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Abstract: We present the results of axisymmetric and three-dimensional numerical simulations
of the flow around a torus in the low Reynolds number regime [10−2; 3× 103] and aspect-ratio
0 < Γ = 2a/R ≤ 2 (core diameter over toroidal radius). It is shown that as Γ → 0, consistent with
intuition and the results from the literature, the flow tends to that of a two-dimensional circular
cylinder while for Γ→ 2 the flow is that around a bluff obstacle. It has been observed that in a small
region of the Re–Γ phase space, the flow develops an axisymmetric recirculation detached from the
torus and with a vorticity distribution that resembles the Hill vortex. In the range 0 < Γ ≤ 2, several
different regimes have been observed; the peculiarities of each regime are analyzed and, whenever
possible, similarities and differences with other classical flows are discussed.

Keywords: direct numerical simulation; viscous flows; vortex dynamics

1. Introduction

Flows around circular cylinders and spheres have been attracting the interest of researchers for
more than a century owing to their relatively easy and controllable conditions, as well as the interesting
flow physics [1,2]. These problems have often been considered as prototypes of flows around bluff
bodies which are relevant to engineering and practical applications. In these cases, the body geometry
is described by a single parameter (the diameter d of the cylinder or of the sphere) and the flow is
characterized only by the Reynolds number Red = Ud/ν, with U the free stream velocity and ν the
kinematic viscosity of the fluid.

A possible extension of the above flow paradigms consists of considering a geometry that is
described by two curvature parameters instead of one. We believe that in this way it is possible to
establish the standard for a new benchmark that, even if yet to be well defined and sufficiently simple,
shows a richer and more complex flow physics with respect to circular cylinders and spheres.

In the present paper we have considered the flow around a toroidal ring with radius R and
core diameter 2a in an attempt to increase the complexity of the problem. In fact, it is possible to
change, in addition to the Reynolds number Re = RU/ν, also the slenderness parameter Γ = 2a/R.
Apart from the paper by [3] that used a rarefied hypersonic flow, this problem has been considered for
an incompressible flow by several studies in the past. Reference [4] considered “fat” tori (Γ = 2) in the
Stokes regime, while [5] investigated only slender tori (low Γ) in the very low Reynolds number range.
Reference [6] conducted experiments to measure the drag in axisymmetric conditions, and [7–9]
performed accurate and extensive numerical simulations and stability analyses showing that all the
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dynamics from the flow around a sphere (Γ → ∞) to that around a circular cylinder (Γ = 0) can be
obtained by varying the cylinder slenderness.

In this study we have analyzed the low Reynolds number range [10−2; 3× 103], and the aspect
ratio has been spanned from Γ = 0.1 up to the limit Γ = 2; the results are summarized in the
phase diagram of Figure 1, confirming that indeed the aspect ratio Γ plays a fundamental role in the
determination of the flow features. The novel finding of this study is the existence of a new regime in
the Re–Γ phase space, indicated by H in Figure 1. In this region the flow develops a spherical vortex in
the wake detached from the surface of the torus, whose vorticity is distributed as in the Hill spherical
vortex [10].
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Figure 1. Phase diagram of the regimes for the flow around a torus: • indicate axisymmetric runs,
◦ three-dimensional simulations. V: Stokes regime; S: steady regime; H: Hill regime; U: unsteady
regime; 3D: three-dimensional regime. Note that the runs at Re < 0.1 are not reported in the figure to
avoid the squeezing of the regions to the right.

It is worth mentioning that the phase diagram of Figure 1 has been obtained from the results of
about 100 numerical simulations, more than 20 of which are fully three-dimensional. The boundaries
between the regions have been somehow arbitrarily set by observing the flow behaviour and gathering
the simulations into homogeneous categories. Therefore, the lines dividing the different regions should
not be interpreted as sharp fronts, but rather as regions where the transition occurs.

The paper is organized as follows: in Section 2, the numerical setup is briefly described, the
problem is introduced, and the results are validated. Section 3 contains the results with an analysis of
the various flow regimes. The paper is closed by Section 4 with the conclusions.

