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Abstract: As serious traffic problems have increased throughout the world, various types of studies,
especially traffic simulations, have been conducted to investigate this issue. Activity-based traffic
simulation models, such as MATSim (Multi-Agent Transport Simulation), are intended to identify
optimal combinations of activities in time and space. It is also necessary to examine commuting-based
traffic simulations. Such simulations focus on optimizing travel times by adjusting departure times,
travel modes or travel routes to present travel suggestions to the public. This paper examines the
optimal departure times of metro users during rush hour using a newly developed simulation tool.
A strategy for identifying relatively optimal departure times is identified. This study examines 103,637
person agents (passengers) in Shenzhen, China, and reports their average departure time, travel time
and travel utility, as well as the numbers of person agents who are late and miss metro trips in every
iteration. The results demonstrate that as the number of iterations increases, the average travel time
of these person agents decreases by approximately 4 min. Moreover, the latest average departure
time with no risk of being late when going to work is approximately 8:04, and the earliest average
departure time with no risk of missing metro trips when getting off work is approximately 17:50.

Keywords: dynamic optimization; departure times; metro; rush hour; agent-based simulation;
Shenzhen

1. Introduction

With the development of national economies and the acceleration of urbanization, traffic
congestion has become a common problem around the world [1,2]. Traffic congestion produces
broad social and environmental costs, such as delays in the delivery of goods, air pollution, changes
in microclimates, increases in the urban heat island effect, increases in respiratory problems and lost
productivity [3]. To address this severe challenge, intelligent transportation system (ITS)-based studies
have become increasingly prevalent, especially in the field of traffic simulation. Traffic simulations,
which represent an important component of ITSs and differ from traditional mathematical modelling,
can simulate traffic-related phenomena, including the flow of traffic and traffic accidents. They can
also reproduce the spatial and temporal variations in traffic flow and help to analyze the characteristics
of vehicles, drivers, pedestrians, roads and traffic [4,5]. Moreover, using virtual reality technology,
traffic simulations can intuitively show the status of traffic in real time, including whether roads are
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smooth, whether traffic accidents are present and what kind of solutions can be used to address traffic
problems, without risk.

Traffic simulations can be divided into macroscopic, microscopic and mesoscopic scales [6]. The
macroscopic traffic simulation model was proposed by Whitham and Richards and is mainly used
to study the characteristics of traffic flow globally [7,8]. Microscopic traffic simulations, such as the
car-following model (Reuschel, Pipes) and the lane-changing model (Gipps, 1986), can describe the
conditions of traffic networks and the detailed behaviors of traffic participants to a high degree [9–11].
The description of traffic systems provided by the mesoscopic traffic simulation model proposed
by Prigogine and Andrews lies between those of the macroscopic and microscopic models. The
mesoscopic model describes the inflow and outflow behaviors of vehicles at links and intersections
or at links and stops, but it does not include car-following or lane-changing models [12]. In terms of
application, macroscopic and mesoscopic traffic simulations are both used for traffic planning and
management; mesoscopic traffic simulations can also be used to present travel suggestions to the public,
whereas microscopic traffic simulations can be used for traffic accident analysis and automated driving.

Despite the different scales at which traffic simulation research is conducted, most traffic
simulation tools are based on multi-agent models, which are a powerful tool for the simulation
of complex systems. Such a model is dynamic and captures nonlinear interactions, and its components
exhibit unpredictable reactions that result in realistic behavior patterns [13–15]. Agent technology
originated at MIT in the 1970s. Agents are typically defined as independent and autonomous entities
that can coordinate with each other according to the different states of other entities and systems
and determine their own actions and states [16]. Various kinds of elements, such as people, vehicles,
links, and traffic lights, have been viewed as agents. These elements communicate and collaborate to
simulate complex traffic conditions in simulation tools. Among the many simulation tools that exist
today, our research focuses on those that are concerned with resident trips. MATSim (Multi-Agent
Transport Simulation), Albatross and ADAPTS (Agent-based Dynamic Activity Planning and Travel
Scheduling) are typical examples of these simulation tools [17–19]. Most traffic simulation tools that are
concerned with resident trips use activity-based models to identify optimal combinations of activities
in time and space [20]. However, it is also necessary to carry out commuting-based traffic simulations,
especially for public transit.

