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Abstract: This paper presents a new fuzzy sliding mode controller (FSMC) to improve control
performances in the presence of uncertainties related to model errors and external disturbance (UAD).
As a first step, an adaptive control law is designed using Lyapunov stability analysis. The control
law can update control parameters of the FSMC with a disturbance estimator (DE) in which the
closed-loop stability and finite-time convergence of tracking error are guaranteed. A solution for
estimating the compensative quantity of the impact of UAD on a control system and a set of solutions
are then presented in order to avoid the singular cases of the fuzzy-based function approximation,
increase convergence ability, and reduce the calculating cost. Subsequently, the effectiveness of
the proposed controller is verified through the investigation of vibration control performances
of a semi-active vehicle suspension system featuring a magnetorheological damper (MRD). It is
shown that the proposed controller can provide better control ability of vibration control with lower
consumed power compared with two existing fuzzy sliding mode controllers.

Keywords: adaptive control; fuzzy sliding mode control; disturbance estimator; semi-active
suspension; vibration control; magneto-rheological damper

1. Introduction

In a practical environment, an enhancement of control performances in the presence of
uncertainties related to model errors and external disturbance (UAD) is an important issue in various
fields, as it affects vibration control in vehicle suspension systems, and the accurate tracking control of
robotic systems. In order to develop more advanced control methods to deal with this issue, many
approaches have been proposed for last two decades, including fuzzy logics (FL) [1–6], sliding mode
techniques [1,7–14], a compensator design for UAD [15–17], and hybrid control methods [18–23].
Among those, the sliding mode control (SMC) is recognized as one of the best control techniques for
control systems subjected to UAD. The typical advantages of SMC include implementation simplicity,
robustness against uncertainties, and capability to deal with UAD. In addition, it is easy to coordinate
with other mathematical tools [14,24]. To exploit SMC, firstly, a switching surface or sliding surface
needs to be chosen based on the specific control aim. The system is then controlled to direct towards
the sliding surface in the first phase (approaching phase); then, it upholds the switching surface in
the second phase (sliding phase). If the dynamic process is stable, the state variables of the system
are maintained on this switching surface [25,26] regardless of the inherent dynamics. The ability to
reach the sliding surface and keep system states on this surface indicates the performance quality of
the SMC. In various systems, this ability can be accomplished by integrating the SMC with the FL,
named, a fuzzy sliding mode controller (FSMC) [27–31]. As is well known, the fuzzy system is a kind
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of approximated function with a high degree of flexibility. This inherent feature has meant that FL is
used as a powerful tool in many control approaches [22,23,32].

Through using the combination of the SMC and FL, the salient advantages of each control strategy
are kept during control action. For example, the fuzzy system is used to approximate unknown
functions, while the sliding mode approach adds the possibility of establishing stable adaptation
laws [32]. Therefore, as a type of robust controller with strong points, FSMC has been widely used
in many application fields [27–31]. In addition, the design of a FSMC and estimator (or observer) for
external disturbances can be independently carried out [15,33]. An adaptive fuzzy SMC for nonlinear
active suspension vehicle systems that was subjected to uncertainty due to time-variation of the sprung
mass was studied in [25], in which the Takagi–Sugeno (T–S) fuzzy model was utilized to handle the
uncertainty. More practical systems whose control signals are based on the state variables have been
used in several research works [1,12,18,23,31]. For example, Mohammad et al. showed an optimal
adaptive fuzzy sliding mode controller for a class of nonlinear systems subjected to UAD [12], and the
use of FL systems to approximate a plant’s unknown functions was proposed in [18,23,31]. Mojtaba et al.
have shown that controlling the system over the network may introduce different constraints and
conditions [32]. Some of these constraints and conditions may cause delays in control signal, data
quantization, safety, and security.

One significant issue for designing a combined (or hybrid) controller using more than two
different control techniques is the time varying rate of UAD. In the previous work by the authors of
this current work, it was proven that when the time varying rate of UAD is increased, the quality of
the controller is reduced [1,2]. Moreover, the control system could become unstable due to external
disturbances. In order to resolve the problems caused from the high rate of time-varying parameters,
in this work, a new FSMC system is formulated, and its effectiveness is shown through experimental
implementation to a semi-active vehicle suspension system. Consequently, the technical novelty of
this work is to propose a new FSMC associated with a disturbance estimator (DE) to enhance vibration
control performance under severe operating conditions. Therefore, the main technical contributions of
this work are summarized as follows.

(1) A new FSMC with a disturbance estimator DE (named DE-FSMC) that can adaptively identify
plants via the online without complete knowledge about dynamic characteristics is formulated.
The proposed controller has several features compared with the previous FSMC. One of the main
difference is that the difficulty caused from the high rate time-varying parameters can be resolved
by utilizing compensative parameters, while the previous FSMC can work for only the slow rate
time-varying parameters. In addition, the calculating cost of the estimating parameters is less than
that of the previous FSMC.

(2) In the design process, the UAD is separated into two groups related to uncertainties and
external disturbances in order to deal with them individually. The first group is estimated by the fuzzy
structure of the FSMC, while the second by the DE. Subsequently, an adaptive control law based on
Lyapunov stability analysis is formulated to update the parameters of the DE-FSMC so that both the
closed-loop stability and the finite-time convergence of the tracking error are guaranteed.

