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Abstract: This paper focuses on predicting the End of Life and End of Discharge of Lithium ion
batteries using a battery capacity fade model and a battery discharge model. The proposed framework
will be able to estimate the Remaining Useful Life (RUL) and the Remaining charge through capacity
fade and discharge models. A particle filter is implemented that estimates the battery’s State of Charge
(SOC) and State of Life (SOL) by utilizing the battery’s physical data such as voltage, temperature,
and current measurements. The accuracy of the prognostic framework has been improved by
enhancing the particle filter state transition model to incorporate different environmental and loading
conditions without retuning the model parameters. The effect of capacity fade in the reduction of the
EOD (End of Discharge) time with cycling has also been included, integrating both EOL (End of Life)
and EOD prediction models in order to get more accuracy in the estimations.

Keywords: IVHM (Integrated Vehicle Health Monitoring); probability density function; capacity
fade; Remaining Useful Life (RUL) estimation; State of Charge

1. Introduction

Lithium ion batteries are widely used in spacecraft, aircraft, and electric vehicles. Hence, an
accurate prognosis for the remaining useful life (RUL) and time until end of discharge voltage (EODV)
is essential for these applications [1]. Significant research has been conducted in order to get higher
energy density, reduced weight and cost, longer life, or shorter recharge times [2]. New materials
and technologies are continually being explored with the goals of improving the technology and
satisfying consumer requirements. The ability to precisely monitor and manage battery health will
increase the performance and avoid catastrophic failures, mainly in aerospace systems. The failure of a
battery can lead to loss of operation, reduced competency, stoppage, and even catastrophic failure [3].
There are two main prognostic and health management approaches: physics of failure and data driven.
Physics of failure prognostic methods utilize knowledge of a product’s life cycle, loading conditions,
geometry, material properties, and failure mechanisms to predict its RUL [4].

Data-driven techniques extract features from performance data such as current, voltage, time,
and impedance using statistical and machine learning techniques to track the product’s degradation
and estimate its RUL [5]. The current state of a battery is usually indicated by two common indices,
namely state-of-charge (SOC) and state of health (SOH). SOC is quantified as the percentage of
charge remaining in a battery before recharging during the current cycle. SOH indicates the RUL of a
battery [6].
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The particle filter (PF) has been extensively used in estimating the RUL of lithium ion
batteries [6–12]. Particle filters are sequential Monte Carlo methods that track and predict the state of
the system [13]. He et al. [7] proposed a novel approach to predict the state of health (SOH) and RUL
using the Dempster–Shafer theory (DST) and the Bayesian Monte Carlo (BMC) method. An empirical
model based on the physical degradation behaviour of lithium ion batteries was developed. DST was
used to initialize the model parameters by combining sets of training data, and BMC was used to update
the model parameters and evaluate the RUL. Saha and Goebel [14] presented an empirical model to
describe battery behavior during individual discharge cycles as well as over its life cycle. Consequently,
the model has been used in a particle filter framework to predict the RUL for individual discharge
cycles as well as for cycle life. An extension to He et al.’s [7] work was proposed by Xing et al. [6]
by testing an empirical second-order polynomial model for RUL predictions and compared it with
He el al.’s particle filter model. Their results showed that the particle filter predicted the RUL more
accurately than the polynomial model. Dalal et al. [15] used a lumped parameter battery model to
perform diagnostics on lithium ion batteries. Their work was similar to Saha and Goebel [14] in
regards to the state transition model in EOD predictions. The particle filter has been widely used in
prognostics of other applications. Daigle et al. [16] used a physics-based model of a centrifugal pump
combined with PF in predicting the failure of a pump. This research involves the development of
an improved prognostic model to determine End of Life (EOL) and End of Discharge (EOD), thus
increasing the accuracy of the RUL prediction of the lithium ion batteries. Wang et al. [17] performed
prognostics on lithium ion batteries based on battery performance analysis and flexible support vector
regression (F-SVR). In their research, energy efficiency and working temperature were used as the
input data and they discovered that the non-iterative prediction model based on F-SVR is suitable for
long-term prediction, whereas an iterative multi-step prediction model based on SVR is suitable for
short-term predictions. Tang et al. [18] used the Wiener process with measurement error to predict
the RUL estimation of lithium ion batteries with nonlinear degradation. They also found that the
relaxation effect could lead to the recovery of the battery (i.e., increases the available capacity for
the next cycle). Qin et al. [19] signified the importance of state of health (SOH) prognostics for safe
and reliable use of lithium ion batteries; and then proposed a rest time-based prognostic framework
(RTPF) in which the beginning time interval of two adjacent cycles is adopted to reflect the rest
time, in order the accurately predict the regeneration phenomena and improve long-term prediction
performance of battery SOH. Huang et al. [20] performed a fractional impedance diagnosis on a
commercial NCM/graphite lithium ion battery at various SOC values to investigate deformation
behaviors, charge transfer functions, and SEI layer statuses. Their analytical results showed that when
SOC ≤ 26.5%, both charge transfer resistance and diffusion impedance increased significantly with
decreasing SOC values, thus suggesting that automotive Li-ion batteries for electric vehicles should
work in DOD below 80%.