The key element of the simulation tools mentioned above is the replanning module, which
employs the scores and plans of the agents and determines whether these travel plans must be
modified. Most optimization algorithms for travel planning focus on four dimensions, specifically
the departure time, travel route, travel mode and the combinations of activities represented by the
activity chain [21]. The optimization of the departure time contains two steps. The first of these steps
involves setting a range of time adjustments based on the current departure time. The second step
involves drawing an adjustment value at random from within the range and adding this adjustment to
the previous departure time (Balmer et al., 2005; Gao, 2013) [2,22]. The optimization of the travel route
is based on static traffic assignment using the user equilibrium (UE) or the stochastic user equilibrium
(SUE) models (Raney et al., 2003) [23]. The multinomial logit model and the probit model are often
used to optimize the mode of travel, and the optimization of the combinations of activities represented
by the activity chain is based on heuristic solution algorithms, such as hill-climbing algorithms or the
tabu search algorithm (Balmer and Axhausen, 2009; Nagel and Axhausen, 2016) [20,21,24,25].

Of the four types of optimization algorithms, research on the optimization of departure time is
still insufficient. The challenges involved in such studies are as follows. First, it is difficult to define
the direction of adjustment of the departure time, i.e., whether the optimal departure time is earlier
or later than the current departure time. Second, it is also difficult to know when the iteration can be
stopped. In this study, iteration refers to the replanning process in our simulation tool. Person agents
must replan their travel strategies—i.e., perform departure time adjustment—to avoid late arrival or
missing their desired metro trips. If there are no person agents who are late when going to work or
who become caught in congestion at metro stops when getting off work, the iteration will end.
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In view of the two challenges identified above, this paper aims to explore a strategy for adjusting
departure times to obtain relatively optimal travel utility values, using metro travel as an example.
To address the first problem, the two concepts of “obligatory arrival times” and “empirical travel times”
are introduced to determine the direction of departure time adjustment. For the second problem,
an explicit condition is proposed for the termination of iteration. With these adjustments, shorter travel
times can be achieved. Moreover, we find the latest average departure time with no risk of being late
when going to work and the earliest average departure time with no risk of missing metro trips when
getting off work. This research on the optimization of departure times will broaden the horizons in
this field and can be used to provide the public with suggestions regarding their travel plans.

2. Methodology

This section first presents a brief overview of the general simulation approach used in MATSim
and then introduces our self-developed multi-agent simulation tool. Here, we focus on the core of our
simulation tool and how it differs from MATSim.

2.1. Overview of MATSim

This section first gives a brief overview of the general simulation approach used in MATSim and
then introduces our self-developed multi-agent simulation tool. Here, we focus on the core of our
simulation tool and how it differs from MATSim.

MATSim is an activity-based, extendable, multi-agent simulation framework implemented in
Java. It is a widely-used simulation tool that is designed to model a single day, the common unit for
activity-based models. Because MATSim is activity based, every agent optimizes its daily activity
chain in competition for space and time with all other agents. A MATSim run contains a configurable
number of iterations, represented by the loop and detailed below [21]. A MATSim run starts with
initial demand from the activity chain, road network, places of work and residences of a population
within a study area. Every person that is considered an agent in MATSim possesses a fixed number of
one-day plans, and each plan is composed of a daily activity chain. The plan of each agent is executed
by mobsim and is given a score based on its performance by a scoring function. Based on the score
that an agent’s plan receives, the replanning module decides whether the plan must be modified in
terms of its departure time, route, mode and/or destination [21]. The simulation output data can be
used to analyze the results and to monitor the progress of the current simulation setup. Some of the
files summarize a complete run, whereas others are created for a specific iteration only.