(3) In order to validate the effectiveness of the proposed control method, an experimental
investigation is undertaken by adopting a semi-active vehicle suspension system installed with
magnetorheological damper (MRD). Then, a comparative work between the proposed control method
and two existing fuzzy sliding mode controllers is undertaken.

2. Problem Formulation

In order to design the proposed controller, the following equation is adopted.{
x(n) = f (x, t) + g1(x, t)u(t) + g2(t)d(t)
y = x

(1)
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In the above, d(t) is the unknown time-dependent external disturbances. In Equation (2), f (.)
and g1(.) become unknown nonlinear functions, which need to be identified. In this work, a new
type of control law via estimating the d̂(t) of d(t) and the f̂ (.) and ĝ1(.) of f (.) and g1(.) is built.
By this way, the effectiveness of estimating UAD can be improved, since the time varying rate of
d(t) is low. This approach has two combined phases, as shown in Figure 1. This figure represents
a basic controller called a B-controller and a disturbance estimator DE. Thus, the control signal u(t)
for the plant is to be totalized as follows: u(t) = us(t) + d̂(t). In order to construct the total controller,
the FL and SMC methods are to be used, in which the unknown functions f (.), g1(.) in Equation (1)
are approximated by the fuzzy structures. It is noted that although d(t) is ignored, the impact of
model error on the system during the calculation process is compensated by the fuzzy structure of the
B-controller. In order to investigate the DE for estimating d̂(t) of d(t), the known functions f0(.) and
g0(.) are utilized.
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The second issue relates to the function approximation. In order to establish f̂ (.) and ĝ1(.),
a sliding surface S(x) defined via the error e(t) between x(t) and xd(t) is formulated as follows [12,18]:

us(t) =
1

ĝ1(x, t)

(
− f̂ (x, t) + xd

(n) + F(e(t), S)− ρG(S, t)
)

(2)

where, F(e(t), S) denotes the expression related to e(t) and S; G(S, t) is the function of S and t; and ρ is
the gain parameter. It can be observed from the equation that since ĝ1(x, ϕg) is generated online, there
is no guarantee such that ĝ1(x, ϕg)

−1 remains during the operating process. This method is liable to
appear in singular cases in the calculating process. In order to avoid the singular cases, in this work, a
solution via the role of ε0λT(x)λ(x) will be proposed (refer to Theorem 1). The last issue relates to the
calculating cost. The fuzzy gain ρ presented in [12] or [18] is an essential option to reduce the chattering
phenomenon. This, however, causes the increment of the calculating time, which results in increased
time delay. Due to this aspect, an adaptive gain ρad, which can be calculated directly and updated
adaptively based on the convergent status of the sliding surface, S(x)→ 0 , will be determined in
this work.

3. Design of a New FSMC

3.1. Structure FSMC

Consider control system (1) without external disturbance. Let e(t) be the error vector expressing
the difference between the state vector and the corresponding desired state vector as follows.

e(t) = x(t)− xd(t) = [e,
.
e, . . . , e(n−1)]

T
∈ Rn (3)
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Then, a sliding surface S(x) can be defined using the error vector as follows.

S(x) = a1e + a2
.
e+, . . . ,+an−1e(n−2) + e(n−1) (4)

where, a = [a1, . . . , an−1]
T is the vector of Hurwitz polynomial H = sn−1 + an−1sn−2 + . . . + a1, which

has all poles that are to be located in the left half of the complex coordinate plane. In the polynomial, s
is the Laplace operator. Then, by assuming the initial error is zero, the control issue can be considered
as determining the control law u(t) to which S(x(t))→ 0 and then, e(t) is remained on the sliding
surface during system’s operating process. Based on the state vector, the following Lyapunov candidate
function is chosen:

V0(x) =
1
2

S(x)2 (5)

Then, the time derivation of this function along the error trajectory is expressed as follows.

d
dt

V0(x) = S(x)
d
dt

S(x) = S(x)
.
S(x) (6)

From the above equation, the control law u(t) is supposed to design so that the following equation
is satisfied. .

S(x) = −ρsgn(S(x)) (7)

In the above, ρ is the positive coefficient. This is the sufficient condition to guarantee that
e(t)→ 0 or x→ xd when t→ ∞ . As mentioned earlier, in the process of calculating us(t), the
external disturbance d(t) is ignored. From Equations (7), (4), (3), and (1), the following equation
is obtained. .

S(x) = −ρsgn (S(x)) = ∑ n−1
i=1 aie(i) + f (x, t) + g1(x, t)us(t)− xd

(n). (8)

Hence, the feedback control signal is such that the state x of the closed-loop system will follow
the desired state xd, and the following controller can be inferred from Equation (8).

us(t) = g1(x, t)−1
(
−∑ n−1

i=1 aie(i) − f (x, t)+xd
(n) − ρsgn(S(x, t))

)
. (9)

To calculate us(t) in Equation (9), it is necessary to estimate g1(x, t), f (x, t), and
h(x, t) = ρsgn(S(x)). In this work, instead of using the fuzzy appropriations given in [12,18],
an adaptively smooth approach for h(x, t) is used. It is noted here that since the coefficient ai of the
polynomial S(x) is chosen to satisfy the Hurwitz stability, S(x(t))→ 0 , and hence the error becomes
zero by an appropriate controller with the assumption that the initial error is zero.