Analysis of current battery prognostic techniques proved that further work will be required to
increase the accuracy of the prognostic accuracy. The basis of the present work is the prognostic model
developed by Saha and Goebel [14]. However, this study enhances the particle filter state transition
model during EOD prediction, making it adaptable to different environmental and loading conditions
without retuning the model parameters. The effect of capacity fade in the reduction of the EOD time
with cycling has also been included, integrating both EOL and EOD prediction models in order to get
more accuracy in the estimations.

2. Failure Modes of Lithium Ion Batteries

This section will provide an overview of the different modes of failure of lithium ion batteries.

2.1. Battery Cell Shelf Discharge

This type of failure only occurs when the battery is stored. A battery is considered to be in
storage conditions when it is not being used as well as when it is connected, but not cycled. Ambient
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temperature, storage time, and the battery state of charge are the main parameters that affect the
shelf discharge rate [21]. The cell degradation rate may increase due to storing the battery at high
temperatures and/or high SOC conditions. The battery internal impedance increases and the battery
capacity is reduced due to the relationship between battery capacity and internal impedance.

2.2. Thermal Runway

This type of failure is considered to be one of the most dangerous failures that can occur in a
battery and usually originates at the cell level. It involves an accelerated shelf-heating of the cell, which
is initiated due to chemical reactions between the positive and negative electrodes. This usually ends
with a fire or explosion of the battery [22]. Thermal runways usually occur during or shortly after
charging, when the cell cannot dissipate all the excess heat created.

2.3. Cell Imbalance

Cell imbalance is a common occurrence in a battery module or system that is categorized
by a different state of charge of the cells constituting the package. Multi-cell configurations
involving series and parallel connections are usually utilized in meeting the application current
and voltage requirements and, despite the efforts at manufacturing identical cells, they usually exhibit
different behavior within the same battery module. This difference can lead to cell overcharging,
over-discharging or internal currents flowing inside the battery package. Cell imbalance is usually
exhibited by a variance in cell voltage, and techniques such as cell bypassing during charge/discharge
have been utilized [23]. In addition, the battery management and thermal management systems that
monitor and control the battery components can minimize the effects of cell imbalance.

2.4. Capacity Fade

Capacity fade can be defined as the reduction in the maximum amount of charge that can be
stored or extracted from a battery [24]. The ideal failure of a battery is slow capacity fade, which is
mainly caused by aging. The result of this would be the growth of internal impedance. The battery is
considered to be in a failed state when the nominal capacity has been reduced by 20% from its nominal
value. The main factors that contribute to capacity fading are: aging, temperature, and charging or
discharging patterns [25,26]. The ability to predict battery capacity fade and evaluate the RUL could
result in safer and more effective use of lithium ion batteries.

