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Abstract: The periodic impulse feature is the most typical fault signature of the vibration signal
from fault rolling element bearings (REBs). However, it is easily contaminated by noise and
interference harmonics. In order to extract the incipient impulse feature from the fault vibration
signal, this paper presented an autocorrelation function periodic impulse harmonic to noise ratio
(ACFHNR) index based on the SVD-Teager energy operator (TEO) method. Firstly, the Hankel matrix
is constructed based on the raw vibration fault signal of rolling bearing, and the SVD method is used
to obtain the singular components. Afterwards, the ACFHNR index is employed to measure the
abundance of the periodic impulse fault feature for the singular components, and the component
with the largest ACFHNR index value is extracted. Moreover, the properties of the ACFHNR index
are demonstrated by simulations and the full life cycle of the experiment, showing its superiority
over the traditional kurtosis and root mean square (RMS) index for extracting and detecting incipient
periodic impulse features. Finally, the Teager energy operator spectrum of the extracted informative
signal is gained. The simulation and experimental results indicated that the proposed ACFHNR index
based method can effectively detect the incipient fault feature of the rolling bearing, and it shows
better performance than the kurtosis and RMS index based methods.

Keywords: rolling element bearings (REBs); singular value decomposition (SVD); autocorrelation
function impulse harmonic to noise ratio (ACFHNR); teager energy operator (TEO)

1. Introduction

Rolling element bearings have been widely used in scenarios such as wind turbines, high-speed
railways, and precision machine tools. They generally operate in tough working environments and
are easily subject to failures, which may cause machinery to break down and decrease machinery
service performance such as manufacturing quality or operation safety [1–4]. When a defect occurs on
a rolling bearing surface, the impulses are created in vibration signals [5,6]. As a result, the detection of
faults in rolling element bearings is mainly achieved by identifying the frequency of the impulses from
the signals [7,8]. For complicated mechanical systems, the rolling bearing often works in complicated
environments, and the vibration signals are easily contaminated by environmental noise and other
working parts such as the gearbox (misalignment, unbalance, crack on the rotating shaft, looseness,
and distortions). Therefore, their early impulse faults often feature weak and low signal to noise ratios
(SNR) [5,6].
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Many advanced signal decomposition methods have been studied for fault feature extraction in
the field of rotary machine diagnosis. The typical multicomponent decomposition methods include
short-time Fourier transform [9], wavelet transform [10], Hilbert-Huang transform [11], Empirical
Mode Decomposition/Ensemble Empirical Mode Decomposition (EMD/EEMD) [12,13], and Local
Mean Decomposition (LMD) [14]. Among a wide range of de-noising and signal enhancing methods
available in the literature, noise elimination algorithms based on singular value decomposition (SVD)
are considerably faster and easier to implement [5,8]. Also, it is a non-parametric signal analysis tool,
which can be implemented without pre-defined basis functions. Therefore, the SVD method has been
employed for fault detection in much research [15–19].

In order to extract the impulse fault feature from the vibration signals of the rolling bearing,
it is very important to select the effective singular components for reconstructing a new signal when
the SVD method is applied. There are many traditional methods such as the median value of singular
values, mean value of singular values, and Difference spectrum of singular values (DSSV) based SVD
methods [1]. Among them, the well-established traditional median value of singular values based
SVD method and the mean value of singular values based SVD method choose the effective singular
components with large singular values. It is believed that the larger singular values can contain much
more useful fault features when these methods are applied. However, as the literature [1,20] points out,
a larger singular value corresponding to singular components may not contain the informative fault
feature. The energy value of the informative fault feature may be very weak. A Difference spectrum of
singular values (DSSV) is introduced to capture the abrupt change in the singular values, which reflects
the boundary between the signal and the noise, based on the principle that the effective informative
singular components can be extracted [20,21]. The literature [1] proposed a method to capture the
abrupt change based on the correlation coefficient singular value decomposition (CCSVD) method.
However, these methods are characterized by capturing the abrupt change and may remove the useful
signals and retain the noise signals. As a result, they may not be able to extract the weak fault feature
effectively. To solve this problem, one study [5] proposed kurtosis to quantify the impulsive feature of
the vibration signal, and the simulation and experiment results indicate that the de-noising method is
successful in both the frequency domain and time domain for fault identification. Another study [15]
proposed a Periodic Modulation Intensity (PMI) index to select fault features with relatively lower
energy levels, and it is robust in the presence of heavy noise and strong random interferences.

