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Abstract: A particle filter (PF) has been introduced for effective position estimation of moving targets
for non-Gaussian and nonlinear systems. The time difference of arrival (TDOA) method using
acoustic sensor array has normally been used to for estimation by concealing the location of a moving
target, especially underwater. In this paper, we propose a GPU -based acceleration of target position
estimation using a PF and propose an efficient system and software architecture. The proposed graphic
processing unit (GPU)-based algorithm has more advantages in applying PF signal processing to
a target system, which consists of large-scale Internet of Things (IoT)-driven sensors because of the
parallelization which is scalable. For the TDOA measurement from the acoustic sensor array, we use
the generalized cross correlation phase transform (GCC-PHAT) method to obtain the correlation
coefficient of the signal using Fast Fourier Transform (FFT), and we try to accelerate the calculations
of GCC-PHAT based TDOA measurements using FFT with GPU compute unified device architecture
(CUDA). The proposed approach utilizes a parallelization method in the target position estimation
algorithm using GPU-based PF processing. In addition, it could efficiently estimate sudden movement
change of the target using GPU-based parallel computing which also can be used for multiple
target tracking. It also provides scalability in extending the detection algorithm according to the
increase of the number of sensors. Therefore, the proposed architecture can be applied in IoT sensing
applications with a large number of sensors. The target estimation algorithm was verified using
MATLAB and implemented using GPU CUDA. We implemented the proposed signal processing
acceleration system using target GPU to analyze in terms of execution time. The execution time of
the algorithm is reduced by 55% from to the CPU standalone operation in target embedded board,
NVIDIA Jetson TX1. Also, to apply large-scaled IoT sensing applications, we use NVIDIA Tesla K40c
as target GPU. The execution time of the proposed multi-state-space model-based algorithm is similar
to the one-state-space model algorithm because of GPU-based parallel computing. Experimental
results show that the proposed architecture is a feasible solution in terms of high-performance and
area-efficient architecture.

Keywords: GPU-based acceleration; acoustic sensor; time of difference arrival (TDOA); generalized cross
correlation phase transform (GCC-PHAT); garticle filter (PF); Internet of Things (IoT)

1. Introduction

In this paper, we propose an accelerated target position tracking system using a GPU-based
acoustic sensor and a particle filter (PF) for effective tracking of moving targets. We focus on using
parallel processing of GPU to track sudden change of target movement by using multiple system state
equations in the existing PF. The proposed parallel processing is scalable for number of sensors and for
tracking multiple target. So, proposed architecture can be used in systems such as Internet of Things
(IoT) applications. We analyzed the execution time of the algorithm for actual operation on the GPU.
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Through this, we searched for the proper design elements of the memory buffer and the algorithm that
computes the signal processing.

Position estimation of moving targets using an acoustic signal is a method that can be used not
only in air but also in water due to its special environment [1]. The sensor array receives the acoustic
signal from the target and estimates the position by measuring three or more time difference of arrival
(TDOA) values in the three-dimensional space [2]. Currently, there is a generalized cross correlation
phase transform (GCC-PHAT) method for measuring TDOA in the frequency domain not only in the
time domain. In particular, GCC-PHAT is a method of obtaining a correlation coefficient by converting
a signal into a frequency domain, and has strength in a real-time system because a relatively small
amount of calculation is required compared to a method of obtaining a general correlation coefficient.
In this paper, we propose an algorithm using parallel Fast Fourier Transform (FFT) in GPU to increase
the processing speed of TDOA measurement for each acoustic sensor in three-dimensional space.

In general, various filters such as the kalman filter (KF), extended KF, unscented KF and PF are
used to estimate the state of the target [3]. Additionally, there is a problem that it is difficult to estimate
the target state due to the non-linearity between the system state and the measured value in estimating
the state of the target using TDOA measurement. Therefore, in this paper, we propose an accelerated
system that estimates the target position using the PF, which has an advantage in non-linear systems
and non-Gaussian systems.

The PF is a sequential monte carlo (SMC) method that estimates the state of a system by observing
an error. If the number of particles is sufficient, an optimal estimate can be obtained. However, if the
number of particles is not sufficient, the estimation may be problematic. That is, increasing the number
of particles to obtain an optimal estimate means that the amount of computation in the system increases,
which inevitably affects the operation speed of the system.