The selection of the replanning fraction represents a related issue; 10% is a frequently-used
heuristic value that works well in practice [23]. This fraction of person agents both improves the
average population score and causes the system to relax as soon as possible by adjusting the travel
plans. The iterative process is repeated until the average population score stabilizes. Note that there
is no quantitative measure of when the system has “relaxed”. Thus, it is difficult to determine the
number of iterations needed for specific simulation scenarios; this number depends on the number of
agents and the replanning strategy used.

2.2. Overview of the New Simulation System CCTSim

MATSim is an activity-based transport simulation system that performs whole-day simulations.
It focuses on the optimization of the schedules of agents over an entire day and produces optimal
combinations of a schedule’s activity chain, such as the number, type and sequence of activities [20].
However, there are two main reasons why MATSim is not suitable for simulating commuting behavior.
First, the plan for each agent in MATSim consists of that person’s behavior throughout the entire day,
including activities and travel alternately. It does not provide a way to focus solely on commuting,
which is merely the process of travelling between home and the workplace. Second, the adjustment
of departure times in MATSim is random, and there is no way to consider an obligatory arrival time.
Thus, it does not permit the determination of the departure time adjustment direction.
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The new simulation tool, which is called the Citizen Commuting Transportation Simulation tool
(CCTSim), is mainly concerned with the optimization of the commutes of citizens during rush hour.
It simulates three traffic modes, specifically metro, buses and private cars, which include most travel
patterns. The CCTSim loop shown as Figure 1 is similar to the MATSim loop, and the differences
between the modules in the two models are as follows.
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2.2.1. Initial Input

The initial input of CCTSim includes road networks, workplaces and residences within the study
area and the plans of individual person agents, as well as metro stops and routes and bus stops and
routes. More elements are considered as agents in CCTSim than in MATSim. These additional agent
types include people, metro trains, buses and cars, and they are considered because these elements
change during the simulation process. Note that, because CCTSim focuses on travel, the plan of each
person agent is made up of travel chains, rather than activity chains.

2.2.2. Dynamic Simulation

CCTSim is motivated by an event queue, which contains a sequence of events in chronological
order. In the process of our simulation, each agent, such as a person or vehicle, will generate various
events. For example, when a person agent sets out, it generates an event called “PersonSetOutEvent”.
Each event has two attributes, “StartTime” and “FinishTime”. When an event is performed, the
simulation tool calculates the finish time of the event. The finish time is assigned to the start
time of the next event associated with the person agent, such as a “PersonGetInMetroStopEvent”,
a “PersonGetInBusStopEvent” or a “PersonGetInCarStopEvent”. Finally, the event in question is
posted to the event queue. Figure 2 shows a sketch of the event queue in CCTSim.
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2.2.3. Scoring

The scores of travel plans are used to measure the actual performance of the plans, and they
represent the basis of the replanning module. The CCTSim scoring function is loosely based on the
MATSim utility function. However, it does not contain activity components, and some changes are
made to the travel-related components.

The utility of a travel plan Up is divided into two parts, which represent going to work (UP−GTW)
and getting off work (UP−GOW).

1. The going to work travel plan UP−GTW is computed as the travel utility UTravel plus the arrival
utility UArrival :

UP−GTW = UTravel + UArrival

UTravel =

 (TEmpirical − TReal) + (
TEmpirical

TReal
)

a
, TEmpirical > TReal

(TEmpirical − TReal) − (
TEmpirical

TReal
)
−a

, TEmpirical < TReal

UArrival =

{
b · (tArrival − tO) + 100, tArrival < tO, b > 0, tO = 9 : 00 a.m.
c · (tArrival − tO), tArrival > tO, c < 0, tO = 9 : 00 a.m.

(1)

where TEmpirical is the empirical travel time; TReal is the real travel time; tArrival is the arrival time;
and tO is the obligatory arrival time, which is set to 9:00 a.m. a, b, c are three parameters, for
which the default values are 4, 5/3 and −12 in the simulations described here.

