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Abstract: The electronic differential system (EDS) is an important issue for four-wheel drive electric
vehicles. This paper delineates an advanced EDS steering strategy and carries out a careful study of
its control performance by numerical simulations that comply with the requirements of ISO4238:2012.
The results demonstrate that the EDS feedback gain plays an important role to its control performance,
particularly to its steering characteristics. Moreover, the analysis and discussion disclose the
mechanism of the relationship between the feedback gain and the steering characteristics, which will
contribute to further research and EDS development.
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1. Introduction

Most automotive differentials use limited slip differential (LSD) to turn a car. Under normal
circumstances, LSD can follow the normal steering curvature at high speeds. However, if the vehicle
is driven at low speeds, it will deviate from the original trajectory due to the reduction in traction.
Cornering is a problem in LSD that can lead to vehicles not traveling in one direction and it, as shown
in Figure 1, can be categorized into three types: under-steering, neutral-steering, and over-steering.
Under everyday skidding scenarios, these driving styles are adjustable by the electronic differential
system (EDS) [1–7]. The EDS aims to distribute the torque command to the left and right wheels for
the required vehicle motion and orientation control. These two input commands are initiated so that
we can easily pilot the vehicle for moving forward and orientation control via the steering wheel and
pedal (i.e., two decoupling commands). Hence, different EDS settings represent different driving styles.
For example, in the under-steering EDS setting, the vehicle continues to travel in one direction despite
sharply turning the steering wheel. Conversely, in over-steering EDS, the vehicle rotates more than
requested by the driver, causing the rear of the vehicle to swerve outwards. Different EDS settings
respond to different steering experiences and energy consumptions differently. In order for vehicles to
travel in the original trajectory at any speed and not slip, we plan to employ a new EDS to improve the
disadvantages of LSD.

This paper presents EDS system analysis, modeling, and a simulation of a four-wheel drive
electric vehicle, which is equipped by four independent in-wheel motors on four propulsion wheels.
For example, in-wheel motor electric vehicles have independently equipped motors that drive each
wheel [8–10]. EDS is needed for each electric vehicle with decentralized direct drive. This study
proposes novel EDS control based on a feedback adjustment, which is investigated under the
ISO4138:2012 standard [11]. Under different feedback gain K, the steering characteristics can be
adjusted. Torque distribution can be treated as a central problem of large power vehicles. Because
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the distance between the transmission of the left and right propulsion wheels is unequal, it makes
torque output inhomogeneous, resulting in a slight slip during acceleration. Basically, the designated
feedback gain K can solve the torque and power distribution of specific cornering conditions,
a mechanism which will be discussed in the following sections. Moreover, this study presents its
relevant theoretical foundations.

Appl. Sci. 2017, 7, 74  2 of 11 

distance between the transmission of the left and right propulsion wheels is unequal, it makes torque 
output inhomogeneous, resulting in a slight slip during acceleration. Basically, the designated 
feedback gain K can solve the torque and power distribution of specific cornering conditions, a 
mechanism which will be discussed in the following sections. Moreover, this study presents its 
relevant theoretical foundations. 

Under-steering

Over-steering

Neutral-steering

 
Figure 1. Steering responses while taking a curve. 

2. Modeling of EDS 

EDS was created to solve the turning issue for four-wheel drive electric vehicles. Many 
successful studies have since been proposed [12–16]. Figure 2 shows a basic scenario of a turning 
vehicle. It shows the kinematic model of the proposed system in a left turning maneuver, where δ is 
the turning angle command, 1δ  and 2δ  are the turning angle of the front left and right wheels, L  
is the wheelbase, D  is the rear gauge, δω  is the rotational speed of turning, R  is the radius of 
turning, V  is vehicle speed, 1V , 3V  are the tangential speed of the front and rear left wheels, and 

2V , 4V  are the tangential speed of the front and rear right wheels. Generally, the speed of both the 
front and rear wheels should be the same in order to keep the vehicle traveling in a straight track. 
However, if the vehicle makes a turn, the speed differential must be constructed by a mechanism that 
entails less wire slipping and scrapping. Clearly, for a left turn scenario, if 0ω  is the preferred 
rotating command, then 0V Rω=  and 

1 1 DV V
R

 = − 
 

 (1) 

2 1 DV V
R

 = + 
 

 (2) 

3
2
DR

V V
R

 − 
=  

 
 

(3) 

4
2
DR

V V
R

 + 
=  

 
 

(4) 

where the radius of the turning curvature can be found as 

tan
LR
δ

= . (5) 

Figure 1. Steering responses while taking a curve.