2.5. Power Fade

While capacity fade refers to the reduction of cell or battery capacity as it ages, power fade
is related to the inability of the battery to supply the power required by the system or application.
Both failure modes, capacity and power fade, are closely correlated because of the previously-stated
relationship between capacity and impedance.

As can be deduced from Equation (1), an increase in the impedance will cause a reduction in the
power that the battery can supply. Thus, cell impedance should be monitored in order to evaluate the
degradation of the battery.

P = I·V = I2·Z =
V2

Z
(1)

Table 1 shows a summary of the battery failure modes describing their primary causes, symptoms
and parameters required monitoring in the failure mode.
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Table 1. Summary of battery failure modes.

Failure Mode Level Primary Causes Symptoms Comments Parameter to Monitor

Shelf
discharge Cell -High ambient temperatures both

during usage and storage

-Loss of capacity
-Increase in the cell
internal impedance

-SOC
-Temperature

Thermal
runaway Cell

-Internal or external short circuit of
a cell
-High temperature operation
(overheating)
-Overcharging

-Cell heating during charging,
especially near the end
of charging
-High voltage drop during
rest periods
-Charge capacity higher than
discharge capacity

-The failure originates at cell level
but it can propagate to the other
cells composing the system.
-The rate at which heat is produced
in the system exceeds the rate at
which it can be dissipated.

-Temperature
-Cell Voltage
-SOC

Cell capacity
imbalance Module/System -Different behaviour of cells within

the same module -Different cell voltages
-Occurs when the SOC of different
cells in a battery pack deviates
from each other

-Cell voltages
-SOC

Capacity fade Cell/Module/System
-Aging (time and use)
-Cell over-discharge
-Low temperature operation

-Capacity decreases with time
-Increase in cell’s
internal resistance

-Occurs with each
charge–discharge cycle of
the battery

-Temperature
-SOC
-Capacity

Power fade Cell/Module/System -Aging (cycle aging) -High battery impedance -Usually coupled to capacity fade -Impedance
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3. Diagnostic and Prognostic Framework Modelling

This section of the paper explains the diagnostic and prognostic framework that has been
developed. The battery model is chosen and features describing the battery behavior are identified.
The two main features that have been identified are discharge and capacity fade. Then, the particle
filter algorithm is used in tracking the current state of the battery (diagnostics) and estimating the RUL
(prognostics). Finally, the End of Discharge (EOD) and End of Life (EOL) models are combined to form
the prognostic framework.

3.1. Battery Modeling and Feature Extraction

The Randle’s circuit model (Figure 1) is used in the EOD and EOL prediction. The main reason
for using this model is because it uses internal processes such as voltage drop due to the internal
resistance of the battery and the polarization effects. The EOD and EOL models developed later
were originally proposed by Saha and Goebel [14], who carried out the feature extraction using RVM
algorithms. In this research, the effects of battery aging and different loading profiles are added to
enhance their model.
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3.2. Battery Capacity Fade Model

The Coulombic Efficiency factor (ηC) models the effect of battery capacitor fade with aging and
cycling. This factor represents the amount of charge that can be extracted from a battery given the
charged capacity. The reduction of the battery capacitor with aging is modelled as:

Ck = (ηC)
k·C0, (2)

where k represents the cycle and C0 is the initial capacitance of the battery. Through experimental
testing, a typical value for ηC = 0.9987. However, the capacity usually increases when the battery is
allowed to rest between cycles. Therefore, a battery ‘self-recharge during rest’ factor was introduced
by Saha and Goebel [14]. The battery EOL model is now expressed as:

Ck = (ηC)
k·C0 + β1· exp

(
−β2

∆tk

)
, (3)

where ∆tk is the resting time between k and k− 1 cycles and β1 and β2 are the model parameters to be
determined and tracked using the particle filter algorithm.