2. Because there is no obligatory arrival time when getting off work, the getting-off-work travel
plan UP−GOW is computed as the travel utility UTravel:

UP−GOW = UTravel

UTravel =

 (TEmpirical − TReal) + (
TEmpirical

TReal
)

a
, TEmpirical > TReal

(TEmpirical − TReal)− (
TEmpirical

TReal
)
−a

, TEmpirical < TReal

(2)

where the variables have the same meanings as in Equation (1), above.

Note that the travel utility takes the absolute and relative differences between both the empirical
and real travel times into account. In addition, the performance of a given plan is better if the arrival
time is close to the obligatory arrival time, rather than the earlier the better. However, the arrival time
cannot be later than the obligatory arrival time. A severe late arrival penalty is assigned to travel plans
that do not satisfy this constraint.

2.2.4. Replanning

Replanning strategies are the basic innovation modules available in CCTSim. The travel plan of
each person agent is adjusted according to its actual performance. The performances of the travel plans
improve as these plans are successively adjusted in the iterations of the simulation. In this version, the
replanning module includes two main parts.

1. Replanning of departure times using public transit

Since work has an arrival time constraint, somewhat different strategies are used when adjusting
the departure times for going to work and getting off work.

(1) Adjusting the departure time for going to work

The objective of replanning when to leave for work is to identify a relatively optimal departure
time such that the travel time of a person agent is as short as possible, and the person agent
arrives as close as possible to the obligatory arrival time, without being late.
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(2) Adjusting the departure time for getting off work

The objective of replanning when to leave from work is simply to make the travel times of the
person agents as short as possible.

2. Replanning of travel routes when using private cars

The simulation tool applies the SUE model to transportation and makes some changes to identify
optimal travel routes from the point of view of person agents.

Notably, this paper focuses only on the replanning of departure times for the case of metro travel.

2.2.5. Analysis

CCTSim creates output data that can be used to analyze the results of the simulation, as well as to
monitor the progress of the current simulation. The simulation results created in every iteration can
be visualized to reflect the spatio-temporal variations in traffic pressure. The typical output data are
interpreted as follows.

1. Score statistics

The scores of the travel plans of all of the person agents in every iteration are recorded in a text
file. These scores are plotted to show the individual and average performance of the travel plans in
every iteration.

2. Events

Every action in the simulation is recorded as an event, and each event has one or more attributes.
By default, data such as the time when an event occurred, the agent ID that triggered the event, the
position where the event occurred, the type of event and other relevant information are included.

3. Commuting pressure

The commuting pressure refers to the pressure exerted by passengers on public transit and the
pressure exerted by road traffic at every link. The pressure exerted by passengers (i.e., the number of
person agents occupying a metro train or bus) is output for each iteration, and the pressure exerted by
road traffic on every link is recorded at intervals to monitor dynamic vehicle counts.

3. Scenario

3.1. The Study Area and Its Metro Network

Shenzhen is a coastal city located in the south of China, northeast of the Pearl River Estuary. This city
is located south of the Tropic of Cancer, between 113◦46′ and 114◦37′ east in longitude and between
22◦27′ and 22◦52′ north in latitude, and the total area of Shenzhen is approximately 1952.84 km2.

Before 2016, the metro network in Shenzhen, which was developed by the Shenzhen Metro Group,
originally had five lines. It was extended by an additional three lines in 2016. Our simulation applies
to 199 metro stops on all eight of these lines, as well as the departure timetable for the metro trains.
Figure 3 shows the location of Shenzhen in China and the metro network in Shenzhen. The specific
values of the major attributes of the metro trains, such as capacity, speed, numbers of carriages and
door counts, are shown in Section 4. Notably, the results (the person agents’ average departure time,
travel time and travel utility, as well as the numbers of person agents who are late and miss metro
trips in every iteration) are reported as sums over all eight metro lines.
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3.2. The Travel Plans of Person Agents

The travel plans of person agents represent the most important initial input data in CCTSim.
Specifically, the generation of metro travel plans includes two steps.

1. Selecting the person agents who employ the metro

It is assumed that, if the distances from both the workplaces and the residences of the person
agents to the nearest metro stop are less than 500 m, they will travel using the metro. Through the use
of ArcGIS (ArcGIS 10.3, Esri, Redlands, CA, USA, 2014), 124,910 person agents are selected, and they
are assigned corresponding travel plans in the next step.