From the above analysis, it can be seen that it is vital to select suitable singular components
for extracting mechanical fault features using the SVD method. The crucial step is to find an index
to measure the abundance of fault information for the singular components. Although kurtosis
shows high values for extracting the impulsive feature [22], the background noises and rotating
frequency-related interference harmonic components in the collected vibration signal would submerge
the periodic impulse fault feature. As a result, the kurtosis value may not be able to reveal the useful
information. The root-mean-square (RMS) value of the measured signal is applied in industry to
measure the vibration intensity and indicate the incipient defect. However, the RMS value has limited
applications because it is not sensitive to defect at its early stage, when the defect contributes little
energy [23]. Moreover, these two indicators were originally developed in the field of statistics or
information theory, thus they mainly focus on the general statistical distribution of a signal but may
ignore the specific characteristics of mechanical signals [15].

Motivated by this, an autocorrelation function impulse harmonic to noise ratio index (ACFHNR)
is proposed to measure the richness of the periodic impulse fault feature information in this paper.
According to the proposed index, the ACFHNR based SVD-Teager energy operator (TEO) method
for extracting the incipient fault feature from the vibration signal of the rolling bearing is presented.
This paper is organized as follows: Section 2 introduces the theoretical background, and an ACFHNR
index is proposed. Based on the proposed index, a novel method for extracting the incipient impulse
fault feature of a rolling bearing using the ACFHNR based SVD-TEO is proposed in Section 3. Section 4
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makes a simulation analysis of the proposed method. In Section 5, the proposed method is verified by
experimental data, and Section 6 makes several conclusions.

2. Theory Background

2.1. The Fundamental of SVD Denoising Method

SVD is an orthogonal decomposition method. For any real matrix A ∈ Rm×n with rank L, it can be
decomposed into the product of three matrices [5]: the orthogonal matrix U ∈ Rm×n, the diagonal
matrix D = [diag(σ1, σ2 . . . , σl), 0], and the orthogonal matrix V ∈ Rm×n, as follows:

A = UDVT (1)

where L = min(m, n), σ1 ≥ σ2 . . . ≥ σl . σi(i = 1, 2 . . . L) are the singular values of the matrix A.
There are several steps to denoise the measurement signal with the SVD method.

Firstly, the Hankel matrix should be constructed [24–27] as follows:

Am =


x(1) x(2) · · · x(n)
x(2) x(3) · · · x(n + 1)

...
...

. . .
...

x(m) x(m + 1) · · · x(N)

 (2)

where 1 < n < N, m = N − n + 1. The parameter m is used to determine the number of decomposed
components in SVD, which is usually selected less than n [15].

Secondly, the dynamic propriety of the matrix Am can be revealed based on the reconstructed
attractor in the reconstructed phase space. As a result, the matrix Am can be expressed as [28]:

Am = D + W (3)

where D is the smooth signal in the reconstructed phase space and W is the noise and interference
signal in the reconstructed phase space. To denoise the original signal, it is necessary to find the
best approximation matrix for matrix D. According to the singular value decomposition principle,
the matrix Am can be decomposed as follows:

Am = UEVT (4)

where E = [diag(σ1, σ2 . . . , σm), 0] and L = min(m, n), σ1 ≥ σ2 . . . ≥ σl . U and VT are the left and right
singular matrixes, respectively, and they satisfied U = [u1, u2 . . . , um], V = [v1, v2 . . . , vn]

T, where ui
is the ith column vector of singular matrix U and vi is the ith column vector of singular matrix V.
As a result, Am can be computed as:

Am = σ1u1v1 + σ2u2v2 + . . . + σmumvm (5)

Finally, according to the singular value decomposition theory and the best approximation theorem
of a matrix in the sense of Frobeious norm, it can be obtained that the different kinds of signals
are characterized by different singular values [28]. Therefore, by removing the singular values
corresponding to the noise components and interference harmonics, we can get the new diagonal
matrix E′ =

[
diag

(
σα, σj . . . , σβ

)
, 0
]
. The new Hankel matrix Am

′ can be computed as:

Am
′ = σαuαvα + σjujvj + . . . + σβuβvβ (6)

where the matrix Am
′ is supposed to be the best approximation of matrix Am. Compared to the

original matrix Am, its noise components and interference harmonics are compressed significantly.
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The averaging value of the anti-diagonals element xi of the matrix Am
′ is calculated, which is regarded

as the denoised signal for the original vibration signal [5], as shown in Equation (7):

xi =
1

β− α + 1∑β

j=α
Ai−j+1,j (7)

For traditional SVD denoising methods such as the median value of singular values, the mean
value of singular values, and DSSV based SVD denoising, the most energic singular components are
reserved. However, for the vibration signal of the rolling elements bearing, the incipient impulse fault
feature is often submerged by the noise and interference harmonics, and its energy may be very weak.
As a result, the traditional energy based evaluation method of SVD denoising could be invalid for
extracting the informative impulse fault feature of a rolling bearing. It is important to find a new
method for evaluating the fault information of the singular components.

2.2. Autocorrelation Function Impulse Harmonic to Noise Ratio Index

When a defect impacts the rolling surface, cyclic impulses are generated. A variety of
methods to decompose the fault signal for extracting the weak periodic impulse feature were
proposed such as EEMD [12,13], LMD [14], intrinsic characteristic-scale decomposition (ICD) [29].
However, how to choose the sensitive feature components remains a problem to be solved.
Many scholars have proposed a series of indexes such as kurtosis [22], approximate entropy [30],
Pearson coefficient [13], or a fusion of these parameters [31] to measure the richness of fault feature
information in the decomposed components. However, most of these indicators were originally
developed in the field of statistics or information theory, thus they mainly focus on the general
statistical distribution of a signal, such as its non-Gaussianity and peakedness, but may ignore the
specific characteristics of mechanical signals [15]. Therefore, we proposed a new index, which is called
the autocorrelation function periodic impulse harmonic to noise ratio index (ACFHNR). It focuses on
the detection of the periodic impulse fault features of the rolling bearing.

In the bearing fault signal, the effective feature information is often contaminated by noise.
Generally, it is assumed that the noise in the fault signal can be approximated as white noise.
The autocorrelation function of white noise reaches the greatest value at the zero point, while it
is zero at the nonzero points, which is quite different from the autocorrelation function of the general
periodic signal. It can be considered that the autocorrelation function energy is mainly concentrated at
the zero point for a white noise signal. Therefore, the autocorrelation function is employed to process
the acquired signal.

The autocorrelation function reflects the similarity between the signal and itself at different times,
which is a statistical method in the time domain, and it can be defined as:

R(µ) =
∫

r(t)r(t + µ)dt (8)

To compute the autocorrelation function of stationary signal s with the length of N,
firstly, obtain the envelope signal by Hilbert transform of the measured signal [23,32]:

x̂(t) = H{x(t)} = 1
π

∫ ∞

−∞

x(τ)
t− τ

dτ (9)

y(t) = |x̂(t)| (10)

Secondly, remove the DC component:

Std(y) =

√(
1
n ∑n

i=1(yi − y)2
)

(11)
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s(t) =
y(t)−mean(y(t))

std(y)
(12)

According to the theory of stochastic process, the one-dimensional auto-correlation of the
generalized stationary signal s with the length of N is defined as follows [33]:

R(m) = E
{

s(n + m)s(n)∗
}

, n = 0, 1, . . . . . . , N − 1, m = 0, ±1, . . . . . . ,±( N − 1) (13)

where E{.} is the expectation operator and s(n)∗ denotes the conjugation of s(n). As pointed out above,
the periodic impulse feature is the most typical sign of a bearing fault. Therefore, we calculated the
autocorrelation function of three stimulated signals. Where Signal 1 x(t) is the transient impulse fault
sequence of rolling bearings, which can be obtained by Equations (14) and (15). The impulse period
is set as T = 0.01 s. Signal 2 N(t) is the noise signal. Signal 3 is the mixed signal of x(t) and N(t),
and the SNR is set to −8.1 db.

x(t) =
+∞

∑
k=−∞

h(t− KT − τk)δj(i)Ak (14)

h(t) = exp
[(
− ε√

1− 2ε2
2π fnt

)
sin(2π fnt)