3.3. Battery Discharge Model

The Randle’s circuit model is used to develop the End of Discharge (EOD) model. The voltage
drop is expressed as:

E = E0 − I·(RE + RCT + Zw), (4)

where E0 is the theoretical open circuit voltage; I is the current flowing out of the battery; and RE, RCT
and Zw are the electrolyte resistance, charge transfer resistance, and Warburg impedance, respectively.

This expression can also be rewritten to include the internal resistances of the battery:

E(t) = E0 − ∆Esd(t)− ∆Erd(t)− ∆Emt(t), (5)
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where ∆Esd is the voltage loss due to battery shelf discharge, ∆Erd is the drop caused by the cell
reactant depletion, and ∆Emt represents the drop due to internal resistance to mass transfer.

The individual terms of Equation (4) are expressed as:

∆Esd(t) = α1· exp (
−α2

t
) (6)

∆Erd(t) = α3· exp(α4·t) (7)

∆Emt(t) = ∆Einit − α5·t. (8)

Model parameters α1, α2, α3, α4, α5 are to be calculated and ∆Einit is the voltage drop as the current,
I, passes through the internal resistance, RE, at the start of the discharge cycle. This is calculated by
∆Einit = I × RE. The effect of each term and the whole EOD model is shown in Figure 2. It can be
observed that from the three components given in Equations (6)–(8), the cell reactant depletion (∆Erd)
is the main term when determining the EOD. For this reason, α3 and α4 will be the most important
model parameters affecting the EOD prediction.
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3.4. Particle Filter Framework

As Kalman filters, Particle Filters (PFs) are an excellent tool to track the state of a system.
The main reason for using PFs instead of Extended Kalman filters is that the latter usually need
a high computational effort to obtain an exact solution, whereas the former usually find quite a good
approximate solution with less computational effort [27].

The particle filtering technique, also called bootstrap filtering or survival of the fittest, is a
sequential Monte Carlo (MC) method that is described in detail in [28]. It represents the predicted
state of the system using a group of random particles and their associated weights. This is shown in
Equation (9):

p(x0:k/z1:k) ≈
Ns

∑
i=1

ωi
k·δ
(

x0:k − xi
0:k

)
, (9)

where
{

xi
0:k, i = 0, . . . , Ns

}
are the set of Ns particles or samples up to time step k, and{

ωi
k, i = 1, . . . , Ns

}
are the associated weights for the particles at time step k. A normalization of

the weights is required at every time step to ensure that ∑i ωi
k = 1.

The state of the system is propagated using the system model, and the weights are updated for
every time step when new measurements are available. The quality of the algorithm depends on the
choice of the weight update function. There are several ways to update the weights:
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• Sequential importance sampling: when an importance density function q(·) is available, the
weights can be updated using:

ωi
k ∝ ωi

k−1·
p
(
zk/xi

k
)
·p
(

xi
k/xi

k−1

)
q
(

xi
k/xi

k−1, zk

) . (10)

• When the importance density sampling function is chosen so that it reduces the variance of
the weights:

ωi
k ∝ ωi

k−1·p
(

zk/xi
k−1

)
. (11)

• Occasionally, the importance density sampling function is chosen to be the PDF of the state based

only on the previous state (q
(

xi
k/xi

k−1, zk

)
= p

(
xk/xi

k−1

)
). The weight update function is then:

ωi
k ∝ ωi

k−1·p
(

zk/xi
k

)
. (12)

An important issue with the particle filter algorithm is the degeneracy problem. This occurs
when, after several iterations, a few particles have a high weight, making the other samples
negligible. The degeneracy problem is usually evaluated using the effective sample size Ne f f , which is
calculated using:

Ne f f ≈
1

∑Ns
i=1

(
ωi

k
)2 . (13)

When the effective sample size falls below a chosen threshold, a resampling technique is required
in order to ensure the efficiency of the algorithm. The aim of resampling is to eliminate particles with
low weights and focus on the particles with higher weights. The resampling strategy used in [28] is
adopted. The particle filter strategy is shown in Figure 3a and the resampling strategy is displayed in
Figure 3b.
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3.5. End of Life (EOL) Prediction Model