2. Identifying the metro travel plans of the person agents

We apply the Baidu Map API (application program interface) to obtain the travel plans of the
person agents who use the metro in as much detail as possible. The results show that some of the
agents can reach their destinations directly, whereas others need to transfer. Table 1 shows sample
metro travel routes used by the agents. After excluding error messages returned by the Baidu Map
API and person agents with metro travel plans having empirical travel times of more than two and
a half hours (because they spend too much time in travelling and might choose a faster mode of travel),
103,637 person agents remain. These remaining person agents are simulated in this paper.
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Table 1. Information on the metro travel routes of person agents.

ID Empirical Travel Time Trip Purpose Travel Route

1 24 min 8 s Going to work
1. Walk 604 m
2. At the Nonglin station, take Line 7 to the Shangsha station
3. Walk 545 m

2 26 min 5 s Going to work

1. Walk 183 m
2. At the Xiangmei North station, take Line 2 to the Jingtian station
3. Walk 51 m and transfer to Line 2
4. At the Jingtian station, take Line 9 to the Chegongmiao station
5. Walk 727 m

3 17 min 8 s Getting off work
1. Walk 335 m
2. At the Huaxin station, take Line 3 to the Children’s Palace station
3. Walk 380 m

4 1 h 25 min 28 s Getting off work

1. Walk 598 m
2. At the Airport East station, take Line 1 to the Convention and
Exhibition Centre station
3. Transfer to Line 4
4. At the Convention and Exhibition Centre station, take Line 4 to
the Futian Port station
5. Walk 598 m

3.3. The Simulation and Replanning Process

Using these input data, CCTSim can simulate the travel of person agents during rush hour. More
importantly, in the following, we present detailed strategies for optimizing the departure time of each
person agent in every iteration.

1. The determination of the initial departure time

The attribute of empirical travel time is listed in the second column of Table 2. This quantity
represents the time spent in travel and is returned together with the corresponding travel route. Using
the empirical travel time, the initial departure time of each person agent is set to the difference between
the obligatory arrival time and the empirical travel time when going to work. This procedure is more
practical than a stochastic departure time and helps to determine the specific direction of replanning.
The initial departure time for getting off work is set stochastically to a time between 17:30 and 18:30.

2. The risk of being late

When going to work, each person agent employing a particular initial departure time confronts
the risk of being late. Two factors drive lateness; the real travel time may be longer than the empirical
travel time, and each person agent has the possibility of missing metro trips due to limited capacity
and being forced to wait for the next metro train. This phenomenon can be described as congestion.
When a person agent is late for work, the performance of the travel plan is bad because the plan
receives a severe penalty in scoring. Congestion also extends travel time, which also decreases the
utility of the corresponding travel plan. Thus, person agents tend to set out earlier to avoid the risk of
missing their planned trip. However, an early departure time typically results in an increased travel
time and premature arrival, which leads to the travel plan receiving a low score. This system resembles
a game in which each person agent attempts to optimize his/her departure time.

3. The strategies used to optimize the departure time of each person agent

The objectives of adjusting travel plans are mentioned in Section 2.2.4. The specific procedures
followed in going to work and getting off work are shown in Figure 4a,b.
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(1) Going to work

1© In the first iteration, in order to avoid congestion, the metro capacity is set to an infinite number.
Thus, all of the person agents can execute their initial travel plan without congestion. The
simulation tool counts person agents as being late if their real travel time is longer than the
corresponding empirical time and notes how late they arrive. Subsequently, the initial departure
times of these person agents are adjusted forward so that they will not be late again using the
same travel routes. The following formula is used to adjust the initial departure time:

tlate(min) =

{
(tArrival.h − tO.h) ∗ 60 + (tArrival.min − tO.min) + 1, tArrival.s > 0
(tArrival.h − tO.h) ∗ 60 + (tArrival.min − tO.min), tArrival.s = 0