2. Problem and Numerical Setup

In this paper, the Navier–Stokes equations for an incompressible viscous flow are numerically
integrated; their nondimensional forms read:

Du
Dt

= −∇p +
1

Re
∇2u + f, ∇ · u = 0, (1)

with u the velocity, p the pressure, D/Dt the material derivative, and f a forcing for the immersed
boundary method (specified later). Equation (1) have been spatially discretized in a cylindrical
coordinate system using staggered central second-order accurate finite-difference approximations.
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Details of the numerical method are given in [11], and only the main features are summarized here.
The discretized system is integrated using a fractional-step method where the viscous terms are
computed implicitly and the convective terms explicitly. At each time step, the momentum equations
are provisionally advanced in time using the pressure at the previous time step, giving an intermediate
non-solenoidal velocity field. A scalar quantity Φ is then introduced to project the non-solenoidal field
onto a solenoidal one. A hybrid low-storage third-order Runge–Kutta scheme is used to advance the
equations in time.

The forcing f of Equation (1) is introduced to handle complex geometric configurations without
a body conformal mesh; this is the immersed boundary method whose details can be found in [12].
In a few words, if Equation (1) is rewritten as ∂u/∂t = RHS + f, with RHS containing the advective,
pressure, and viscous terms, its time discrete version reads:

un+1 − un

∆t
= RHSn+1/2 + fn+1/2. (2)

Here the superscripts indicate the discrete time levels and n + 1/2 indicates the midpoint between
times tn and tn+1. If at the immersed boundary the fluid velocity is imposed as un+1 = ub, Equation (2)
can be explicitly solved for fn+1/2, yielding

fn+1/2 = −RHSn+1/2 +
ub − un

∆t
, (3)

which is imposed at all immersed interface nodes while it results fn+1/2 = 0 everywhere else.
This procedure allows the imposition of a velocity boundary condition on an arbitrary surface, and is
consistent with the centered second-order finite-difference approximation; therefore, the overall
accuracy of the scheme remains second-order [12].

The problem is sketched in Figure 2, and is summarized as follows: a torus of radius R and
core radius a is normally placed along the axis of a cylindrical domain of radius Lr and length Lx,
respectively, in the radial r and axial x directions. The torus is at a distance Li from the inflow (x = 0).
The flow boundary conditions are:

ux = U, ur = uθ = 0 uniform axial inflow at x = 0, (4)

ur = 0,
∂ux

∂r
=

∂uθ

∂r
= 0 stresshighlight−free radial boundary at r = Lr,

∂u
∂t

+ c
∂u
∂x

= 0 for convective outflow at x = Lx

u = 0 noslip condition at the torus surface.

In the boundary conditions at (x = Lx), all the velocity components are advected outside the
domain with a velocity c which is dynamically determined so as to assure the free-divergence of the
velocity field at every time step.

The computational domain is discretized by a mesh which is non-uniform in the radial and
axial directions to cluster the gridpoints in the torus region and in the wake (see the example in the
sketch of Figure 2); for the three-dimensional cases, the mesh is uniform in the azimuthal direction.
The axisymmetric cases have been mainly run on two different grids 120× 201 and 258× 401 in the
radial and axial directions, respectively, obtaining a drag coefficient CD (computed by integrating
viscous stresses and pressure over the torus surface and projecting the normalized force in the
streamwise direction) that typically showed a difference below 1%. In many cases—especially those
with low Γ and high Re—a third grid of 515× 801 nodes has been used to further assess the grid
independence of the results again with differences below 1%, which is within the statistical uncertainty
of the data.



Appl. Sci. 2017, 7, 1108 4 of 12

2a

Lx

L i

2R

U

rL

x

r

θ

Figure 2. Sketch of the problem.

The standard domain dimensions are Lr = 16R and Lx = 50R, with the inflow distance Li = 10R;
however, since the ideal flow consists of an isolated torus, we have verified that the domain finiteness
did not significantly affect the results through the blockage effect. In more detail, the cases at Γ = 1
for Re = 100 and Re = 200 have also been run using a second domain of dimensions L′x = 90 and
L′r = 30, and the number of nodes augmented accordingly: the differences in the drag coefficient now
below 0.15%. In a second test it has been verified that the torus was placed far enough from the inflow
to have results independent of Li: this was checked by repeating the runs at Γ = 1 and Re = 100
and Re = 200 with L′i = 20R and on a grid extended ahead of the torus; in this case, the maximum
difference of the drag coefficient was below 2%, which is acceptable for our purposes.