The EOL prediction methodology is shown in Figure 4 and predicts the RUL of the battery
through the integration of sensor measurements, a particle filter, and other calculations. The battery
degradation is mainly affected by the capacity fade. The capacity must be evaluated using parameters
monitored by a Battery Management System (BMS) since there is no mechanism to measure the
capacity of a cell. These parameters are the cell voltage, input or output current, and temperature.
Only the output current is required for estimating the cell capacity, which is calculated using the
Coulomb counting method as in Equation (14):

C =
∫

I dt. (14)

Therefore, the cell output current must be integrated during a full discharge cycle. The important
point is that the battery is not always fully charged or discharged. Therefore, tables with available test
data and other estimation algorithms are required to accurately predict the battery’s State of Health
(SOH). The particle filter is another important factor in the EOL prediction model. The particle filter
consists of two models: state transition and the measurement model. The state transition model is
expressed as:

β1,k+1 = β1,k + ϕ1,k (15)

β2,k+1 = β2,k + ϕ2,k (16)

Ck+1 = ηc·Ck + β1,k· exp
(−β2,k

∆tk

)
+ ϕk, (17)

where ϕ1,k, ϕ2,k, and ϕk denote the zero-mean Gaussian noise terms. The measurement model is
expressed by [14]:

C̃k = Ck + ψk, (18)

where ψk characterizes the measurement noise, again modeled as zero-mean Gaussian noise, and C̃k
denotes the measured capacity. The particle filter monitors the state of the battery using these two
models by producing accurate predictions every time a new measurement is present. The algorithms
propagate the state of the system until the EOL capacity threshold, when an EOL prediction is required.
This propagation means estimating the evolution through the state transition model using the latest
update of parameters β1, β2, and ∆tk. The EOL prediction for this study was chosen to be 80% of the
battery nominal capacity (i.e., 1.6 Ahr for a cell of 2 Ahr nominal capacity) since it is the value utilized
by the industry to reject a faulty battery. The effects of battery aging and different loading profiles are
added to enhance their model.
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3.6. Enhanced End of Discharge (EOD) Prediction Model

The EOD prediction methodology is shown in Figure 5. The model includes measurements from
the sensors, the particle filter to track the state of discharge and prediction, and other algorithms that
adapt the model for different loading profiles. Both voltage and current are required for the EOD
prediction. The state of charge (SOC) is reflected by the voltage and the loading profile is evaluated by
the measurement of the current. Every time a new current measurement is present, the battery state of
charge is updated to comprise the effects of the charge that has been already extracted from the battery.
This is achieved using Equation (19):

SOCi+1 ≈ SOCi +
Ii·TS

C
, (19)

where TS represents the sampling period, Ii is the measured current of the battery, and C is the current
capacity of the battery for that discharge cycle, evaluated by the EOL particle filter. The particle filter
is able to track the state of the cell during discharge once the loading profile is evaluated. The state
transition and measurement models are described in Equations (20)–(25). The state transition model is
based on work carried out by Saha and Goebel [14], but includes some modifications, given by:

α1,i+1 = α1,i + v1,i (20)

α2,i+1 = α2,i + v2,i (21)

α3,i+1 = α3,i + v3,i (22)

α4,i+1 = a· (1− SOCi)

ti
+ v4,i (23)

α5,i+1 = α5,i + v5,i (24)

Ei+1 = Ei −
α1,i·α2,i· exp

(
−α2

ti

)
/t2

i − α3,i·α4,i· exp(α4,i·ti)− α5,i

fs
+ v6,i, (25)
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where v1,i, v2,i, v3,i, v4,i, v5,i, and v6,i are independent zero-mean Gaussian noise terms; a is a constant
adjusted when tuning the algorithm; ti is the current time; and fs is the sampling frequency. The novelty
of this study when compared to the model proposed by Saha and Goebel [14] is the method of
calculating α4. Determination of α4 according to Saha and Goebel’s method is shown by Equation (21).
In their model, the values were initialized knowing the loading profile and capacity in advance.
The calculation in Equation (23) for α4 allows the parameters to adapt to different loads. This proposed
modification of α4 also works when the capacity has faded away, causing a reduction in the EOD time.