Tnew =

 Tinitial − (
[
tlate(min)/tMetroInterval

]
+ 1) ∗ tMetroInterval , tlate(min)%tMetroInterval 6= 0

Tinitial −
[
tlate(min)/tMetroInterval

]
∗ tMetroInterval , tlate(min)%tMetroInterval = 0

(3)

where tlate(min) is the amount of time by which a person agent is late, measured in minutes;
tArrival.h is the hour of the arrival time; tO.h is the hour of the obligatory time; tArrival.min is the
minutes of the arrival time; tO.min is the minutes of the obligatory time, tArrival.s is the seconds of
the arrival time; Tnew is the new departure time in the next iteration; Tinitial is the departure time in
this iteration; tMetroInterval is the departure time interval of the metro; and

[
tlate(min)/tMetroInterval

]
is the floor function.

2© In the subsequent iterations, the metro capacity is set to a suitable value, and each person
agent faces the possibility of being late due to missing a metro trip. Note that the passage flow
simulation in our simulation tool is implemented as a queue simulation, in which each metro stop
is represented as a first-in first-out queue. Thus, person agents who were late in the last iteration
can beat other competitors and board a given metro train by setting out just a few minutes, even
one minute, early. The following formula gives the departure time adjustment:

Tx+1 = Tx + η (4)

where the Tx+1 is the departure time in iteration (x + 1), Tx is the departure time in iteration x
and η is the step length (minutes) of the departure time adjustment for person agents who were
late when going to work or missed metro trips when getting off work in the previous iteration.
Specifically, η has a negative value for the forward adjustment of the departure time when going
to work and a positive value for the backward adjustment of the departure time when getting
off work.

3© As this iterative adjustment is performed, the departure time becomes increasingly early for
those who are late, and the congestion is progressively reduced. The iterative process is stopped
when none of the person actors are late. At that point, all of the metro trains that previously
experienced congestion are full when leaving their stops.

(2) Getting off work

The strategies used in optimizing the departure time of each person agent when getting off
work are similar to those employed when going to work. Since there is no arrival time constraint,
the optimization simply shortens the travel time of each person agent. The departure times of the
person agents are deferred when congestion occurs, and the iteration is stopped when no stops
display congestion.
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4. Results and Discussion

The simulations are undertaken assuming different values for η, the step length of the departure
time adjustment shown in Formula 3. In this section, η is set to 1 min, 2 min and 4 min, and the
corresponding numbers of iterations are 201, 92 and 81. We present the departure time adjustments
that result in every iteration, as well as the number of person agents who arrive late, the occurrence of
congestion at metro stops and the average travel time, travel score and departure times for going to
work and getting off work for the person agents. The specific results for every iteration are shown in
the Supplementary Materials.

Because only 103,637 person agents are included in the simulation, whereas more than 500
thousand people take the metro during rush hour, the values of the metro attributes require appropriate
adjustment [26]. Tables 2 and 3 show the specific values of the metro attributes in reality and in the
simulation test.

Table 2. The values of metro attributes in reality.

Capacity Speed (m/s) Number of Cars Number of Doors Service Time Departure Interval

3000 12 6 30 6:00–23:00 5 min

Table 3. The values of metro attributes in the simulation test.

Capacity Speed (m/s) Number of Cars Number of Doors Service Time Departure Interval

600 12 2 10 6:00–23:00 5 min

4.1. The Number of Person Agents Who Are Late and the Occurrence of Congestion at Metro Stops

This section examines the number of person agents who arrive late when going to work and the
level of congestion at metro stops when getting off work. Figure 5 shows the results in every iteration
for different step lengths of departure time adjustment. Note that “HToW” (home to work) hereinafter
means going to work, whereas “WToH” (work to home) means getting off work. In addition, blue,
green and red lines indicate that the step lengths of departure time adjustment are 1 min, 2 min and
4 min, respectively. Overall, as the number of iterations increases, the number of person agents who
arrive late to work and the congestion at metro stops getting off work decreases to zero. The rate at
which congestion decreases is much faster than that of person agents who arrive late. In addition, as
the step length of departure time adjustment increases, the convergence speed also becomes faster.
The decreasing trend of the three results began in the second iteration because the metro capacity is set
to infinite in the first iteration, but is set to plausible values in the other iterations. Furthermore, the
number of person agents who arrive late displays small fluctuations as this quantity decreases to lower
values. At that time, a certain departure time adjustment may cause some person agents who arrived
at their workplace before the obligatory arrival time in the previous iteration to be late again. This
phenomenon results from the finite capacity of the metro system and competition among the person
agents; however, it is temporary and does not change the main decreasing trend.