2. Modeling of EDS

EDS was created to solve the turning issue for four-wheel drive electric vehicles. Many successful
studies have since been proposed [12–16]. Figure 2 shows a basic scenario of a turning vehicle. It shows
the kinematic model of the proposed system in a left turning maneuver, where δ is the turning angle
command, δ1 and δ2 are the turning angle of the front left and right wheels, L is the wheelbase, D is
the rear gauge, ωδ is the rotational speed of turning, R is the radius of turning, V is vehicle speed, V1,
V3 are the tangential speed of the front and rear left wheels, and V2, V4 are the tangential speed of the
front and rear right wheels. Generally, the speed of both the front and rear wheels should be the same
in order to keep the vehicle traveling in a straight track. However, if the vehicle makes a turn, the
speed differential must be constructed by a mechanism that entails less wire slipping and scrapping.
Clearly, for a left turn scenario, if ω0 is the preferred rotating command, then V = ω0R and
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The aforementioned studies solve the EDS for speed control in a four-wheel drive vehicle.
However, usually the vehicle is operated by users under a pedal command (acceleration command) for
torque distribution. Consequently, the aforementioned approaches are not so straightforward. Figure 3
shows the scheme of the proposed EDS. Figure 4 illustrates its corresponding control block diagram.
Clearly, the actual vehicle speed is set as follows considering cost-effectiveness:

V =
V3 + V4

2
(6)
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For acquiring the vehicle speed in practice without expensive sensors, studies [17,18] provide
solutions. Figure 5 shows the K gain adjusting philosophy. Basically, sufficient K gain falls into
an acceptable region as

K∗
min < K < K∗

max. (7)

Note that the vehicle pretends to over-steer if the K gain is larger than K∗
max. Hence, the steering

angle will become sensitive and cause the turning radius to get smaller. Finally, the speed difference
between the left and right wheels increases. Conversely, if the K gain is smaller than K∗

min, the steering
angle will become insensitive and cause the turning radius to decrease. Consequently, the speed
difference between the left and right wheels also decreases.
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3. Simulation Setup

In order to evaluate the performance of the proposed approach, this study applied CarSim
software (8.03, Mechanical Simulation, Ann Arbor, MI, USA) with Simulink (R2013b, MathWorks,
Natick, MA, USA) to carry out the simulation. Table 1 shows the specifications of the test vehicle.

Table 1. Vehicle specification.

Sprung Mass 1527 kg

Unsprung mass 182 kg
Width D 1535 mm

Height of center of gravity 540 mm
Wheelbase L 2690 mm

Unloaded wheel radius 394 mm
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To probe the EDS performance, ISO4138:2012 suggests three methods: (1) constant radius;
(2) constant steering-wheel angle; and (3) constant speed. In this paper, the radius of the circular
orbit is set to 30 m, lateral acceleration is 0.3 g, the coefficient of friction of the road is 0.8, and the
simulation steering angle (front wheel) is 0.16 rad. Hence, the vehicle is steered under a constant speed
of 33.8 km/h. Figure 6a shows the command of the front steering-wheel angle. Figure 6b illustrates
the desired circular orbit from neutral steering. The proportional–integral–derivative controller (PID
controller) gains for velocity controller are set as 250, 15, 10, respectively.
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Figure 6. Simulation setup. (a) Command of front steering-wheel angle; (b) Desired neutral
steering circle.