]
t ≥ 0 (15)

where

δj(i) = a
[
sin
(
2π fhi + ϕj

)
+ c
]

ϕj =
(j− 1)π

2
The autocorrelation function of three signals can be calculated, as shown in Figure 1a to c,

respectively. From Figure 1a, it can be seen that the impulse period of the autocorrelation function
for the fault sequence is also T = 0.01 s, which retains the impulse information of the original
signal. From Figure 1b, it can be found that the autocorrelation function of a Gaussian white noise
signal concentrates its energy at the zero point. In Figure 1c, although the impulse fault feature is
submerged by the noise, the impulse period T = 0.01 s can be easily observed with the calculation
of the autocorrelation function. Moreover, the energy of the noise is concentrated at the zero point.
Therefore, the impulse fault feature and the noise can be separated through the autocorrelation function.
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Based on the above analysis, the autocorrelation function impulse harmonic to noise ratio index
(ACFHNR) is proposed, as shown in Equation (16):

ACFHNR =
∑k

i=1 Ren(kNT)

Ren(0)
(16)

where ∑k
i=1 Ren(kNT) is the energy value of the autocorrelation function R(µ) in the kth period of

impulse features. Ren(0) is the energy value of the autocorrelation function R(µ) at the zero point.
It is recommended that k = 3. Obviously, the larger the ACFHNR index, the more periodic impulse
feature information is contained in the vibration signal. The algorithm of the ACFHNR index is shown
in Table 1.

Table 1. The algorithm of the autocorrelation function impulse harmonic to noise ratio
(ACFHNR) index.

Input: Signal x(t), Prior fault frequency fb, Sampling frequency fs

Procedure:

1. The signal x(t) is subjected to Hilbert transform
2. Compute the Z(t) and the Interval point N = (1/ fb)* fs
3. Compute the Autocorrelation function R(µ)
4. Set Ren= 0, Compute Ren(NT) = ∑k

i=1 Ren(kNT), Set i ← i + 1
5. Compute Ren(0)

Output: ACFHNR = Ren(NT)/Ren(0)

The vibration fault signal of a rolling bearing is sensitive to the kurtosis value. Therefore, we made
a comparative analysis of the proposed ACFHNR index and the kurtosis. The kurtosis can be calculated
by Equation (17):

Kurt(i) =
1
N

N

∑
i=1

(
x(i)− x

σt

)
4 (17)

where x is the mean value of the signal x(i) and σt is the standard deviation of x(i). The tested signal
can be obtained by mixing the transient impulse fault sequence x(t) and the noise signal n(t).

S(t) = x(t) + n(t) (18)

Based on the mixed signal S(t), we set the SNR to −14.5 db to 0 db and calculated the kurtosis
value and ACFHNR index. The simulation result is shown in Figure 2.
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From Figure 2, it can be seen that, when the input SNR of the stimulated signal changed from to
0 db to−14.5 dB, both the kurtosis value and the ACFHNR index gradually decreased, which indicated
that both the kurtosis factor and the ACFHNR index can distinguish signals with different SNR of the
input signal. However, when the SNR of the input signal is less than −5.5 db and larger than −14.5 dB,
the ACFHNR index has better resolution than the kurtosis, indicating that the proposed ACFHNR
index can be used for identifying the incipient periodic impulse feature of the rolling bearings.

2.3. Teager Energy Operator

The Teager energy operator is a nonlinear operator proposed by Teager and Kaiser. It has high
temporal resolution and can adaptively detect an instantaneous change of signal [34–36]. As a result,
it is suitable for extracting the impulse fault features of rolling bearings. Moreover, as the Teager energy
signal contains the total energy of the signal, including the information of amplitude modulation
(AM) and frequency modulation (FM) caused by impulse fault feature, the Teager energy operator can
improve the signal to noise ratio (SNR) and make the impulse fault feature extracted from a rolling
bearing more reliable [34]. It is also capable of increasing the signal-to-noise ratio of the spectrum,
sharpening the spectral peaks that reveal the presence of faults.