4.2. Average Travel Score

This section examines the average travel score of person agents going to work and getting off
work. Figure 6 shows the results in every iteration for the different step lengths of departure time
adjustment. Overall, as the number of iterations increases, the average travel score of the person agents
increases. The average travel scores when getting off work is much better than that when going to
work because there is an obligatory arrival time when going to work; person agents who are late for
work will incur a severe penalty for this travel, whereas there is no such rule when getting off work.
In addition, as the step length of departure time adjustment increases, the convergence speed also
increases. The increasing trend of the three results begins in the second iteration, and there are slight
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fluctuations in the average travel score of going to work as it increases to a higher value, but these
fluctuations do not change the main rising trend. The reason for these fluctuations is similar to that
mentioned in Section 4.1.
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4.3. Average Departure Time and Travel Time

This section examines the average departure times and travel times of the person agents when
going to work and getting off work. Figure 7a–c show the results in every iteration for the different
step lengths of departure time adjustment. Overall, as the number of iterations increases, the average
travel time of the person agents decreases by approximately 3–5 min. It decreases from 45 min down
to 40 min when going to work and from 40 min down to 37 min when getting off work. The average
departure times of the person agents become earlier by approximately 15 min when going to work
and later by approximately 5 min when getting off work. Moreover, when the iteration ends, the
latest average departure time with no risk of being late when going to work is approximately 8:04,
and the earliest average departure time with no risk of missing metro trips when getting off work is
approximately 17:50. Interestingly, the average travel time of the person agents initially increases and
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then decreases. Although the average travel time displays the same trend for person agents going
to work and getting off work, these trends result from different underlying causes. When getting off
work, the increase in travel time is caused by the differences in metro capacity among the iterations.
Therefore, the incidence of congestion at metro stops is so high that the travel time of the person
agents in the second iteration is obviously longer than that in the first iteration. In the remainder of the
iterations, since the person agents that experience adjusted departure times experienced congestion
in the previous iteration and the direction of adjustment of the departure time is backward, their
travel time must decrease as the number of iterations increases. On the other hand, when going
to work, travel time rises in the second iteration for reasons that are similar to those that drive the
increase in travel time when getting off work, but a different and somewhat complex cause drives the
increase in travel time in the other iterations. Note that the person agents with adjusted departure
times arrived late in the previous iteration, and the adjustment direction of the departure time is
forward. At the beginning of the iteration, there are so many person agents who arrive late that
an adjustment causes only a fraction of the person agents to arrive at their workplaces before the
obligatory time. However, the arrival times of most of the person agents do not change, and their
travel time is extended by the step length. As the number of iterations increases, the number of person
agents who arrive late gradually decreases, resulting in reductions in the number of person agents that
receive adjustments, and the travel times of greater numbers of person agents are shortened, due to
the decrease in congestion at the metro stops. Thus, the average travel time begins to decrease, due to
the objectives we employ in the dynamic optimization of departure time.
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Figure 7. (a) The average departure times and travel times of the person agents when going to work
and getting off work in each iteration for a 1-min step length (η = 1 min); (b) The average departure
times and travel times of the person agents when going to work and getting off work in each iteration
for a 2-min step length (η = 2 min); (c) The average departure times and travel times of the person
agents when going to work and getting off work in each iteration for a 4-min step length (η = 4 min).
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4.4. Verification of Our Simulation Results

To verify our simulation results, we compare the differences in the average travel times and
average departure times when going to work and getting off work between simulation and reality.
Tables 4 and 5 show these differences between simulation and reality. The real data on the times at
which people board at and depart from metro stops were obtained from the Shenzhen Metro Group.
Moreover, we have calculated the average walking times from home to the origin metro stop and from
the destination metro stop to the workplace. These times are helpful for calculating the average travel
times without including walking time and the average times of boarding at and departing from metro
stops in the simulation. Table 6 presents these results. The abbreviations “HToS” and “SToW” stand
for “home to metro stop” and “metro stop to workplace”.