Now, to estimate g1(x, t), f (x, t), fuzzy systems MISO (Multiple Inputs, Single Output), are used
to establish ĝ1(x, t), f̂ (x, t) with a proposed solution for avoiding the singular case of ĝ1(x, ϕg)

−1.
First, based on the value S(x) and its required boundary layer, Φ, the initial function of h(x, t) is
converted as follows.

h(x, t) = ρ sgn(S(x)), or h(x, t) = ρadsat(S(x)/Φ) (10)

where, sat(S/Φ) =

{
sgn(S/Φ) i f |S/Φ| ≥ 1
S/Φ i f |S/Φ| < 1

.

In order to avoid the chattering phenomenon, the function of sat(.) is used instead of sgn(.).
Besides, to reduce the calculating cost, an adaptive gain ρad is determined as follows.

ρad =

 max
(

η1Ω0, η2

(
ε + exp

(
η3S(x)sgn(

.
S(x))

)))
i f |S(x)| ≥ Φ

max
(

η1
Ω0Φ
|S(x)|+ε

, η2

(
ε + exp

(
η3S(x)sgn(

.
S(x)

)) )
i f |S(x)| < Φ ,

(11)
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where, η1 > 1, η2, 3 ≥ 1, and 0 < ε << 1 are adaptive coefficients chosen by the designer. The building
update law (11) is summarized in Theorem 1. To establish ĝ1(x, t), f̂ (x, t), a fuzzy system MISO is used
as following:

R(i) : IF x1 is Ai
1, AND . . . , AND xn is Ai

n
THEN y is Bi (i = 1 . . . m)

(12)

where, Ai
j , j = 1 . . . n, is the fuzzy set in the input space related to the physical parameter xj and the i-th

fuzzy law, while Bi is the corresponding fuzzy set in the output space. Then, using the center-average
defuzzification, the output is calculated as below.

y(x) =
(
∑ m

i=1yiµAi (x)
)

/∑ m
i=1µAi (x) (13)

In the above, µAi (x) is the membership value in the input fuzzy space of x(t). If the product law,
Ai = Ai

1 × . . .× Ai
n, is used, then µAi (x) = ∏n

j=1 µAi
j
(xj). Thus, Equation (13) becomes

y(x) =
(

∑ m
i=1yi∏ n

j=1µAi
j
(xj)

)
/∑ m

i=1∏ n
j=1µAi

j
(xj) (14)

The value yi, i = 1 . . . m, is determined by the well-known methods via the output fuzzy sets.
For simplicity, the Singleton method is used. Then, shortly, Equation (14) is re-written as follows.

y(x) = ϕTλ(x) (15)

ϕ = [y1, . . . , ym]
T

λ(x) =
[
λ1(x), . . . , λm(x)

] T

λi(x) =
(

∏ n
j=1µAi

j
(xj)

)
/∑ m

i=1∏ n
j=1µAi

j
(xj)

3.2. Control Law of FSMC

Theorem 1. Let ĝ1(x, ϕg) = ϕg
Tλ(x) and f̂ (x, ϕ f ) = ϕ f

Tλ(x) be fuzzy approximate functions of g1(x, t)
and f (x, t) in Equation (9) based on the fuzzy logic system (FLS) in (12), respectively. Let ϕ∗f and ϕ∗g be the
optimal vectors of ϕ f and ϕg as below:

ϕ∗f = argmin
ϕ f⊂= f

(
sup

∣∣∣ f̂ (x, ϕ∗f )− f (x, t)
∣∣∣) (16)

ϕ∗g = argmin
ϕg⊂=g

(
sup

∣∣∣ĝ1(x, ϕ∗g)− g1(x, t)
∣∣∣) (17)

where, = f =
{

ϕ f |‖ϕ f ‖ ≤ M f

}
, =g =

{
ϕg|‖ϕg‖ ≤ Mg

}
; M f and Mg are design parameters. Let Φ be a

required boundary layer of the sliding surface, and Ω(x, ϕ f , ϕg) be a function defined as follows.

Ω(x, ϕ f , ϕg) = f (x, t)− f̂ (x, ϕ∗f ) +
(

g1(x, t)− ĝ1(x, ϕ∗g)
)

us(t) (18)

Assume that
∣∣∣Ω(x, ϕ f , ϕg)

∣∣∣ ≤ Ω0 is the bounded parameter. A control law us(t) is specified as follows:

us(t) =
(

ĝ1(x, ϕg) + ε0λT(x)λ(x)
)−1

(
−

n−1

∑
i=1

aie(i) − f̂ (x, ϕ f ) + xd
(n) − ρad sat(S(x)/Φ)

)
(19)
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where, 0 ≤ ε0 << 1. It is the sampling time of the control system if ĝ1(x, ϕg) = 0, otherwise ε0 = 0;
parameters ϕg, ϕ f , and ρad are updated as follows:

.
ϕ f = S(x)λ(x) (20)

.
ϕg =

{
S(x)λ(x)us(t)− ∆λ(x) i f ĝ1(x, ϕg) = 0
S(x)λ(x)us(t) otherwise

(∆λ(x) = λ(x)(r) − λ(x)(r−1)
(21)

ρad = max
(

η1Ω0, η2

(
ε + exp

(
η3S(x)sgn(

.
S(x)

)))
i f |S(x)| ≥ Φ

ρad = max
(

η1
Ω0Φ
|S(x)|+ε

, η2

(
ε + exp

(
η3S(x)sgn(

.
S(x)

)) )
i f |S(x)| < Φ ,

(22)

In the above, η1 > 1, η2, 3 ≥ 1, and 0 < ε << 1 are adaptive coefficients chosen by the designer; r
denotes the r-th sampling time. If the control system (1) is controlled by the control law us(t) in (19) with the
updated laws of (20)–(22), then the process of e(t)→ 0 when t→ ∞ . This indicates that the control system is
asymptotically stable in the sense of Lyapunov.

Proof. Using the time derivative of (4) and x(n) from (1) with a note that in this phase, the controller
is designed without any considered disturbance, d(t) = 0; u(t) = us(t), and then the followings
conditions are given.

.
S(x) =

n−1

∑
i=1

aie(i) + x(n) − xd
(n) (23)

.
S(x) =

n−1

∑
i=1

aie(i) + f (x, t) + g1(x, t) us(t)− xd
(n)

From (19), (22), and (23), the following equation is obtained.

.
S(x) =

(
f̂ (x, ϕ∗f )− f̂ (x, ϕ f )

)
+
(

ĝ1(x, ϕ∗g)− ĝ1(x, ϕg)− ε0λT(x)λ(x)
)

us(t)

−ρad sat(S(x)/Φ) + Ω(x, ϕ f , ϕg)
(24)

Substituting ĝ1(x, ϕg) = ϕg
Tλ(x), f̂ (x, ϕ f ) = ϕg

Tλ(x) and their optimal functions into (24), the
following is obtained.

.
S(x) = ψT

f λ(x) + ψT
g λ(x)us(t)− ρad sat(S(x)/Φ) + Ω(x, ϕ f , ϕg)

ψ f = ϕ∗f − ϕ f ; ψg = ϕ∗g − ϕg − ε0λ(x).
(25)

Then, choose a Lyaponov function as below.

V1 =
1
2

S(x)2 +
1
2

ψ f
Tψ f +

1
2

ψg
Tψg (26)

The time derivative of the above function is determined as follows.
.

V1 = S(x)
.
S(x) + ψ f

T
.
ψ f + ψg

T
.
ψg

= ψ f
T
(

S(x)λ(x) +
.
ψ f

)
+ ψg

T
(

S(x)λ(x) us(t) +
.
ψg

)
−ρad S(x)sat(S(x)/Φ) + S(x)Ω(x, ϕ f , ϕg)

(27)

Differentiating (27) with respect to time, the followings equations are achieved.

.
ψ f = −

.
ϕ f (28)
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.
ψg = − .

ϕg − ε0
.
λ(x) ∼= −

.
ϕg − ε0

∆λ(x)
∆t

(29)

In case ĝ1(x, ϕg) 6= 0, then ε0 = 0, so
.
ψg = − .

ϕg. With reference to (28) and (29), as well as the
update laws (20), the following result is then obtained.

.
V1 = −ρad S(x)sat(S(x)/Φ) + S(x)Ω(x, ϕ f , ϕg). (30)

In the case of ĝ1(x, ϕg) = 0, without losing generality, if ∆t in (30) is chosen to be the sampling
time (meaning ∆t = ε0), then (29) becomes as below.

.
ψg = − .

ϕg − ∆λ(x) (31)

Therefore, from (27), (28), and (31), the following equation is obtained.

.
V1 = ψ f

T
(

S(x)λ(x)− .
ϕ f

)
+ ψg

T
(

S(x)λ(x)us(t) −
.
ϕg − ∆λ(x)

)
−ρad S(x) sat(S(x)/Φ) + S(x)Ω(x, ϕ f , ϕg).

(32)

In fact, there are two cases related to (32), as follows.

.
V1 = −|S(x)|ρad + S(x)Ω(x, ϕ f , ϕg) ≤ |S(x)|(−ρad + Ω0), if|S(x)/Φ| ≥ 1

.
V1 = − S2(x)

Φ ρad + S(x)Ω(x, ϕ f , ϕg) ≤ |S(x)|
(

Ω0 − |S(x)|Φ ρad

)
, if|S(x)/Φ| < 1

(33)

On the other hand, a necessary condition for
.

V1 < 0 is obtained from the above equation.

ρad_1 =

{
η1Ω0 , η1 > 1, i f |S(x)| ≥ Φ
η1

Ω0Φ
|S(x)|+ε

, 0 < ε << 1, i f |S(x)| < Φ.
(34)

With reference to (7),
.