The Teager energy operator for the continued signal v(t) can be expressed as:

ϕc[v(t)] =
[ .
v(t)

]2 − v(t)
..
v(t) (19)

Moreover, the Teager energy operator for the discrete signal x(n) can be expressed as:

ϕ[x(n)] = [x(n)]2 − x(n− 1)x(n + 1) (20)

Therefore, considering that the Teager energy operator has good adaptability to detect the transient
components of a signal, it is employed to detect the fault features of rolling bearings in this paper.

3. The Proposed Method

Under the motivation of the above analysis, a method combined the ACFHNR index based
on the SVD and Teager energy operator (TEO) demodulation technology is proposed for the early
fault diagnosis of rolling bearings. The framework of the proposed method is shown in Figure 3,
and its implementation can be described as follows:

Firstly, select the appropriate delay step to construct Hankel matrix. When the computational
cost and calculation accuracy are taken into account, there is a trade-off between computational
efficiency and decomposition performance when deciding an appropriate choice of m [15]. In this paper,
the m is set as 15 ≤ m ≤ 30, and the singular value decomposition is performed for the constructed
Hankel matrix.

Secondly, for the original vibration signal, the theoretical fault characteristic frequency can
be calculated according to the geometry size and defect frequencies multiple of running speeds.
Therefore, the prior period of impulses T can be computed through Equation T = f s/ f , where f is
the fault characteristic frequency of the rolling element bearings, while fs is the sampling frequency.
With the prior period of impulses T, the ACFHNR index for each singular component can be calculated.

Thirdly, the singular component with the largest ACFHNR index is employed to construct the
new Hankel matrix. The average of the inverse diagonal elements of the reconstructed Hankel matrix
is calculated, which is the denoising signal of the raw vibration signal.

Finally, we implemented the Teager energy operator envelope analysis to the reconstructed signal
for early fault diagnosis. The fault type can be decided on the basis of the extracted characteristic
frequency information.
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4. Simulation Analysis

4.1. The Stimulated Signal

To verify the validity of the proposed method, the simulated fault signals of the rolling bearing
are analyzed in this section. The simulated signal of the early faults of ball bearings can be calculated
by Equations (14), (15), (21) and (22), where I(t) is the interference signal, x(t) is the transient impulse
fault signal, and n(t) is the noise signal.

S(t) = x(t) + I(t) + n(t) (21)

I(t) = Ah ∑n
i=1 sin(2π fhi) (22)

The simulation result of the fault signal is shown in Figure 4; Figure 4a is the transient periodic
impulse fault signal, Figure 4b is the interference signal, and Figure 4c is the noise signal. The impulse
period is set to 0.01 S, and the resonance frequency is 2000 HZ. Moreover, 6000 sampling points of
the signals are obtained. The sampling frequency is set at 12 KHZ. The signal-to-noise ratio (SNR)
is set to −13.2 dB, and the signal-to-interference signal ratio (SIR) is set to −4.5 dB. In order to show
the signal clearly, only 3000 sample points are plotted in Figure 4. The mixed signal and its envelope
spectrum are plotted in Figure 5. It can be seen that the informative features in the spectrum of the
original signal cannot be identified. Therefore, the proposed method is performed on the simulated
signal to detect the incipient fault features.
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4.2. The Performance Analysis of the Proposed Method

In order to analyze the decomposition performance of SVD method, we studied the relationship
between the singular values of the SVD method and different kinds of signals first. Firstly, the Hankel
matrix Am is constructed when applying the SVD denoise method, and there is a high degree of
correlation between the adjacent rows [28]. As a result, the matrix Am must be a morbid matrix, and its
rank r is far less than l. Therefore, for an SVD denoising approach, the useful information should be
determined by some singular components.

In order to separate the effective periodic impulse component, the interference component, and the
noise component of the fault signal, it is important to verify whether there were dislocations filtering
the characteristics of the singular value distributions of the different signals. Hence, the periodic
impulse fault signal, the interference signal, and the white noise signal are set as reference signals to
build three groups of mixed signals. Mixed signal 1 is comprised of the interference signal and the
noise signal, and mixed signal 2 is composed of the periodic impulse fault signal and the noise signal,
while mixed signal 3 is comprised of the periodic impulse fault signal, the interference signal, and the
noise signal. The three reference signals and the three mixed signals are analyzed based on the SVD
denoise method. The delay step is set as m = 20. The singular values of these six signals are obtained,
as shown in Figures 6 and 7.