Owing to the large CPU requirements, only a few three-dimensional cases were run, and all of
them on the standard domain with a grid 258× 401× 65 in the radial, axial, and azimuthal directions.
These last runs were mainly aimed at showing the onset of three-dimensional instabilities rather than
analyzing the flow details.

A first validation of the results is given by the analytical study of [4], who computed the Stokes
flow around a “closed” torus (Γ = 2) for which they found a drag coefficient CD ' 5.611/Re;
the present numerical results yield CD = 5.63 at Re = 1 and CD = 56.04 at Re = 0.1, which are in very
good agreement with the prediction.

A further validation is provided in Figure 3 showing the drag coefficient (i.e., the force in the
opposite direction with respect to the mean flow normalized by the factor ρU2S/2, with S the blockage
area) as function of the Reynolds number. The results are compared with the classical paper by [13],
and the deviations range from a minimum of 0.53% at Re = 100 up to a maximum of 1.50% at Re = 200.
It is worth mentioning that the validation in the range 100 ≤ Re ≤ 1000 is much more challenging than
that at low Reynolds, owing to the steeper velocity gradients in the flow and the thinner boundary
layers at the sphere surface. Further validation is shown in the next section for different aspect-ratios
Γ and Reynolds number ranges. Here it suffices to mention that the results of Figure 3 confirm that
the numerical tool is reliable and the criteria for the selection of the run parameters (grid spacing and
time step) are adequate.
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Figure 3. Drag coefficient as function of the Reynolds number for the flow around a sphere (Γ→ ∞):
◦ present results, filled 4 data from [13].

3. Results

In order to make the discussion easier, we will briefly illustrate first the flow evolution for a fixed
aspect ratio (Γ = 1) as a function of the Reynolds number. For Re ≤ O(1), the dynamics is dominated
by viscosity with the flow smooth and steady, without separations; this is the Stokes regime (Figure 4a),
where between the upstream and downstream flows there is an approximate symmetry that becomes
more exact the more Re→ 0. As Re is increased, the flow remains steady and a first recirculation can
appear: however, this recirculation is not attached to the torus, but located downstream in the wake.
This regime is generated by the competing effects of blockage of the torus and downstream convection
of the mean flow. Owing to the vorticity distribution within the bubble, it will be referred to as Hill
regime, and it can exist only in a narrow range of aspect ratios (around Γ = 1) and Reynolds numbers
(Figure 4b). A further increase of Re produces separations attached to the torus that in some cases can
coexist with the Hill recirculation (Figure 4c), but eventually only recirculations attached to the torus
surface can survive (Figure 4d). When the Reynolds number is still augmented, the flow becomes
unsteady (Figure 4e) with a wake that oscillates in time and sheds compact vortices. The last regime
is observed for even higher Re when the flow becomes three-dimensional and also the azimuthal
symmetry is lost (Figure 4f).

The above scenario can change considerably depending on the aspect ratio of the torus: in the
following sections, we will illustrate the flow dynamics in the various regimes for different values of Γ.

3.1. Stokes Regime

The first regime is that of very low Reynolds numbers characterized by dominating viscous effects
that determine the flow. In this context, the governing dynamics is a balance between pressure and
viscous forces that is expressed by the Stokes equation ∇p = µ∇2u; this does not have inertial terms,
and therefore cannot involve the fluid density ρ. On the other hand, the drag force is commonly
written as FD = ρU2SCD/2, with S a reference surface that—for this problem—is the blockage area
S = 4πRa. The only way for FD to get rid of ρ is that CD ∼ 1/Re = µ/(ρUR), and this is a common
feature of all very low Re flows. Figure 5 shows that indeed also for the torus the drag coefficient
follows this power law; here, in the interest of brevity, we show only the results for Γ = 0.1 and Γ = 1
even if the scaling CD ∼ 1/Re is observed for all values of Γ.
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e) f)

Figure 4. Instantaneous snapshots of streamwise velocity (gray scales) and streamtraces ( ) for
the flow around a torus at Γ = 1: (a) Re = 0.1; (b) Re = 25; (c) Re = 50; (d) Re = 100; (e) Re = 275;
(f) Re = 500.
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Figure 5. Drag coefficient as function of the Reynolds number: (a) ◦ torus at Γ = 0.1, filled 4 circular
cylinder (data from [10] analytical expression CD = 8π/[Red log(7.4/Red) with Red = ReΓ;
(b) ◦ torus at Γ = 1, line CD = E/Re with E = 10. filled 4 data for the same flow from [9].