V0(x) = S(x)
.
S(x) is another necessary condition related to the chattering

phenomenon, and the convergence rate should be taken into account based on the sliding mode
condition: S(x)

.
S(x) < 0 (see Remark 1 for more details). From the second condition, the following

two aspects are specified; (i) If S(x)
.
S(x) < 0, ρad should be reduced to prevent the control system

from the chattering phenomenon; (ii) Conversely, if S(x)
.
S(x) > 0, ρad should increase quickly to make

|S(x)| go down, and hence make e(t)→ 0 fast. These above constraints can be expressed by the
following expression.

ρad_2 = η2

(
ε + exp

(
η3S(x)sgn(

.
S(x))

))
, η2, 3 ≥ 1, 0 < ε << 1 (35)

Then, the following condition satisfies the two necessary conditions abovementioned.

ρad = max(ρad_1, ρad_2), (36)

This completes the proof of Theorem 1. It is remarked here that the proof of Theorem 1 can be
completed by choosing other Lyapunov functions. �

Remark 1. Equation (36) is the necessary condition forV1 → 0 in (28). Then, S(x)→ 0 and the optimal fuzzy
structures of ĝ1(x, ϕg) = ϕg

Tλ(x) and f̂ (x, ϕ f ) = ϕ f
Tλ(x) are established. This one, however, does not cover

the special features of the convergence process such as the chattering status and the convergence rate. These
aspects are resolved by the second necessary condition given in (37) to improve the convergence process quality.
On the other hand, with reference to control law (23), in which ε0 is the sampling time of the control system,
the following condition should be considered: P = ĝ1(x, ϕg) + ε0λT(x)λ(x) 6= 0 ∀x. This is a guarantee for
avoiding the singular case of ĝ1(x, ϕg)

−1 in (3) to improve the control performances of the control laws.
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4. Design of Disturbance Estimator

In this section, the disturbance estimator (DE) for d(t) in system (2) is designed such that
d̂(t)→ d(t) . In order to undertake this, Equation (2) is re-written as follows.

.
x1 = x2

...
.
xn−1 = xn
.
xn = x(n) = f0(x, t) + g01(x, t)u(t) + g02(t)d(t)
y = x1

(37)

In a compact form, this equation is re-written as follows.{ .
x = F(x, t) + G1(x, t)u(t) + G2(x, t)d(t)
y = x1

F(x, t) = [x2, x3, . . . , xn, f0(x, t)]T ∈ Rn

G1(x, t) = [0, . . . , 0, g01(x, t)]T ∈ Rn

G2(x, t) = [0, . . . , 0, g02(t))]
T ∈ Rn.

(38)

Then, the estimate d̂(t) is expressed as follows [33].

d̂(t) = z(x, t) + l(x)x (39)

In the above, a vector of constant parameters l(x) needs to be chosen so that the following error
function converges to zero.

E(t) = d(t)− d̂(t) (40)

In Equation (41), z(x, t) is the internal state of the nonlinear observer. The function z(x, t) is then
estimated as follows:

.
z(x, t) = −l(x)(G1(x, t)u(t) + G2(x, t)p(x) + F(x, t))− l(x)G2(x, t)z(x, t)

p(x) = l(x) x.
(41)

In order to design DE, consider control system (2), which is re-written as (40). If the estimate d̂(t)
given in (41) with a constant parameter vector l(x) = [l1, . . . , ln] is used, then ∀li (i = 1 . . . n) ∈ < and
ln > 0, E(t)→ 0 when t→ ∞ . Thus, this is a stable process. This can be proved as follows.

Through considering the time derivative of (42) with Equations (41) and (40), the following
equation is obtained.

.
E(t) =

.
d(t)−

.
d̂(t) =

.
d(t)− .

z(x, t)− ∂p
∂x

.
x

=
.
d(t)− .

z(x, t)− l(x)
.
x

=
.
d(t)− .

z(x, t)− l(x)(F(x, t) + G1(x, t)u(t) + G2(x, t)d(t))

(42)

By substituting
.
z(x, t) from (43) into (44) and taking (42), the following equation is achieved.

.
E(t) =

.
d(t) + l(x)G2(x, t)(z(x, t) + p(x)− d(t))

.
E(t) =

.
d(t)− l(x)G2(x, t)E(t)

(43)
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If the time varying rate of the uncertainty is low, Equation (45) can be re-written as below.

.
E(t) + l(x)G2(x, t)E(t) ∼= 0.

l(x) = [l1, . . . , ln], li ∈ <, i = 1 . . . n,
G2(x, t) = [0, . . . , 0, g02(t))]

T ∈ Rn
(44)

Thus, Equation (46) becomes the following.

.
E(t) + ln g02(t)E(t) ∼= 0 (45)

Due to g02(t) > 0, it is inferred from (47) that ln > 0 is the sufficient condition for E(t)→ 0 or
d̂(t)→ d(t) when t→ ∞ . It means that ∀li ∈ <, i = 1 . . . n, and ln > 0, E(t)→ 0 is a stable process.
Based on this, the DE is designed as follows.

d̂(t) = z(x, t) + p(x)
p(x) = ∑n

i=1 lixi, li ∈ <, i = 1 . . . n, ln > 0
(46)

.
z(x, t) = −ln g02(t)z(x, t) − l(x)K, l(x) = [l1, . . . , ln],

K = [ x2, . . . , xn, (g01(x, t)u(t) + g02(t)p(x) + f0(x, t))]T . This makes the system (2) be stable
system utilizing the DE. It is remarked that for the vector l(x), if the stable condition of the process
is E(t)→ 0 or d̂(t)→ d(t) when t→ ∞ is considered, the conditions l(x) = [0, . . . , 0, ln] ∈ Rn and
ln > 0 are appropriate options. If both the stable condition and the optimal solution are considered
together, the conditions ∀li ∈ <, i = 1 . . . n, and ln > 0 should be utilized. The larger value of ln makes
the convergent rate increase.