4. Simulations and Discussion

In this section, the simulation results of the proposed approach are given. Figure 7 shows
the evaluation of the proposed EDS in Figure 3 with a different K gain. Note that US stands for
under-steering, OS represents over-steering, and NS is neutral-steering. Evidently, under K = 200,
the system can achieve neutral-steering, which ensures safe operation. Figure 8 shows all of the
performance indexes which concern the evaluation of Figure 7. Figure 8a shows that OS is nimbler
and US is more sluggish. OS is suitable for a racecar, and NS is fit for everyday drivers. Figure 8b–d
are the longitudinal acceleration, lateral acceleration, and yaw rate of the test, respectively. To sum up,
OS is nimble, NS is normal, and US is sluggish. Figure 9 shows the adjusted torque from EDS in these
three scenarios. Note that, in the case of K = 500, the vehicle falls into a state of continuous OS. At 10 s,
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the vehicle becomes unstable as the torque of the rear left wheel increases and the torque of rear right
wheel decreases.
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Appl. Sci. 2017, 7, 74  7 of 11 

 
(c) 

 
(d) 

Figure 8. System performance. (a) Position of X coordinate; (b) Longitudinal acceleration; (c) Lateral 
acceleration; (d) Yaw rate. 

 
(a) 

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0

1

2

3

4

5

6

7

 K=50
 K=200
 K=500

ay
(m

/s
2)

Time(s)

Vehicle Lateral Acceleration

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Y
aw

 R
at

e(
ra

d/
s)

Time(s)

 K=50
 K=200
 K=500

Vehicle Yaw Rate

0.0 2.5 5.0 7.5 10.0 12.5 15.0
-500

-400

-300

-200

-100

0

100

200

To
rq

ue
(N

m
)

Time(s)

 K=50
 K=200
 K=500

EDS Torque of Front Left Wheel

Figure 9. Cont.



Appl. Sci. 2017, 7, 74 8 of 11

Appl. Sci. 2017, 7, 74  8 of 11 

 
(b) 

 
(c) 

 
(d) 

Figure 9. Adjusting torque from EDS. (a) Front left wheel; (b) Front right wheel; (c) Rear left wheel; 
(d) Rear right wheel. 

Note that from the simulation results, if the K gain is larger than *
maxK , the vehicle will respond 

by obvious OS. This is because over-steering is based on a large speed difference between the left and 
right wheels. Thus, the torque difference will increase, which leads to an incensement of yaw moment 
and the side slip angle. It is known that the larger the side slip angle, the bigger the lateral force. 
However, if the lateral force exceeds its maximum value due to the saturation of the tire’s physical 
conditions, the traction force will decay quickly according to the magic formula of tires. Clearly, 
because of the loss of traction force, the vehicle slides over the motion surface. Then, the vehicle 
motion becomes uncontrollable and thus spins. Figure 10 illustrates the analysis diagram of the gain 
adjusting policy. Under this discovery, adaptively adjusting the K gain can easily fine-tune motion 
behaviors of a vehicle based on different steering modes. For example, many racecars have sport and 

0.0 2.5 5.0 7.5 10.0 12.5 15.0
-200

-100

0

100

200

300

400

500

To
rq

ue
(N

m
)

Time(s)

 K=50
 K=200
 K500

EDS Torque of Front Right Wheel

0.0 2.5 5.0 7.5 10.0 12.5 15.0
-160

-140

-120

-100

-80

-60

-40

-20

0

 K=50
 K=200
 K=500

To
rq

ue
(N

m
)

Time(s)

EDS Torque of Rear Left Wheel

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0

20

40

60

80

100

 K=50
 K=200
 K=500

To
rq

ue
(N

m
)

Time(s)

EDS Torque of Rear Right Wheel

Figure 9. Adjusting torque from EDS. (a) Front left wheel; (b) Front right wheel; (c) Rear left wheel;
(d) Rear right wheel.