α4,i+1 = α4,i + v4,i (26)

The measurement model is expressed as:

zi = Ei + ni, (27)

where ni is the measurement noise, modeled as zero-mean Gaussian noise; and zi is the measured
voltage at time ti. The particle filter tracks the state of charge of the battery by using these two
models, giving accurate predictions of the state of the next step every time a new measurement is
present. The particle filter propagates the current state of the battery until it reaches the EOD voltage
threshold when the user requires a prediction of the remaining time for the discharge of the battery.
This threshold can be adjusted in order to maximize the discharge time by setting a low EOD voltage
threshold such as 2 V or reduce aging due to overcharging by setting a moderate value such as
2.7 V. The last update of the variables α1, α2, α3, α5 is maintained and the parameter α4 recalculated by
assuming that the loading profile used by the application remains the same until the end of discharge
in order to propagate the current state of the battery. This is achieved using Equation (28):

SOCi+1 ≈ SOCi −
(1− SOCi)·TS

ti
, (28)

where the sampling period TS is used to update the time ti. Similarly, with the EOL model, the EOD
model does not output one value for the end of discharge time of the cell. Instead, a probability density
function is calculated for the possible time interval when the charge of the cell is estimated to end.
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3.7. Diagnostic and Prognostic Framework

An overview of the diagnostic and prognostic framework is shown in Figure 6. The capacity for
each discharge cycle is updated using both the EOD and EOL prediction models. Therefore, the EOD
prediction model is more accurate, giving a battery system operator more information on when to
replace a battery.
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4. Simulation

This section discusses the methods and resources used in the EOL and EOD prediction.
MATLAB/Simulink was chosen to implement these models along with online data from lithium
ion cells. Refer supplementary material for EOD and EOL prediction codes.

Battery Specifications and Loading Conditions

The battery dataset for the analysis was downloaded from the NASA Ames Prognostics Data
Repository. The dataset consists of 34 commercially available second-generation 18650-size lithium ion
rechargeable cells of 2 Ahr nominal capacity. These batteries were cycled using different environmental
conditions and loading profiles. The voltage, current, and temperature measurements were recorded
during charging and discharging of the batteries. An environmental chamber was used to expose the
batteries to different temperatures while cycling (4, 24 and 44 ◦C). Fixed and variable loading profiles
of 1, 2 and 4 A were used and several End of Discharge (EOD) voltages were used (2, 2.2, 2.5 and 2.7 V)
in order to get sufficient data on battery behavior under different operating conditions. One important
factor to note is that the batteries were mostly tested in sets of four and not all of them were cycled
until the capacity has faded 20% of its nominal value. Therefore, certain datasets were unsuitable for
the EOL prediction model. The charging protocol used for the cells was Constant Current of 1.5 A
until the cell voltage reached 4.2 V and then Constant Voltage until the current dropped under 20 Ma.
The recorded data were stored in .MAT files consisting of all cycling measurements for a given cell,
which are stored in an array of ‘Cycle’ structures. This data structure is shown in Figure 7. Each cycle
structure consists of measurements from one of the three types: charge, discharge, and impedance.
The Time array consists of the sampling times, while the other field contains current and voltage
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measurements (Figure 8). The Capacity field was evaluated by integrating the current over time until
the battery voltage reaches 2.7 V.
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5. Results and Discussion

This section of the paper presents the results and discussions of the End of Life (EOL) and End of
Discharge (EOD) predictions.