5. Application to Vehicle Suspension System

5.1. Experimental Apparatus

Recently, many research works have studied active suspension systems [34–37] and semi-active
suspension systems in order to enhance both ride comfort and road-holding properties. Even though
the proposed controller can be applicable to an active suspension system, in this work, the effectiveness
of the formulated DE-FSMC is validated by adopting a semi-active vehicle suspension system equipped
with a MRD, as shown in Figure 2. The first component is the suspension consisting of a MRD with the
damping coefficient cs, and the linear spring with the stiffness coefficient ks. The second component is
the controller for damping the force control of the MRD. The third one is the inverse MRD using the
adaptive neuro-fuzzy inference system (ANFIS) (named ANFIS-I-MRD). For the car, the chassis mass
(also called the sprung mass) ms(t) consists of the load, passengers, and impacting factors from the
surrounding environment such as the wind force, which is the time-varying parameter. The constant
parameter mu denotes the unsprung mass. The vertical displacement of the sprung and unsprung
mass are denoted by zs(t) and zu(t), respectively, while that of the road profile is denoted by zy(t). It is
assumed that the tire deformation is very small, and hence zu(t) ≡ zr(t). In this test, the disturbance
status is expressed by the random change of the chassis mass, ms = 246.5± 35 kg. The parameters of
the suspension system are given in Table 1. When the suspension system operates, the chassis mass is
excited to vibrate due to the vertical vibration of the wheel. In order to reduce the chassis vibration,
a current I(t) estimated by the controller needs to be applied to the MRD in order to generate required
the active force u(t), such that the vibration of the chassis mass is controlled. Hence, the ability of the
proposed controller is evaluated via the chassis acceleration. In order to specify I(t) via u(t) and x(t),
the ANFIS-I-MRD needs to be established.
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Figure 2. Control logic associated with the semi-active vehicle suspension system with
a magnetorheological damper (MRD). ANFIS: adaptive neuro-fuzzy inference system; FSMC: fuzzy
sliding mode controller.

Table 1. The principal parameters of the suspension system.

ms = 246.5± 35 kg

ks = 2.8× 104 N/m

cs = 3000 Ns/m

Figure 3 presents a quarter suspension system consisting of four main equipment groups as
follows. The suspension system consists of the linear spring ks = 2.8× 104 N/m and the MRD with the
damping coefficient of cs = 3000 Ns/m corresponding to the zero current. The hydraulic unit generates
excitations with different frequencies and amplitudes. The mechanical structure is constituted of the
upper bed, lower bed, and four parallel vertical cylindrical pillars which are used to fix the suspension
system, wheel, sprung mass, and sensors. The control system essentially consists of a computer,
an analog to digital/digital to analog (AD/DA) converter (dSPASE DS1104, Paderborn, Germany),
a current amplifier, and sensors. The sprung mass is set by ms = 246.5± 35 kg, including the mass
of the upper bed. The relative displacement between the sprung and unsprung mass is measured by
LVDT (linear variable differential transformer), while the acceleration of the chassis mass is measured
by an accelerometer. The signal from the sensors transmits to the computer via the AD converter.
Conversely, the control signal from the computer transmits to the MRD via the DA converter and
amplifier to control the damping force.
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LVDT: linear variable differential transformer.

5.2. Building of ANFIS-I-MRD

The ANFIS-I-MRD is built in two steps. The first step is to build data sets that express the
dynamic response of the MRD. The second step is to identify the MRD via the obtained measuring
database. For this database, the input–output signal of the i-th data sample is set by [drei vrei fMRi ]− [Ii].
drei = (zs − zr)i and vrei = (

.
zs −

.
zr)i denotes relative displacement and velocity between the chassis

mass and road. Ii is the input current to be supplied to MRD, while fMRi is the produced damping
force of the MRD due to the input current. Figure 4 presents the time histories of the filed-dependent
damping forces that are to be used as the database. Using this data set and the algorithm for creating
ANFIS in a data potential field, named ANFIS-PF [2], a process of training ANFIS is carried out.
The trained ANFIS works as the ANFIS-I-MRD in the control system.
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5.3. Formulation of DE-FSMC

The controller DE-FSMC is a combination of the B-controller, which directly indicates the FSMC
and the DE. With reference to the proposed theory, as well as the structure and operating principle of
the suspension system as abovementioned, these two parts are established. The state space model is
written as follows.

x(t) = [x1, x2]
T = [zs,

.
zs]

T (47)
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From Figure 2, the spring and damping forces are denoted by functions of the displacement and
velocity parameters as follows.