For small aspect ratios Γ, the flow tends to that around a two-dimensional cylinder (R/a→ ∞)
and, accordingly, already for Γ = 0.1 the CD is almost indistinguishable from that for a circular cylinder.
It is worth noting that the Reynolds number for the cylinder Red is defined with the cylinder diameter,
while here we use the toroidal radius R; this implies that the two Reynolds numbers are related
through Red = ReΓ, which should be kept in mind when comparing the two flows.

The behaviour is qualitatively similar for the aspect ratio Γ = 1, although the fits have
different coefficients than for the two-dimensional cylinder: here we have found in the Stokes regime
CD ' 10/Re. We report for comparison the data for the same flow computed in [9], which show
a perfect agreement with the present ones.
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3.2. Hill Regime

For Γ = O(1), some values of the Reynolds number gave rise to a special steady state which, to
the knowledge of the authors, has never been reported before. More in detail, at Γ = 1 the flow at
10 ≤ Re ≤ 70 showed the appearance of a recirculation bubble in the wake of the torus, the bubble
consisting of a vortex ring (Figure 6a,b). The shape of this ring is approximately spherical at its onset,
but it becomes more elongated in the streamwise direction for increasing Re owing to its interaction
with the strain field produced by the torus. In fact, this recirculation shows strong similarities with the
Hill spherical vortex [10] that is characterized by a linear azimuthal vorticity distribution ωθ = Ar,
with r the radial coordinate and A a constant. In view of this similarity, we have verified whether
this relation also holds for the recirculation of the torus, and two representative results are shown in
Figure 7. It is clear that at Re = 10, when the vortex is approximately spherical and not strained by
the flow, the linear relationship is attained very closely (note that in Figure 7 the axes do not have the
same range in both panels). On the other hand, at Re = 50 the bubble is significantly elongated in
the streamwise direction (Figure 4c) and partially stripped by the external strain field; accordingly,
the ωθ(r) relation shows evident deviations from linearity—especially in the upstream part of the
vortex that is more subject to the wake of the torus.
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Figure 6. Instantaneous snapshots of streamwise velocity (gray scales) and Stokes streamfunction
( for positive and for negative values) for the flow around a torus: (a) Γ = 1, Re = 10;
(b) Γ = 1, Re = 25; (c) Γ = 0.5, Re = 25; (d) Γ = 1.5, Re = 25.

As a successive step, we analyze how the recirculation is generated: it is expected that the
appearance and disappearance of the vortex is somehow related to the relative proportions of
fluid passing over and through the torus. As measure of the flux, we have computed the Stokes
streamfunction ψ(r, x) =

∫ r
0 σux(σ, x)dσ that, computed for x = Li and r = R− a, yields the flow

passing through the torus (inner flux). Some results are reported in Figure 8, showing an increase of
the flux with Re and a tendency to saturation at “high” Reynolds number. It is also evident that this
flux decreases for increasing Γ, since the torus tends to be “fat” and the surface of the central hole
diminishes. Figure 6d clearly shows that when this flux is vanishing the bubble attaches to the torus as
for the separation behind a bluff body. On the other hand, for low values of Γ, the inner flux is too
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intense to allow for an axial steady separation. Therefore, it turns out that this regime can only exist
for some combinations of Re and Γ to have an inner flux strong enough to produce a recirculation
(through the adverse pressure gradient downstream of the torus) but not too strong to wash it away.
The Re–Γ values for which this special steady state was found are contained within the region H
of Figure 1.
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Figure 7. Scatter plots of the azimuthal vorticity ωθ versus the radial coordinate r in the region of the
recirculation bubble: (a) Γ = 1, Re = 10; (b) Γ = 1, Re = 50.
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Figure 8. (a) Stokes streamfunction ψ(R− a, Li) as function of Re for the case at Γ = 1; (b) ψ(R− a, Li)

as function of Γ at Re = 25.