Interestingly, it can be found that the singular values of mixed signals are added by the reference
signals, as shown in Figures 6 and 7. For example, the singular values of mixed signal 1 are added by the
interference signal and the white noise signal. This showed that different singular values correspond
to different kinds of signals. Therefore, the sensitive impulse feature signal can be reconstructed with
the appropriate singular components, selected based on certain principles of the SVD method, thereby
realizing the fault features extraction of the rolling bearings.
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In order to verify the performance of proposed ACFHNR-SVD-TEO method, the simulated fault
vibration signal of the rolling bearing is analyzed with the feature extraction method. The delay
step m is set as m = 20. For comparison purposes, the kurtosis value and the ACFHNR index value
corresponding to the 20 singular components of SVD are computed, as shown in Figure 8. Figure 8
exhibited that the kurtosis and the ACFHNR values of the second and the third singular components
are larger than the other values, which tells us that the second and the third singular components
are the effective signal features. However, apparently, it can be found that the ACFHNR index is
very sensitive to the fault components, as the ACFHNR indexes corresponding to the second and the
third singular components are much larger than the others, while the kurtosis did not have such good
performance. As a consequence, the ACFHNR index has much better resolution than the kurtosis for
extracting fault features.
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From the analysis above, the decomposition result of the SVD method is shown in Figure 9.
Ten singular components are plotted, as shown in Figure 9a. Moreover, the singular components and
their Teager energy operator spectra are obtained. Figure 9b,c correspond to the second and the third
singular components, respectively. One can easily see that the fault frequency and its harmonics are
clearly detected in the second and the third singular components. Based on the above analysis, it can be
seen the ACFHNR index is very sensitive to the fault information, which has much better performance
than the kurtosis for extracting the weak periodic impulse fault feature. Moreover, the proposed
ACFHNR-SVD-TEO method is proved to be effective at extracting the incipient fault features of
rolling bearings.
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Additionally, for comparison purposes, other well-established methods such as the median value
of singular values based SVD method and the Difference spectrum based SVD method are employed
to process the stimulated vibration signal, and the results are shown in Figure 10a,b, respectively.
It can be seen that the median value of the singular values based on SVD cannot identify the fault
features, as shown in Figure 10a. Although the Difference spectrum based SVD method can detect
the fault frequency fb and its second harmonic 2 fb, the fault features are not obvious, as shown in
Figure 10b. The Kurtogram of the stimulated fault vibration signal is shown in Figure 11a, from which
the optimal carrier frequency is determined as 2000 HZ, and the center frequency is 1000 HZ. Therefore,
the optimal frequency band is 1000 HZ to 3000 HZ. As a result, the band-pass filter is designed to
extract the potential effective fault features from the vibration signal. The envelop spectrum of the
filtered signal is presented in Figure 11b. It can be found that the fault frequency 3 fb and 4 fb can be
detected. However, the fault features are also not obvious. Therefore, traditional well-established SVD
denoising and the fast Kurtogram can obtain little diagnostic information.
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5. Experiment Results

In this section, the proposed method is verified by the experimental data. The fault data for the
bearing roller comes from the bearing data center at the Laboratory of Case Western Reserve University.
The test bed consists of two Horsepower (HP) motors, a torque transducer, and a dynamometer,
as shown in Figure 12. The test bearings (SKF6205, Svenska Kullager-Fabriken group. Switzerland),
including the drive end and fan end bearings, support the motor rotor shaft. Three types of Single
point faults (outer race fault (ORF), inner race fault (IRF), and ball fault (BF) were introduced to the
test bearings using electro-discharge machining [37]. All bearing fault data are annotated with bearing
geometric, operating condition, and fault information. In the experiment, the vibration signals of
the rolling bearing were collected by three accelerometers, which were mounted to the housing with
magnetic bases at the three, six, and 12 o’clock positions. The fault frequency of the ball fault can be
computed as follows:

fbp f r =
D
2d

(
1− (

d
D
)

2
cos2 α

)
fr (23)

where fr is the rotating frequency, D is the pitch diameter, d is the balling diameter, and α is the contact
angle. According to the geometry size and defect frequencies multiple of running speed, the fault
frequency of the ball fault is obtained, which is about fbp f r = 137 Hz.