fs = ks(x1 − zr), fd = cs(x2 −
.
zr) (48)

The dynamic response of the sprung mass is then written as below.{
ms(t)

..
zs + ks(x1 − zr) + cs(x2 −

.
zr) = −u(t) + d(t)

y = zr
(49)

Then, from (51), Equation (1) is re-written for the vehicle suspension system as follows.{
zs

(2) = f0(x, t) + g01(x, t)u(t) + g02(t)D(t)
y = x1

(50)

f0(x, t) = − 1
ms(t)

(
ks(x1 − zr) + cs(x2 −

.
zr)
)
, g01(x, t) = −1/ms(t), g02(t) = 1/ms(t)

By applying Equation (2) to the suspension system, the following equations are obtained.{
zs

(2) = f (x, t) + g1(x, t)u(t) + g2(t)d(t)
y = x1

(51)

In the above, g2(t) = 1/ms(t). In (52), u(t) = us(t) + uc(t), in which control law (20) and update
laws (21)–(25) are used to calculate us(t) using the parameters given in Table 2. On the other hand,
uc(t) is estimated by the DE as follows. It is noted that the values of [l1, l2] are set by [1.51, 24.4] in
this work.

.
x =

[ .
x1

.
x2
]T

= F(x, t) + G1(x, t)u(t) + G2(t)d(t) (52)

F(x, t) = [x2, f0(x, t)]T =
[
x2, −

(
ks(x1 − zr) + cs(x2 −

.
zr)
)
/ms(t)

]T

G1(x, t) = [0, g01(x, t)]T = [0, −1/ms(t)]
T ,

G2(x, t) = [0, g02(t)]
T = [0, 1/ms(t)]

T

l(x) = [l1, l2], p(x) = l1x1 + l2x2,
.
z(x, t) = −l2g02(t) z(x, t)− l(x)K,

K =

[
x2

g01(x, t)u(t) + g02(t)p(x) + f (x, t)

]

Table 2. Parameters of the fuzzy sliding mode controller (FSMC).

Sliding Surface S = 10e +
.
e

η1 1.51
η2 1.73
Φ 1
Ω0 150

xd = [x1, x2]
T = [zs,

.
zs]

T
[0, 0]T

Number of fuzzy laws 49

5.4. Results and Discussion

The effectiveness of the proposed DE-FSMC is validated through a comparative work between
the proposed controller and an existing adaptive fuzzy sliding mode controller (called the AFSM).
For the comparison, the DE-FSMC without the control action (called the passive) and an adaptive fuzzy



Appl. Sci. 2017, 7, 1053 13 of 20

sliding mode controller proposed in [12] are considered. In this work, in order to show quantitative
results, the maximum magnitude of chassis acceleration Aa is defined and used.

Aa = max
i=1...P

∣∣∣..zi
s

∣∣∣ (53)

where, P is the number of samples and
..
zs is the vertical acceleration of the chassis. Two road profiles

used for surveys are the bump and sinusoidal type with disturbance surfaces. The MRD is excited to
make vibrations with an amplitude of 0.0861 (m) and an angular frequency of 1.9134 (rad/s). It is noted
that the speed of the car crossing over the bump profile is decided by 2.34 km/h. The vertical
acceleration on the bump road profile is shown in Figure 5. It is identified that the maximum
acceleration magnitude Aa defined in Equation (80) related to the DE-FSMC is 0.0190 m/s2, which
is smaller than that of the fuzzy sliding mode controller with disturbance observer (FSMCD) and
AFSM, whose values are 0.0256 and 0.0374 m/s2, respectively. It is noted that the fuzzy sliding mode
controller with disturbance observer (FSMCD) used in this work as a comparative controller is the
modified one developed in [1], in which the disturbance observer is also used like the proposed
one. The AFSM used in this work is the modified one proposed in [30] to adapt to the semi-active
suspension system. The numerical results of acceleration identified from the figure are given in Table 3.
Figure 6 and Table 3 reflect the dynamic response delay τ between the chassis vertical acceleration
signal and the excitation signal coming from the bump-road surface analyzed via cross-correlation
function (CCF). The maximum value of τ is identified as 1.869 (s) for the proposed DE-FSMC, while
the minimum of τ is calculated by 0.264 (s) for the passive suspension. This indicates that when
controlled by the proposed DE-FSMC, the vibration of the chassis is less sensitive to the road surface
status compared with the passive AFSM and FSMCD. This is an advantage for controlling vibration
by avoiding the resonant status. This aspect is more clearly seen via the ratio of spectral coherence
Cxy provided in figfig:applsci-07-01053-f007 and Table 4. The spectral coherence can identify the
frequency-domain correlation between two databases. The values of Cxy tending towards zero indicate
that the corresponding frequency components are uncorrelated, and conversely for the tending towards
1 [38,39]. For the bump-road profile, Cxy between the chassis vertical acceleration signal and the
excitation signal coming from the road surface is shown in Figure 7. The maximum values (Cmax

xy )
and the corresponding frequency ( fCmax

xy ) related to each method are given in Table 4. The obtained
results indicate that the minimum value of Cmax

xy is 0.1269 at the frequency of 4.28 Hz in the proposed
method. Besides, fCmax

xy deriving from the surveyed controllers is located in a narrow range of low
frequencies. Figure 8 presents the control force of each controller. It is clearly seen that the proposed
controller can provide the better control performance with the similar magnitudes of control force as
those of the FSMCD and AFSM.
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Table 3. Bump road: the maximum acc. and time delay of acc. response. AFSM: adaptive fuzzy sliding
mode; FSMCD: fuzzy sliding mode controller with disturbance observer.