3.3. Steady Regime

Apart from the limited range of Γ where the Hill regime can exist, after the Stokes region
of the Re–Γ phase space we find a steady regime in which stationary separation bubbles appear
downstream attached to the torus. It has been observed that for Γ = 2, already at Re = 1 a small
recirculation is present while for Γ = 0.1 only above Re = 100 does a separation appear. In the first
case, the flow is characterized by a single bubble that grows for increasing Re, and it remains steady
up to Re = 75 (Figure 9d). As Γ is decreased, two counter-rotating recirculations develop with the
inner one (that closer to the axis of symmetry) smaller than the external one (Figure 9c). This difference
decreases as Γ is diminished, and for Γ → 0 any difference between the bubbles should disappear
since the two-dimensional cylinder case is recovered. Our simulations at Γ = 0.1 show that indeed the
flow approaches the cylinder limit even if differences are still present. In particular, Figure 9a reports
the length of the separation bubble (measured as the distance from the back of the torus where the
streamwise velocity reverts its sign as in Figure 9b) as function of Re compared with the analogous
quantity for the plane cylinder. It is observed that the results are very close even if the data for the
torus are systematically below those for the cylinder. After having verified that this effect is not related
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to insufficient numerical resolution or to the finiteness of the computational domain, we have found
that this difference is caused by the finite aspect ratio Γ that produces a blockage of the inner flow.
In other words, the flow going through the torus is accelerated more than the flow going over, thus
pushing the separation towards the rear of the torus surface and consequently decreasing the length of
the separation. This argument is in agreement with the recent paper by [14] that computed the flow
around a circular cylinder over several domains, and they have observed that indeed the length of the
steady separation bubble is reduced for increasing blockage of the flow. These results are qualitatively
and quantitatively consistent with those of [7–9].
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Figure 9. (a) Length of the separation bubble lS normalized by the core diameter versus Reynolds
number: ◦ torus at Γ = 0.1, filled 4 circular cylinder (from [10]). Instantaneous snapshots of streamwise
velocity (gray scales) and Stokes streamfunction ( for positive for negative values);
(b) Γ = 0.1, Re = 400; (c) Γ = 1, Re = 200; (d) Γ = 2, Re = 75.

3.4. Unsteady Regime

A further increase of the Reynolds number enhances the inertial effects with respect to the viscous
ones, and this induces flow transition from steady to unsteady. The recirculations that in the steady
regime were attached to the torus are now alternatively shed in the wake and advected by the main
flow. A typical case is shown in Figure 10 for the aspect ratio Γ = 0.1 and Re = 1000, and it is similar
to the flow around a circular cylinder.

A characteristic quantity of the unsteady vortex street is the Strouhal number St = R f /U, where f
is the main frequency of the flow. Here f has been measured from the first peak of the fast Fourier
transform of the drag coefficient (Figure 11a), even if any other quantity (for example, velocity or
pressure sampled in a point) yielded the same result. Similarly to the Reynolds number, the relation
Std = StΓ has been used to compare the present results with those of a circular cylinder, since the
Strouhal number for a cylinder Std is computed using the cylinder diameter. Figure 11b shows the
normalized oscillation frequencies of the flow as a function of the Reynolds number, and in order to
make the comparison easier, all the data are normalized in the same way as for the circular cylinder.
For Γ = 0.1, the Strouhal number for the torus appears to be close to the corresponding value for the
cylinder, yet systematically below it. Similarly to the separation length of Figure 9a, also in this case the
difference is due to the finiteness of the aspect ratio and this is confirmed by the analogous quantities
for Γ = 0.25 and Γ = 0.5 showing larger discrepancies and in the same direction as the case at Γ = 0.1.
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Figure 10. Instantaneous snapshot of azimuthal vorticity ( for negative, for positive values)
and Stokes streamfunction ( ) for the flow around a torus at Γ = 0.1 and Re = 1000. The dashed
lines ( ) connect the centres of the vortices of the same sign.
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Figure 11. (a) Time evolution of the drag coefficient for the flow at Γ = 0.1 and Re = 1000 (Red = 100);
(b) Strohual number (Std) versus Reynolds number (Red): data for the circular cylinder (from [2])
◦ flow around a torus at Γ = 0.1, 4 flow around a torus at Γ = 0.25, • flow around a torus at Γ = 0.5.