Therefore, in this paper, we propose accelerating the processing speed by simultaneously
processing the state update process and weight calculation process of each particle using GPU.
Additionally, we propose the PF system for multiple state equation to accurately track even when
the sudden movement of a target deviates from the system state equation used in the process in the
Markov chain based PF.

We described the target system with multiple state-space models, which are processed by the
parallel processing algorithm on GPU. In the experiment, we show an implemented result using the
proposed algorithm on the GPU and analyzed the execution time of the algorithm required for the
target position estimation, including the partial execution time of the proposed algorithm.

2. Related Works

PF using TDOA measurements have been widely studied, but the processing of noise in the
algorithm and noise environment have been emphasized rather than high speed processing [4,5].
Also, a target estimation method using TDOA underwater was studied [6]. In this paper, we focus
on providing algorithm implementation and verification by approaching GPU from acceleration
using parallel processing and estimating the sudden movement of the target using multiple system
state equations.

As a method for measuring TDOA, various methods using the GCC algorithm have been
introduced [7,8]. They have relative advantage for real-time applications in which performance is
more important. The significant approach based steered response power-phase transform (SRP-PHAT)
introduces an effective approach for the robust signal processing in sound localization [9],
and GPU-based acceleration is also proposed in TDOA measurement using SRP-PHAT [10].
Our paper is based on initial approach [11], which using the GCC-PHAT-based TDOA measurement,
specially presenting our experience in implementing GPU-based acceleration approach to guarantee
real-time performance. In addition, the GPU-based acceleration for TDOA measurement value in
specific number of sensors [12] has been presented case study.
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Various studies on the GPU-based PF [13,14] and parallelization of multi-target tracking have
been presented. The scheduling algorithm and processor selection in paralleling PF processing is
introduced [15]. A significant approach [16] also introduce the parallelization approach of the memetic
algorithm and PF for tracking multi objects. Compare to these approaches, we additionally consider the
uncertain model of target system state, in case of suddenly abnormal target movement. So, we adopted
multiple state-space models which are selectively applied to the PF processing, to determine the good
enough estimation result. This requires the more computation resource or increase the calculation time,
so that we had to accelerate the computation in PF processing by allocating them into independent
calculation unit block in GPU.

There are many studies of SMC methods in using uncertain state-space models [17]. Some approaches,
which adopt multiple state-space models to overcome weakness in PF processing for the uncertain
model, are introduced [18,19]. These studies consider the PF processing using multiple state-space
models in single system. Our approach is slightly comparable because we try to allocate the
individual kernels for PF processing into multiple processing unit in GPU. This enables to apply
the specific state-space model to the PF processing kernel independently, so that we could get
scalability using the proposed architecture in case of tracking large-scaled moving target, which is more
important in IoT-driven applications. Some target localization studies for IoT-driven applications using
radio-frequency identification (RFID) tags including PF processing have already been studied [20–22].
Therefore, this study aims at implementation of scalable GPU-based algorithm which can be used in
IoT sensing applications.

3. Proposed Architecture

The proposed overall architecture of this paper is as follows. This paper focuses on accelerating
the position estimation of a sound source based on a PF using an acoustic signal sensor array in a GPU.
The TDOA measurement is required for the sound source localization based on the proposed GPU,
and the location of the current target can be determined using three TDOA measurements in the
three-dimensional space. In order to obtain three TDOA measurements, four acoustic sensors are
required including one reference acoustic sensor. In this study, we used GCC-PHAT to obtain
TDOA measurements. To obtain TDOA measurements at high speed, the GCC-PHAT process of
the acoustic signal input by multiple sensors is performed in parallel using GPU.

The proposed method uses a PF to estimate the current state of a target using TDOA
measurements, and we accelerate it. The PF process used in the study is as follows. Using the computed
TDOA measurements and the state equations of the system, we predict the current state from the
previous state of the system and obtain the observed value from the state of the updated system.
Then, the weight of each particle is obtained by comparing with the actual measurement. In this
process, we propose accelerating the state update and weight calculation process of the particle
mentioned above by parallel operation of each particle in the kernel using GPU. Also, PF operation
is customized using multiple system state equations based on GPU for tracking sudden movements
of moving targets which also can be used for tracking multiple target. The proposed architecture is
shown in Figure 1. Moreover, this proposed architecture can be used in IoT applications as shown in
Figure 2, that is consisted with many sensors. Due to the amount of signal data from many sensors,
it is reasonable using GPU in terms of high performance computing to accelerate signal processing for
detecting target more accurately by increasing the number of sensors.
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Figure 1. Proposed GPU based accelerated algorithm.
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Figure 2. Accelerated signal processing for large amounts of data using GPU.