Controller Aa (m/s2) τ (s)

Proposed 0.0190 1.869
FSMCD 0.0256 1.321
AFSM 0.0374 0.905
Passive 0.2394 0.264
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Table 4. Bump road: the maximum value of Cxy and the corresponding frequency.

Controller Aa (m/s2) τ (s)

Proposed 0.1269 4.28
FSMCD 0.1985 5.05
AFSM 0.2175 5.45
Passive 0.9208 47.08
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As a second investigation, the sine-wave road profile is considered as follows [40].

z(t) = Z0 sin(ω t) + random(0; 0.001) (m)

ω = 2π
D V

(54)

In this equation, z(t) is the vertical displacement of the road surface; Z0 and D respectively
are the amplitude and cycle of the sine-wave; V denotes the velocity of vehicle along the road; and
random(0; 0.001) denotes the random value belonging to (−0.001, +0.001). Related to this road
profile, random(0; 0.001) indicates the road disturbance surface. By choosing Z0 = 0.07 m, D = 10 m,
and V = 30 km/h, the road profile is achieved, as shown in Figure 9. In order to produce this road
profile, an amplitude of 0.07 (m) with an excitation frequency of 0.8333 Hz is used, which is equivalent
to the angular frequency of 5.236 rad/s. Figures 10–12 and Tables 5 and 6 present the measured results
under the sinusoidal road profile. Figure 10 and Table 5 clearly show that the acceleration of the
chassis mass is greatly reduced by activating the proposed controller. The maximum acceleration
amplitudes Aa of the DE-FSMC, AFSM, and the passive system is identified by 0.3642, 0.5742, 0.7928,
and 3.6587 m/s2, respectively. Table 5 shows the dynamic response delay τ between the chassis
vertical acceleration signal and the excitation signal coming from the sine-road surface analyzed via
CCF. The maximum value of τ is determined by 2.545 (s) from the proposed DE-FSMC, while the
minimum of τ is determined by 0.793 (s) from the passive suspension. Figure 11 and Table 6 provide
the ratio of spectral coherence Cxy, showing its maximum value Cmax

xy , and the corresponding frequency
fCmax

xy related to each method. The minimum value of Cmax
xy is 0.4672 at the frequency of 24.03 Hz in

the proposed control method. The required control force corresponding to each controller is shown
in Figure 12. It is clearly seen that the vibration control performance of the proposed controller is
excellent with the lower input power.
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Table 5. Sine road: the acceleration and time delay.

Controller Aa (m/s2) τ (s)

Proposed 0.3642 2.545
AFSM 0.5742 1.359
Passive 3.6587 0.793

Table 6. Sine road: the spectral coherence at corresponding frequency.

Controller Cmax
xy fCmax

xy
(Hz)

Proposed 0.4672 24.03
AFSM 0.5195 70.54
Passive 0.8140 89.92

6. Conclusions

In this work, a new adaptive fuzzy sliding mode controller associated with the disturbance
estimator (DE-FSMC) was designed, and its effectiveness was validated by adopting the vibration
control of a semi-active vehicle suspension system installed with MRD. Firstly, an adaptive control law
was formulated based on Lyapunov stability, so that closed-loop stability and finite-time convergence
of tracking error could be maintained. Then, a set of solutions for estimating compensative quantity
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for the impact of UAD on a control system and for avoiding the singular cases of the fuzzy-based
function approximation were provided to increase convergence ability and reduce the calculating cost.
Subsequently, the effectiveness of the proposed DE-FSMC was verified by undertaking an experimental
implementation of the controllers. Vibration control evaluation were investigated under two road
profile types; the bump- and sine-typed road with disturbance surfaces, and the following results
were achieved.

(1) Vibration control performances under two different road files have verified that the
proposed DE-FSMC shows a better performance than the comparative FSMCD and AFSM controllers.
Specifically, the maximum acceleration amplitude at the bump road profile is identified by 0.0190,
0.0256, 0.0374 and 0.2394 m/s2 by utilizing the DE-FSMC, FSMCD, AFSM and the passive
case, respectively.

(2) It has demonstrated from the cross-correlation function (CCF) that the proposed controller
is less sensitive to the excitation signals coming from the road surface status compared with other
controllers. Specifically, the minimum value of Cmax

xy (the ratio of spectral coherence) is 0.4672 at the
frequency of 24.03 Hz in the proposed control method, while it is 0.5195 in the AFSM under the
sinusoidal road profile.

(3) It has been shown that the proposed controller requires the smallest input power in order to
achieve excellent vibration control performances. This directly indicates that the updated adaptive
control gains determined from the DE-FSMC functionally work well for the semi-active vehicle
suspension system featuring MRD dampers.
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