5.1. End of Life (EOL) Prediction

The accuracy of the EOL model was tested using the model and equations explained in Section 3.2.
The value for ηC = 0.9987 was chosen. The number of particles used was 400, which results in a good
accuracy, sustaining a sensible computer workload. The particles were normalized using random
numbers through a normal distribution with mean 0.5, 3× 105 and 1.8 for β1, β2 and C respectively.
The algorithm tracks the state of the system by modifying these parameters. The state parameters
evolve with time by means of the noise added in the state transition model by the terms ϕ1,k, ϕ1,k and ϕk.
The following paragraphs and figures show the different tests of the framework for EOL prediction.

5.1.1. EOL Prediction (First Test)

The first test involved a cell cycled at 24 ◦C using a 2 A discharge current until the voltage reached
the EOD voltage of 2.7 V, corresponding to the cell B0005 of the dataset. The blue line in Figure 9
depicts the cell capacity of each cycle, the red line is the filtered observation from the particle filter,
the green line is the EOL threshold of 20% capacity loss, and the dotted vertical yellow line denotes the
real EOL cycle, which is cycle 76 in this case. The predictions were performed at cycles 20, 50, and 70
and a scaled PDF of the possible EOL cycles was obtained. The lightest blue PDF denotes the earliest
prediction, whereas the darker one is the most recent prediction. It is proven that the prediction is
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more accurate as the EOL cycle approaches; this prediction error will be analyzed in the later sections
of this paper.
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5.1.2. EOL Prediction (Second Test)

Figure 10 shows a test for cell B0007, which was also cycled with a 2 A discharge current and at
24 ◦C. However, the EOD voltage for this cell is 2.2 V. Therefore, this cell was cycled with a higher
depth of discharge.
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5.1.3. EOL Prediction (Third Test)

Figure 11 depicts the test for cell B0030, which was cycled with a 4 A discharge current and
at 43 ◦C until the voltage reached 2.2 V for each discharge cycle. The capacity fade increases
for higher demanding operating conditions (higher discharge current and ambient temperature),
which would result in a smaller EOL cycle. However, the initial capacity is lower than the algorithm
initialization value; yet the framework and the particle filter converge, resulting in predictions that
become increasingly accurate with time.
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5.1.4. EOL Prediction Error

In order to evaluate the evolution of the EOL prediction error with time, another test was
performed. This was achieved by propagating the state for every cycle until the EOL. The relative
error is evaluated using Equation (29) and an example is shown in Figure 12:

Relative error =
|EOLPredicted − EOLReal |

EOLReal
. (29)

In order to compute the EOL prediction, another expression was used instead of using the
probability density function. This expression is:

EOLPredicted =
Ns

∑
i=1

ωi
k·EOLi

Predicted,k. (30)

Figure 12 shows the EOL prediction error test for cell B0007. It is shown that the accuracy is at
least 20%, which is fewer than 10 cycles once the algorithm has converged.
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5.2. End of Discharge (EOD) Prediction

The EOD prediction was done with the equations given in earlier sections. Similarly to the
EOL prediction, 400 particles were used for the particle filter to get a good accuracy and maintain a
reasonable computer workload. These particles were initialized using random numbers from a normal
distribution, with mean 0.6, 900, 2.2× 10−5, 3.8× 10−3, 1× 10−7, and 4 for α1,0, α2,0, α3,0, α4,0, α5,0, and
E0, respectively (the six components of the particle filter state vector in Equations (20)–(25) where
α = 10.8). The algorithms track the state of the system by adjusting these parameters so the predicted
voltage approaches the real measurement. The state parameters evolve with time by means of the noise
added in the state transition model. Several tests are carried out for the EOD prediction framework.