Another fundamental difference between the wake of a cylinder and that of a torus is that the
vortices of the latter are in fact vortex rings, and they have a self-induced translation velocity that adds
(algebraically) to the convection of the wake. For a vortex ring with thin core and uniform vorticity
distribution within the core, the self-induced translation velocity is V = γ/(4πb)[ln(8b/ε)− 1/4],
where γ is the core circulation, b the ring radius, and ε the core radius. Looking at Figure 10,
we can see that the vortices shed from the external side rotate clockwise while the others rotate
counterclockwise; this implies that the internal vortices must travel downstream faster than the
external ones, and accordingly the wake tends to diverge radially as shown by the straight lines
connecting the vortex centres. This behaviour is different from that of the cylinder, whose wake
spreads symmetrically with respect to the streamwise direction.

In the case at Γ = 0.1, the internal and external vortices have very similar dimensions, and
the measured differences of γ were below 2%. However, the situation becomes different as Γ
increases because the external vortices increase in size at the expense of the inner vortices that
eventually disappear. This completely changes the instability mechanisms, and tends to inhibit the
flow unsteadiness. Figure 11b shows that indeed for a given Re the oscillation is slower for increasing Γ,
and we have found that for Γ > 1 the axisymmetric unsteadiness is suppressed with a direct transition
from steady axisymmetric to three-dimensional flows (Figure 1).

3.5. Three-Dimensional Regime

Beyond the unsteady regime the flow loses the axial symmetry and it becomes completely
three-dimensional; examples of flow snapshots are given in Figures 4f and 12 for three different aspect
ratios. We have seen in the previous section that the flow features are strongly influenced by Γ, and this
is also confirmed in the three-dimensional case where the flow instability depends on the topological
structure of the separation. In order to clearly distinguish between truly axisymmetric and marginally
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three-dimensional flows, we have checked all the force and moment components. In the former case,
all coefficients except for the drag assumed zero values (the computer round-off error), while for
three-dimensional flows—though small and with zero time average—every coefficient was different
from zero. Further flow analysis would require the investigation of the azimuthal instabilities of
the ring vortices in the wake and their interaction. However, this kind of analysis is quite complex;
it would deserve a dedicated study that is beyond the purposes of this paper. Here we only aimed at
finding the region of the three-dimensional flow dynamics in the phase diagram of Figure 1 .

b)a)

Figure 12. Instantaneous snapshots of streamwise velocity (gray scale) and streamtraces ( ) for
the three-dimensional flow around a torus: (a) Γ = 0.5, Re = 1000; (b) Γ = 2, Re = 600.

4. Conclusions

This paper has analyzed the flow around a toroidal ring at low Re with the aim of proposing
a new benchmark that is more complex than the classical circular cylinder and sphere yet sufficiently
simple and well-defined to allow a detailed investigation. The Re–Γ phase diagram reported in Figure 1
shows that several different regimes are possible, and they span from the Stokes dynamics up to the
fully three-dimensional flow. For Γ → 0, the flow tends to become that around a circular cylinder,
while as the torus aspect ratio increases the differences between internal and external flows become
dominant. For Γ = 2, the inner flow is inhibited, only a single separation behind the torus is generated,
and the flow resembles that around an obstacle. A particular steady flow referred to as Hill regime has
been found for a limited range of Γ and Re in which a recirculation downstream in the wake (but not
attached to the torus) is present.

Before concluding this paper we wish to point out that the boundaries of the phase diagram of
Figure 1 must be intended only as indicative transitional zones rather than sharp limits. For example,
looking at Figure 6a,b it appears that increasing Γ has the effect of moving the recirculation upstream
towards the torus until it attaches to its surface; for intermediate Γ, the distinction between a simple
massive steady separation from a highly strained Hill vortex is certainly questionable. In addition,
the cases delimiting the unsteady regions are considerably more computationally expensive than
others, since distinguishing between very slowly decaying disturbances from a marginally sustained
perturbation requires an integration over several viscous time scales that—especially for high-Re flows
computed on fine grids—becomes infeasible. For example, a typical simulation in the Stokes or steady
viscous regime can be run on a single processor desktop computer within 2–4 CPU h, while in the
unsteady regime, in order to collect enough statistics, the CPU time increases up to 20–30 h. If a full
three-dimensional unsteady case is considered, the CPU time ramps up to 300–500 h and parallel
computing is needed.
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