In this section, the vibration signals of the drive end bearing are analyzed. To verify the
effectiveness of the proposed method, ball fault 1, with fault diameters of seven miles, is analyzed.
The rotation speed of ball fault 1 is 1772 r/min. The sampling frequency is set to 12 kHz in the
experiment. The original signal and its envelope spectrum are plotted in Figure 13. From Figure 13,
it can be found that fault frequencies are flooded by noise and irrelevant harmonic components.
Therefore, the proposed ACFHNR-SVD-TEO method is employed for incipient fault feature extraction
of the fault signal.
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Firstly, the delay step is set as m = 15. The kurtosis value and the ACFHNR index value
corresponding to these 15 singular components of SVD are calculated, as shown in Figure 14. Figure 14
exhibited that the ACFHNR value of the first singular component is larger than the ACRHNR values
of the other components, which tells us that the first component is the effective signal feature.
Therefore, the first singular component is processed, and its Teager energy operator spectrum is
obtained, as shown in Figure 15. Fault frequencies such as the fbp f r,, fbp f r + fr, fbp f r + 2 fr and 2 fbp f r
can be clearly identified, demonstrating that the proposed method can successfully detect the incipient
fault features of rolling element bearings. Also, it shows that the first singular component is the
effective component. However, the kurtosis values corresponding to the third and fourth singular
components are much larger than the other kurtosis values, as shown in Figure 14, indicating that the
kurtosis values may provide the wrong information for extracting the sensitive fault information.
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To further evaluate the performance of the proposed method, the fault data for a bearing roller
from the Intelligent Maintenance System, University of Cincinnati, are explored. In the test bed,
two PCB 353B33 High Sensitivity Quartz ICP (Integrated Circuits Piezoelectric) accelerometers
(PCB Piezotronics Inc., Depew, NY, USA) are mounted for data acquisition (one vertical and one
horizontal) for each bearing, and a radial load of 2721.6 kg is applied to the bearings. Meanwhile,
the vibration signals are measured at an interval of every 10 min. The sampling frequency is set to
20 KHz, and the data length is 20,480 points [38]. The shaft rotating speed of the motor is 2000 rpm.
Four bearings, named Bearings 1 to 4, are installed on one shaft, as shown in Figure 16. At the end of
the accelerated experiment, an outer race fault is discovered in test bearing 1.Appl. Sci. 2017, 7, 1117 14 of 19 
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The fault frequency of the outer race fault can be computed as follows:

fbp f o =
1
2

Z
(

1− d
D

cos α

)
fr (24)

where fr is the rotating frequency, D is the pitch diameter, d is the balling diameter, Z is the number of
the balls, and α is the contact angle. Also, according to Equation (23), the fault frequency of the out
racer of the bearing can be computed, which is about 236 HZ [29]. Based on this prior fault frequency,
the ACFHNR index value of all the fault vibration signals in the whole life of the testing are calculated,
as shown in Figure 17a. For comparison purposes, the kurtosis and RMS (Root Mean Square) values
are computed. The results are shown in Figures 18a and 19a, in which the sub graphs in the figures are
the local enlargement of dashed line boxes.

In the run-to-failure experiment, it is assumed that the bearing worked at the stationary stage
from group 10 to group 500. The discrete probability distribution for the ACFHNR, kurtosis, and RMS
index at the stationary stage is Gaussian distribution, as presented in Figure 20. The alarm thresholds
for each parameter are set as the mean value plus four times the stand deviation [23]. Then the
threshold of the three parameters can be obtained, as shown in Table 2. Also, the alarm time for RMS,
kurtosis and the ACFHNR index are derived. The alarm time of RMS is 88 h 40 min, while that of
kurtosis is 107 h 50 min, and the ACFHNR warn time is 88 h 40 min, as shown in Figures 17a, 18a and
19a. Meanwhile, compared with the envelope harmonic-to-noise ratio (EHNR) index proposed in the
literature [23], the ACFHNR index can detect faults 1 h and 50 min earlier, where the alarm time of the
EHNR index is 90 h 30 min [23].