3.1. Particle Filter (PF) with Time Difference of Arrival (TDOA) Measurement

To estimate the movement of the acoustic signal source, we use the TDOA measurement
obtained from the acoustic sensors. Four acoustic sensors including one reference sensor are used
to estimate the position of the target in a three-dimensional space. The proposed PF is based target
position estimation using TDOA measurements obtained in this structure. The PF is a method of
probabilistically estimating the state of a target using N particles, also called the Monte Carlo method.
Unlike the extended KF and unscented KF, the PF has strength in non-Gaussian and non-linear systems.
The proposed algorithm is scalable to the number of sensors, and it is applicable even if the number
of sensors is increased as shown in Figure 3. The proposed architecture uses four sensors which is
minimum number of sensors required to detect a target in three-dimensional space or can use more
than minimum number of sensors. The PF processing can operated on the GPU using each sensor
node set, and the proposed architecture can detect multiple targets in parallel using acoustic signal.

sk = Ask−1 + pk (1)

zk = h(sk) + vk (2)

ra(sk) =| uk − sa |,
rab(sk) = cTab(sk) = ra(sk)− rb(sk)

(3)

Tab(sk) =
1
c
(ra(sk)− rb(sk)) (4)

hab(sk) =
1
c

rab(sk) (5)
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H(sk) = [hab(sk) hac(sk) ... haX(sk)]
T (6)

First, the state of the system used at PF processing is defined as follows. The state of the moving
target is defined as a uniform speed motion. In this case, the system state equation for estimating
the current state sk in a previous state sk−1 is expressed by Equation (1), where sk denotes a position
vector of the three-dimensional space at time k. A denotes a state transition equation matrix, and pk
denotes process noise. The observation model, which represents the relationship between the state of
the system and the measured value, is defined by Equation (2), where zk denotes measured value and
vk denotes measurement noise.

Target uk(xk,yk,zk)

Sensor node 
sa(xa,ya,za)

Sensor node 
sb(xb,yb,zb)

Sensor node 
sc(xc,yc,zc)

Sensor node 
sd(xd,yd,zd)

ra

rb

rc

rd

GPU

Target

N sensor nodes

…
…

GPU

Scalable sensing algorithm

Figure 3. Scalable target position estimation using GPU.

In this study, we propose accelerating the position estimation of the target using TDOA
measurements, and the measured value zk is a TDOA measurement obtained from the signal
input to each acoustic sensor. In Equation (2), the relation between the system state and the TDOA
measurements is represented by h, and it can be obtained from the following procedure. The distance
between the target and the sensor is defined by ra(sk) in Equation (3). Also the reference sensor for
obtaining the TDOA measurement is defined as sa, where uk is the position vector of the target and sa

is the position vector of the ath sensor. As shown in second line of Equation (3) , rab is displacement
value between distance to sa and sb from target, which can be represented with the velocity of source
wave ‘c’ multiplied by the TDOA value between sensor sa and sb.

Figure 3’s left one shows the reference sensor and the other sensor. TDOA measurements used for
the PF are obtained between reference sensor sa and the other sensor. Equation (4) is used to obtain
the TDOA measurement value by using the distance from each reference sensor sa and sensor sb to
the target. The velocity c is the speed of the sound wave in the water, which is 1500 m/s.

Therefore, the target location estimation by applying three TDOA measurement values is described
with the following equation; Equation (5) defines a relation hab between the system state and the TDOA
measurement. The state from three or more TDOA measurement values are represented in Equation (6)
by a matrix H, where index ‘a’ represents reference sensor and index ‘X’ represents relative sensors.