5.2.1. EOD Prediction (First Test)

This test was carried out for a cell cycled at 24 ◦C using a 2 A discharge current until the voltage
reached the EOD voltage of 2.7 V, corresponding to cell B0005 of the dataset. The EOD prediction
was tested for two cycles of the dataset, one of the earliest (discharge cycle 5) and one of the latest
(discharge cycle 160). The main reason for doing this was to show that the algorithms perform well
when the EOD time is reduced due to the capacity fade with cycling. Figure 13 shows the results
for the discharge cycle 5, following the same logic as for EOD: the measured voltage is the blue line,
the filtered observations from the particle filter are the thick red line, and the EOD threshold is denoted
by the green line. The real EOD time is evaluated when the measured voltage goes below the EOD
voltage threshold. Once again, three predictions were done at three times while discharging. The state
of the particles was propagated for each of them, obtaining the scaled probability density functions of
the possible EOD times. The earliest prediction is denoted by the lightest blue PDF and the darker
one depicts the most recent one. The prediction becomes more accurate as the EOD time approaches.
The results are depicted in Figure 13.
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5.2.2. EOD Prediction (Second Test)

Figure 14 shows the test for the discharge cycle 160. The results show that the accuracy of the
prediction remains almost the same, while the EOD time has reduced from around 3300 to 2400 s.
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5.2.3. EOD Prediction (Third Test)

The third test involved cell B0038, which was cycled at different ambient temperatures of 24 and
44 ◦C during its lifetime using different discharge currents of 1, 2 and 4 A. The EOD voltage for this
cell was 2.2 V and the last discharge cycle with a discharge current of 4 A was selected. The framework
proved to work for different environmental and loading conditions for this test. The results for the two
EOD predictions carried out are shown in Figure 15. Two EOD predictions were carried out and the
results are shown in Figure 15. It can be seen that the algorithm needs some time to converge due to
the initial voltage drop in the cell, but the predictions done around times 600 and 1100 show a quite
accurate estimation of the EOD time.
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5.2.4. EOD Prediction Error

The error in the EOD prediction was evaluated to estimate the accuracy of the prediction. This was
done by propagating the state until the EOD for every time step of the particle filter with the aim
of estimating the evolution of the EOD prediction error with time. Equations are used for this task,
similar to the EOL prediction.

EODPredicted =
Ns

∑
i=1

ωi
k·EODi

Predicted,k (31)

Relative error =
|EODPredicted − EODReal |

EODReal
(32)

Figure 16 shows the result for the last discharge cycle of cell B0038. The results proved that once
the algorithms converge, the prediction is done with an error less than 10%. This implies that the
prediction is quite practical.
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6. Conclusions

The paper has focused on the prediction of the RUL for lithium ion batteries. The most common
failure modes identified were capacity and power fade and battery shelf discharge. The various
measurable parameters from a battery were defined before suggesting the prediction framework.
A prognostic framework that involves End of Discharge (EOD) and End of Life (EOL) derived in
this paper has been based on the discharge and capacity fade models developed by Saha et al. [14]
Modifications were made and the effects of battery aging and different loading profiles were added.
The particle filter was introduced and all the equations used for its implementation were devised.
The EOL prediction model was then developed to describe how the reduction in capacity defines
the cell cycle life. The EOD prediction model was modified to account for different loading profiles.
Finally, the EOL and EOD prediction models were combined to study the effect of capacity fade in the
reduction of the EOD time with cycling, thus giving a greater accuracy to the estimation. The proposed
framework has been tested using MATLAB and real cell data available from NASA. Both the prediction
models provided satisfactory results. The EOL cycle was predicted with a maximum error of 20% of
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the total cycle life and this error was reduced with the availability of more information. The EOD time
prediction was more accurate with an error less than 10% once the algorithm converges.
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Nomenclature

ηC Coulombic efficiency factor
C0 Initial capacitance
EOL End of Life
EOD End of Discharge
SOC State of Charge
SVM Support Vector Machine
PF Particle Filter
C0 Initial battery capacity
RE Electrolyte resistance
RCT Charge transfer resistance
Zw Warburg impedance
∆Esd Voltage loss due to battery shelf discharge
∆Erd Voltage drop due to cell reactant depletion
∆Emt Voltage drop due to internal resistance to mass transfer
∆Einit Voltage drop at start of discharge cycle
fs Sampling frequency
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