Moreover, we proposed the concept of sensitivity to quantify the three indexes, which can be
calculated by Equation (25), where ∆d is the difference value of the three indexes in the time ∆t.
The sensitivity can be deemed the gradient of the fitted curve in the incipient fault stage.
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S =
∆d
∆t

(25)

The sensitivity values in the incipient stages of the three indexes are calculated. For the ACFHNR
and RMS indexes, the data from group 532 to group 700 are calculated, as shown in Figures 17b
and 18b. For the kurtosis index, the data from group 647 to group 700 are calculated, as shown in
Figure 19b. The sensitivity values for the three indexes are presented in Table 3, and it can be found
that the sensitivity value of ACFHNR is much larger than that of kurtosis or RMS.Appl. Sci. 2017, 7, 1117 15 of 19 
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Table 2. The threshold values of the three indexes.

The Index ACFHNR Kurtosis RMS

Threshold value 0.15615 3.76849 0.0812

Table 3. The sensitivity value of the three indexes in the incipient fault stage.

The Index ACFHNR Kurtosis RMS

Sensitivity 0.0261 0.0033 1.55714 × 10−4

From Figures 17–20, at least two conclusions can be drawn: (1) Both the RMS and the ACFHNR
index are able to detect faults earlier than the kurtosis factor, as they can detect the fault information
at group 532 (at a time of about 88 h 40 min) while the kurtosis factor detected the fault information
at group 647 (at time of about 107 h 50 min); (2) Compared with the kurtosis and RMS indexes,
the sensitivity value of the ACFHNR index is the largest in the incipient fault stage, where the
sensitivity value of ACFHNR index is 0.0261, while the sensitivity values of kurtosis and the RMS are
0.0033 and 1.55714 × 10−4, respectively. According to the above conclusions, it can be found that the
ACFHNR index is superior to the traditional RMS and kurtosis indexes for detecting the early faults of
rolling bearings.

Moreover, the early fault vibration signal of group 533 is analyzed. The sample lengths are set
as 10,000. The original vibration signal and its corresponding envelope demodulation spectrum are
shown in Figure 21. Theouter race fault frequency fbp f o = 236 HZ can be detected, which further
indicates the effectiveness of the ACFHNR index for detecting the early weak fault vibration signal
directly. To further prove the usefulness of the proposed ACFHNR-SVD-TEO method, the vibration
signal of group 533 is processed.
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The delay step is set as m = 15. Also, both the kurtosis values and the ACFHNR index values
corresponding to these 15 singular components are calculated, as shown in Figure 22. It can be seen that
the ACFHNR value of the first singular component is the largest, which means that the first component
is the effective signal feature. Thus the signal of the first singular component is processed using the
proposed method, as shown in Figure 23. The fault frequencies fbp f o, 2 fbp f o, 3 fbp f o, and 4 fbp f o can be
clearly detected. Once again, this processed result proves the usefulness of the proposed method to
detect the early faults of the rolling element bearings.Appl. Sci. 2017, 7, 1117 17 of 19 
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6. Conclusions

The incipient periodic impulse feature of the vibration signal from fault rolling element bearings
is often contaminated by noise and interference harmonics. In this paper, a novel early fault detection
approach based on ACFHNR-SVD combined with Teager energy operator is presented for extracting
the incipient periodic impulse feature. The main contributions of this paper can be summarized
as follows:

(1) Compared with the kurtosis index, the sensitive singular components obtained by the SVD
method can be clearly identified with the proposed ACFHNR index. Moreover, the incipient fault
features of the vibration signal from the rolling element bearings can be detected by the proposed
ACFHNR-SVD method combined with Teager energy operator method. They are proved by the
simulation and experimental results.

(2) The ACFHNR index is able to detect faults earlier than the kurtosis index. Moreover, compared
with kurtosis and RMS indexes, the sensitivity value of the ACFHNR index is the largest in the
incipient fault stage, demonstrating its superiority over the traditional RMS and kurtosis indexes
for detecting the early fault features of the vibration signal. This is proved by the full life cycle of
the bearing degradation data.
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In this preliminary study, the ACFHNR index and the proposed ACFHNR-SVD-TEO method are
tested and demonstrated to be effective in bearing fault detection using the simulation signal and two
sets of experimental data. In our future work, the applicability of the ACFHNR index will be considered
for other methods such as ensemble empirical mode decomposition and local mean decomposition.
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