The operation of the PF for estimating the position of the moving target using the relation between
the system and the measurement is shown in Algorithm 1. The overall algorithm of the PF using
the TDOA measurement is as follows. First, the state of the system for each particle is updated.
Then, each particle predicts the observed value using the relational expression between the system
state and the measurement values from each updated state. Additionally, the weight of each particle is
calculated according to the probability distribution of the actual observed TDOA measurement value
and the predicted measurement value. After that, the effective sample size (ESS) is calculated, then it
is compared with threshold Nth [23,24]. The Nth is defined as a predefined threshold for resampling.
In our implementation, the threshold Nth is defined as 0.8 times of number of particles. Therefore,
if the ESS is below a predetermined number of samples, which is denoted as threshold Nth, the weight
of each particle is resampled. The resampling process removes low weighted particles and selects
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particles with high weight to reduce errors due to probability distributions. The PF estimates the
position of the moving target more accurately using the resampling process.

Algorithm 1 PF

1: Set initial state s0

2: Generate particles s0(i) (i = 1, 2, ..., N)

3: Set initial weights W0(i) = 1/N (i = 1, 2, ..., N)

4: for k = 1, 2, 3, ...

5: sk(i) = Ask−1(i) + pk(i = 1, 2, ...N)

6: z = TDOA measurement values

7: Reweight wk(i) = Wk−1(i)p(z | sk(i))

8: where p(z | sk(i)) ∼ N (H(sk(i)), Qv)

9: Normalize Wk(i) = wk(i)/∑N
i=1 wk(i)

10: ESS = 1/∑N
i=1(wk(i))

2

11: if ESS ≤ Nth

12: Resampling

13: end if

14: sk = ∑N
i=1 Wk(i)sk(i)

15: end for

3.2. TDOA Measurement Using Generalized Cross Correlation Phase Transform (GCC-PHAT)

To estimate the location of sound sources from TDOA observations, we use the GCC-PHAT method.
As mentioned before, the GCC-PHAT is a method of obtaining the correlation coefficient of signals
using phase transform, and operates in the frequency domain as that requires less calculation that
the time domain. Algorithm 2 shows the algorithm for obtaining the TDOA measurement using
acoustic signal input from two acoustic sensors. The TDOA measurements can be obtained by using
the Fourier transform process and inverse Fourier transform process of two acoustic signals as in
the algorithm. The position of the sound source in the three-dimensional space can be obtained from
these measurements. In this paper, we propose performing the calculation process in parallel and
accelerating the operation speed of the entire algorithm.

Algorithm 2 GCC-PHAT

1: for two signal xa[n] and xb[n]

2: Xa( f ) = FFT(xa[n])
3: Xb( f ) = FFT(xb[n])
4: GPHAT( f ) = Xa( f )[Xb( f )]∗

|Xa( f )[Xb( f )]∗ |
5: IGPHAT(p) = InverseFFT(GPHAT( f ))
6: TDOA measurement Tab = argmaxp(IGPHAT(p))/sampling rate
7: end for
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3.3. Accelerated Algorithm Based on GPU

Our approach accelerates the proposed position estimation of a moving target using GPU.
The GPU is an architecture that has strength in parallel computing, and is used for high-speed
computation of a large amount of data. The proposed GPU-based moving target position estimation can
be divided into the operation of obtaining the TDOA measurement value from the sensor, the operation
of PF processing, and the tracking of the moving target using multiple system state equations.

The calculation of the TDOA measurements in the frequency domain uses GCC-PHAT. Therefore,
we use the cuFFT library supported by CUDA for accelerating the computation of TDOA measurements
using Fast fourier transform. To accelerate Fourier transform on the data using the same coefficients,
the Fourier transform operations for multiple sensors are processed in parallel as shown in Figure 4 by
using the batch function of cuFFT. At this time, when the number of sensors is K and the amount of
data obtained from each sensor is N, the amount of data copied to the GPU device is K*N. Because the
position estimation of the moving target using TDOA measurement is more accurate with the use
of many sensors, the proposed accelerated TDOA measurement calculation has an advantage as the
data amount increases. As mentioned before, since the proposed algorithm is scalable for number of
sensors, the proposed parallel Fast fourier transform is also scalable in the number of sensors.

Sensor 1
s1(N)

in GPU

K sensors

cuFFT batch

FFT FFT FFTFFT …

Sensor 2
s2(N)

Sensor 3
s3(N)

Sensor k
sk(N)

…

S1(f) S2(f) S3(f) Sk(f)…

Sensor 1
s1(N)

K sensors

FFT FFT FFT FFT…

Sensor 2
s2(N)

Sensor 3
s3(N)

Sensor k
sk(N)

…

S1(f) S2(f) S3(f) Sk(f)…

…

…

Figure 4. Parallel fast fourier transform using GPU.