Table 4. The differences between simulation and reality when going to work.

Item
Average

Departure
Time

Average
Arrival
Time

Average Time of
Boarding at the

Origin Metro Stop

Average Time of
Departure from the

Destination Metro Stop

Average Travel
Time (Without
Walking Time)

Simulation 8:04:31 8:44:51 8:07:48 8:41:57 34 min 09 s
Reality 8:13:01 8:39:46 36 min 45 s

Difference −5 min 13 s 2 min 11 s −2 min 36 s

Table 5. The differences between simulation and reality when getting off work.

Item
Average

Departure
Time

Average
Arrival
Time

Average Time of
Boarding at the

Origin Metro Stop

Average Time of
Departure from the

Destination Metro Stop

Average Travel
Time (Without
Walking Time)

Simulation 17:50:05 18:26:54 17:52:59 18:23:37 30 min 38 s
Reality 18:21:46 18:56:12 34 min 26 s

Difference −28 min 47 s −32 min 35 s −4 min12 s

Table 6. The walking time results from our simulation. HToS, home to metro stop; SToW, metro stop
to workplace.

Item Average Walking Time (HToS) Average Walking Time (SToW) Average Total Walking Time

Simulation 3 min 17 s 2 min 54 s 6 min 11 s

The experiments reported in Sections 4.1 and 4.3 demonstrate the core heuristics of the replanning
strategy, namely that the average departure times of person agents when going to work should be
as late as possible with no risk of being late and the average departure times of person agents when
getting off work should be as early as possible with no risk of missing metro trips. With this strategy,
the average travel time also becomes shorter.

However, there are some implicit flaws in our optimization strategy; some person agents who are
represented as going to work are still caught in congestion when the iteration has ended. In addition,
this paper does not consider bus and car trips because of a lack of relevant data. Furthermore, the
computational efficiency of the simulation process is relatively low and should be improved by means
of parallel computing.

5. Conclusions

1. The method presented here represents a research method that is appropriate for the study of
urban resident trips using multi-agent technology. This method illustrates the flow of people in
any transportation facility at any time and can overcome the flaws of traditional mathematical
and statistical models, such as difficulties in describing complex traffic and trip environments.
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2. A strategy for performing dynamic optimization of the departure times of metro users has
been proposed to solve the two problems mentioned at the end of the Introduction. With this
strategy, the average travel time becomes shorter, and there is no premature arrival when going
to work and no late departure when getting off work. These results can provide the public with
suggestions regarding their travel plans and allow commuters more time to do other things, such
as sleeping, eating breakfast and shopping.

3. Furthermore, the severe congestion at some metro stops leads to long wait times during rush hour.
Thus, the existing metro resources are still having difficulties in meeting the actual travel demand.
These findings can provide suggestions to public transport management departments, such as
to shorten the departure intervals and accelerate the speeds of train operation. The different
parameter values of departure intervals and train speeds must be tested in our simulation tool to
find better results.

4. There are several aspects of the problem that should be investigated in future research. First,
large-scale simulations of other modes of travel, such as car or bus travel, should be tested in
our simulation tools to better optimize commuters’ departure times and travel routes. Second,
the optimal departure interval for each metro line during rush hour should be found to assist
in transport planning. It will increase the transportation capacity of metro system without
wasting transportation resources. Finally, the person agents’ travel strategies could be modified
by introducing game theory to attempt to explore the Nash equilibrium of commuters’ travel
strategies. It will be the best travel strategies for any commuter in theory when taking metro
during rush hour.
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