, the pulse duration increased while the pulse energy decreased. Nevertheless,
pulse durations of less than 50 ns were obtained in the range of 0.26–4 kHz with both OCs. When
further increasing the pump power, multi-pulse operation occurred. With the 20% transmission OC,
shorter pulse duration and larger pulse energy were achieved. This is because a higher output coupling
can delay the occurrence of multi-pulse operation in mechanically Q-switched lasers. In this case,
multi-pulse operation occurred when the pump power was above 10 W. Under 10 W of pump power,
the pulse duration increased from 27 to 38 ns, whereas the pulse energy decreased from 80.8 to 27.5 µJ
with increasing the repetition frequency from 0.26 to 4 kHz, corresponding to ~3 kW peak power at
0.26 kHz repetition frequency. The optical–optical conversion efficiencies in the Q-switched mode could
be effectively improved using a larger plate carved with more slits but the same turn-off area and/or a
motor with higher rotating speed to make the laser operate at a higher repetition rate. Improvement in
the Q-switched efficiencies is also achievable through optimizing the pump wavelength to avoid the
excited state absorption of the upper laser level during the pumping process. The short pulse durations
achieved in our experiment are a consequence of the good energy storage of Er:Y2O3, in which losses
of excited ions on the upper laser level caused by multiphonon relaxation and spontaneous emission
are small.
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Figures 5 and 6 show the typical single pulse profile and pulse train recorded at 0.26 kHz repetition
rate with the 20% transmission OC under 10 W of pump power. The pulse profile shows a fairly
symmetric shape and the time spacing between two adjacent pulses remains nearly fixed for the given
repetition rate with no noticeable timing jitter. The amplitude fluctuations were estimated to be less
than 10%.
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The optical spectrum of the Q-switched Er:Y2O3 ceramic laser with the 20% transmission OC was
found to vary slightly with the repetition rate or pump level. Figure 7 shows the typical emission
wavelength measured by a Fourier transform spectrum analyzer with a resolution of 7.5 GHz (OSA205,
Thorlabs, Newton, NJ, USA). It was centered at 2716.5 nm with a linewidth of 0.12 nm.
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4. Conclusions

In summary, we demonstrated a short-pulse-width repetitively Q-switched Er:Y2O3 ceramic laser
at ~2.7-µm using a specially designed mechanical switch. Stable pulse trains with 27–38 ns durations
and energies of 80.8–27.5 µJ were obtained with a pulse repetition frequency within a range of 0.26 to
4 kHz. A peak power of ~3 kW was realized at 0.26 kHz. The results presented here reveal the potential
of Er-doped sesquioxide ceramics in generating short pulses at ~2.7-µm. Improvements in terms of
pulse energy should be possible by further optimizing the transmission of the output coupler.
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