Also, we propose the parallel computing of the PF using GPU as shown in Figure 5. Because the
PF processing depends on the number of particles, the entire process can be accelerated by paralleling
and accelerating the operation of each particle in GPU. In particular, the process of estimating the
position of moving targets required the acceleration in performing the weight calculation process of
each particle in parallel through the process of updating the state of each particle and calculating the
measured value from the state.

…

…

in GPU

N particles

For each particle,
parallel computing

1. Update state
sk(i) = Ask-1(i) + Wk

2. Calculate weights 
wk(i) = wk-1(i)p(z | sk(i))

3. Normalize weights

wk(i) = wk(i) / 𝒊=𝟏
𝑵 wk(i)

Figure 5. Particle filter (PF) acceleration in GPU.
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3.4. Target Tracking Using Multiple State-Space Models

The KF and PF, which can be used for tracking the position of a target have system state equations
based on Markov chains. In other words, if the target moves differently from the predefined system
state equation, the estimation result in inaccurate. Therefore, in this paper, we define several other
system state equations that are expected and go through them like the current system state equations.
This proposed structure also can be used for multiple target tracking using multiple system models.
From each multiple state update model, we obtain a measured value. Then the measured values are
compared with actual measured values, and particles that have measured values with the smallest
differences are selected for the remaining PF process. Using proposed method, tracking of sudden
movements of a target can be easily enabled using multiple system state equations based on GPU.

The operation of the GPU-based PF using the proposed system state equations is shown in Figure 6.
The process of updating the state of each particle by multiple system state equations is performed in
parallel using the kernel function in the GPU. For all particles obtained from the multiple state-space
model, the state update process, weight calculation, and normalized process are performed in parallel.
To obtain the particles of the state-space model suitable for the current system state, the predicted
measured values are compared with actual measured values by finding the smallest difference.
Then the particles with the smallest differences are selected and resampled. In our implementation,
we use systematic resampling algorithm [25,26] in which the random number generation is required
in resampling process. There is a study [27] to accelerate resampling in GPU-based PF. In our study,
for reducing the additional overhead running random number calculation during the resampling
process, we utilized thread-based running method, which is provided by host CPU, in the process of
copying data to the GPU.

…

ej = zR – average(Mj)

e5 = zR – average(M5)

e4 = zR – average(M4)

e3 = zR – average(M3)

e1 = zR – average(M1)

…

Find suitable particles set which 
has the smallest e

Get difference 
between zR and 
average Mx

N particles for system state model A1

…

Particle filter processing

…

e2 = zR – average(M2)

Resample particles

Generate random number parallel using thread

N particles for system state model A2

N particles for system state model A3

zR : real measurement
Mx : set of predicted measurement 
value from each particle’s set

… A4

… A5

… Aj

Figure 6. PF using multiple state-space models in GPU.

Algorithm 3 describes the PF processing using multiple state-space models in GPU. The transition
matrix Am is used to formulate multiple state-space models. The PF processing for the selected
state-space model is performed in the individual block unit of GPU. This block runs the threads
on which the corresponding particles are allocated. Through the synchronization between threads,
the average measurement result can be estimated from the updated state, so that we could determine
the appropriate state-space model, then continue to perform the remained PF processing incrementally.
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Algorithm 3 PF using multiple state-space models in GPU

1: Set initial state sm
0 (m = 1, 2, ..., L)

2: Generate particles sm
0(i) (i = 1, 2, ..., N), (m = 1, 2, ..., L)

3: Set initial weights Wm
0(i) = 1/N (i = 1, 2, ..., N), (m = 1, 2, ..., L)

4: for k = 1, 2, 3, ..., i← calculated by thread index, m← calculated by block index

5: sm
k(i) = Amsm

k−1(i) + pm
k (i = 1, 2, ...N)

6: z = TDOA measurement values
7: __syncthreads();
8: Calculate di f f erence em = z− (∑N

i=1 |Hk(sm
k(i))|)/N

9: __syncthreads();
10: if em is minimum value

11: Reweight wm
k(i) = Wm

k−1(i)p(z | sm
k(i))

12: where p(z | sm
k(i)) ∼ N (H(sm

k(i)), Qv)

13: Normalize Wm
k(i) = wm

k(i)/∑N
i=1 wm

k(i)
14: ESS = 1/∑N

i=1(w
m
k(i))

2

15: if ESS ≤ Nth

16: Resampling
17: end if
18: sm

k = ∑N
i=1 Wm

k(i)s
m
k(i)

19: end if
20: end for

4. Experimental Results

Figure 7 shows each experimental flow of MATLAB and GPU. We implemented the proposed
GPU-based target position estimation algorithm and analyzed it by operating on a target board.
The NVIDIA Jetson TX1 and Tesla K40c (NVIDIA Corporation, Santa Clara, CA, USA) were used
as the target GPU as shown in Table 1. We verified the implemented algorithm and analyzed the
execution time. The target position estimation algorithm using the PF and the TDOA measurement
were implemented using MATLAB (Mathworks, Natick, MA, USA) and its operation was verified as
shown in Figure 8. The black dots indicate each position of the acoustic sensor, the blue line indicates
the actual moving path of the target, and the red line is the result of estimating the target position using
the algorithm. Figure 8’s right graph shows the result of target position estimation according to the
state change of the target using the multiple state-space models proposed in this study. Even though
the state equations used in PF was changed due to the target’s sudden movement after a certain time,
it was confirmed that the target was accurately estimated using the proposed PF technique.

We compared and analyzed the algorithm execution time used in the present position estimation
of the proposed PF with a CPU-based algorithm and GPU-based algorithm in embedded system.
Target movement was measured from the signal input to the sensors at 1 s intervals. We used NVIDIA
Jetson TX1 as shown in Figure 7 and the fastest fourier transform in the west (FFTW3) library was
used to compute FFT in CPU-based algorithm. For the result of when 2000 particles, the execution
time of the GPU based algorithm was 6.19 ms, and the CPU based algorithm’s execution time was
15.06 ms. We could estimate the target position more quickly when we use the proposed GPU-based
algorithm in embedded system. The algorithm execution time is shown in Figure 9a according to
the number of particles. In this graph, the horizontal axis is the number of particles and the vertical
axis is the execution time of the algorithm. As shown in the graph, when we used the GPU-based
algorithm, the execution time of the algorithm to estimate the current state of the target was reduced
by about 55% on average. As a result, we find out that proposed GPU-based architecture is feasible for
embedded system.
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Table 1. Target devices.

Target Device Model

GPU 1 Jetson TX1 256 cores
CPU 1 64-bit ARM A57 CPUs
GPU 2 Tesla K40c 2880 cores

GPU

Execute algorithm in GPU

Proposed algorithm

.cu for GPU.m for MATLAB

C CUDA Kernels

NVCC

CUDA object files

CPU C code

CPU compiler

CPU object files

CPU-GPU
Executable

Simulation

Visualize

in MATLAB in GPU

compilation

linking

Figure 7. Experimental flow and target embedded board(NVIDIA Jetson TX1).

Target movement changed

Figure 8. Verification of PF using MATLAB.

Figure 9b shows the partial execution time of the algorithm in TDOA measurement calculation,
PF processing, and copying data to GPU in the proposed multiple state-space model based algorithm.
As with the result in Figure 9a, the total execution time of the algorithm is increased as the number of
particles increased. Also, we found out that the total execution time is shorter than that of the CPU
based algorithm, even though the time required to copy data for executing the algorithm in GPU
is included.

We compared the execution time of the proposed GPU-based algorithm and the CPU-based
algorithm according to the sampling rate of input data when using 2000 particles. The GPU algorithm
used for this experiment is a simple GPU-based PF algorithm, not using a multiple state-space model
based GPU PF algorithm for accurate comparison with the CPU-based algorithm. Table 2 shows
the execution time of the algorithm measured by changing the sampling rate. As the sampling rate
increases, the time required to execute the entire algorithm increases. That is, the amount of data input
during the same time increases, so that more time is taken to calculate the TDOA measurement value.
When using the sampled signal at a sampling rate of 44 kHz, the CPU-based algorithm took about



Appl. Sci. 2017, 7, 1152 11 of 14

62.60 ms and the GPU-based algorithm took about 18.24 ms. The reducing rate of GPU-based algorithm
for CPU-based algorithm has increased as sampling rate increased. As a result, we found that the
GPU-based algorithm is less affected by the execution time relative to the sampling rate.

55% decrease

overhead

(a) (b)

Figure 9. (a) Execution time of algorithm according to the number of particles (b) Partial execution
time of algorithm according to the number of particles.

Table 2. Execution time of algorithm according to the sampling rate.

Sampling Rate
(kz)

GPU Based
(ms)

Time Increment
(ms)

CPU Based
(ms)

Time Increment
(ms)

Time Reduction Rate
(%)

11 6.19 - 15.06 - 58.87
22 10.96 4.77 27.16 12.10 59.64
33 14.23 3.26 46.27 19.10 69.25
44 18.24 4.01 62.60 16.32 70.86

To estimate sudden state changes of the system, we implemented the proposed GPU-based PF
using a multiple state-space model that can be predicted. The multiple state-space model based
PF using GPU with added parallel processing has similar performance to the PF that just uses
the GPU. The results are as follows. Figure 10 shows the execution time according to the number
of state-space models with the proposed GPU-based multiple system model using a PF. In this
experiment, we use NVIDIA Tesla K40c to see GPU parallelism by multiple state-space model. In the
GPU kernel, we implemented block-thread kernel architecture, especially divided the particles in each
block according to the state-space model and each block has 1024 threads in two dimensions. Therefore,
the implemented algorithm uses the same number of GPU blocks as the number of state-space models.
Because of GPU’s parallelism, for each number of particles, 1000 to 5000, the execution time is only
different by less than 0.16 ms according to the number of state-space models. We found that parallel
execution in the GPU does not significantly affect execution time even if the number of particles
increases by the number of system models. For example, if the number of state-space models is X,
the number of particles is X*N. Table 3 shows the number of blocks and threads, execution time for PF
processing, and execution time for copying particles to GPU according to the number of state-space
models when the number of particles is 5000. When the number of state-space models is 1 and 100,
it shows just a 0.16 ms time difference for processing the PF, while there is a 10.99 ms time difference
for copying data to GPU. It shows that a lot of execution time is used in the process of copying data to
the GPU. It also shows that the PF processing time does not change significantly when the number of
state-space models increases. Using this proposed GPU-based algorithm, we found that the state-space
model suitable for sudden movement of the target was found through parallel computing as verified
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using MATLAB. With this parallel architecture, we find out that this architecture can also be applied
to multiple target tracking using different state-space models, as implemented in this study in IoT
sensing applications.

Figure 10. Execution time of algorithm according to the number of particles and state-space models.

Table 3. Number of threads and blocks and partial execution time according to number of state-space models.

Number of Model Block Thread Time for PF Process (ms) Time for Copy Particles (ms)

1 1 1024 0.66 0.59
10 10 10,240 0.66 1.83
20 20 20,480 0.65 3.24
30 30 30,720 0.68 3.94
40 40 40,960 0.69 5.01
50 50 51,200 0.71 6.36
60 60 61,440 0.75 7.32
70 70 71,680 0.75 7.79
80 80 81,920 0.79 9.59
90 90 92,160 0.79 11.00

100 100 102,400 0.82 11.59

5. Conclusions

In this paper, we implemented an accelerated GPU-based algorithm to estimate moving target
position by using multiple state-space models which can be applied to IoT sensing applications. The PF
was used to estimate the position of the target, and we parallelized the calculation process of each
particle in the GPU kernel. Also, we accelerated TDOA calculation through a parallel FFT process
using GPU. Additionally, we extended the PF processing algorithm using a GPU-based multiple
state-space model to estimate sudden movement change of the target. The proposed algorithm was
initially simulated using MATLAB, and then, the proposed GPU-based algorithm was verified on
target GPU. As a result, the execution time of the proposed algorithm using GPU was reduced by
about 55% as compared with the CPU-based algorithm in target embedded board, NVIDIA Jetson TX1.
The multiple state-space model based PF with parallel processing has a similar execution time in target
GPU NVIDIA Tesla K40c with a difference of less than 0.16 ms when estimating the sudden change
of movement of the target. Based on this result, the proposed architecture is more effective in terms
of high performance and detecting sudden movement changes of the target with lots of sensor data
in large-scaled sensing applications. Therefore, the proposed architecture can be effectively applied
in these IoT applications due to scalability and parallelism. In a future study, we plan to extend our
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study on the GPU-based high speed processing algorithm considering the perspective of real-time
processing in the big data sensing applications.
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