Note that from the simulation results, if the K gain is larger than K∗
max, the vehicle will respond by

obvious OS. This is because over-steering is based on a large speed difference between the left and
right wheels. Thus, the torque difference will increase, which leads to an incensement of yaw moment
and the side slip angle. It is known that the larger the side slip angle, the bigger the lateral force.
However, if the lateral force exceeds its maximum value due to the saturation of the tire’s physical
conditions, the traction force will decay quickly according to the magic formula of tires. Clearly,
because of the loss of traction force, the vehicle slides over the motion surface. Then, the vehicle
motion becomes uncontrollable and thus spins. Figure 10 illustrates the analysis diagram of the gain
adjusting policy. Under this discovery, adaptively adjusting the K gain can easily fine-tune motion
behaviors of a vehicle based on different steering modes. For example, many racecars have sport and
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urban driving modes for users to choose. Of course, different steering modes will also result in various
fuel economy responses.

Appl. Sci. 2017, 7, 74  9 of 11 

urban driving modes for users to choose. Of course, different steering modes will also result in 
various fuel economy responses. 

 

Figure 10. Analysis diagram of the gain adjusting polocy. 

In addition, the performance deteriorations from the larger K gain can also be found in the 
analysis of control theory. From the simulations, the proposed approach shows its performance on 
EDS. However, it also sketches some limitations which should be noted. Figure 11 shows the 
rearranged control block diagram of the proposed EDS. From this figure, one can obtain the transfer 
function as 

*

( ) ( )
1 ( ) ( ) ( ) ( )

ie

T

G s K s
G s K s KG s KM G sV

ω
=

+ + −
. (8) 

From Equation (8), one can observe an interesting fact that adequate K gain can improve the EDS 
performance. However, too large of a K gain will lead to an unstable scenario. The analysis concludes 
the same results discovered from the simulations. Consequently, by using the proposed EDS, the 
corresponding gain K should be carefully selected. 

Figure 10. Analysis diagram of the gain adjusting polocy.

In addition, the performance deteriorations from the larger K gain can also be found in the
analysis of control theory. From the simulations, the proposed approach shows its performance on EDS.
However, it also sketches some limitations which should be noted. Figure 11 shows the rearranged
control block diagram of the proposed EDS. From this figure, one can obtain the transfer function as

ωie
V∗ =

G(s)K(s)
1 + G(s)K(s) + KG(s)− KMTG(s)

(8)

Appl. Sci. 2017, 7, 74  10 of 11 

1
s

*T
*V

vPID: K (s) EV: G(s)+

−

V

TEDS: M

K

+
+

+

−

*
iω

iω
ieω

*δ  
Figure 11. Control block diagram of proposed scheme. 

5. Conclusions 

This paper has established an EDS control strategy for four-wheel drive electric vehicles. 
Numerous steady steering simulation tests that comply with the requirements of ISO4238:2012 were 
carried out to study the characteristics of EDS. The simulation results demonstrated that given a 
larger feedback gain, the actual wheel speed can better track the reference wheel speed from the EDS. 
However, in this case, the vehicle shows an obvious over-steering tendency. On the contrary, the 
wheel speed cannot track the reference wheel speed well with a small feedback gain. In order to find 
the mechanism of the specific phenomenon above, this paper made a deep discussion and analysis 
from the aspects of vehicle dynamics and nonlinear tire property. As a conclusion, for the vehicle 
system with EDS control, there should be an adjustable feedback gain, rather than a fixed one, to 
deliver good steering characteristics. This feedback mechanism will contribute to the future research 
and development on EDS, especially to improvement in the vehicle steering characteristics. 
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From Equation (8), one can observe an interesting fact that adequate K gain can improve the
EDS performance. However, too large of a K gain will lead to an unstable scenario. The analysis
concludes the same results discovered from the simulations. Consequently, by using the proposed
EDS, the corresponding gain K should be carefully selected.

5. Conclusions

This paper has established an EDS control strategy for four-wheel drive electric vehicles.
Numerous steady steering simulation tests that comply with the requirements of ISO4238:2012 were
carried out to study the characteristics of EDS. The simulation results demonstrated that given a larger
feedback gain, the actual wheel speed can better track the reference wheel speed from the EDS.
However, in this case, the vehicle shows an obvious over-steering tendency. On the contrary, the wheel
speed cannot track the reference wheel speed well with a small feedback gain. In order to find the
mechanism of the specific phenomenon above, this paper made a deep discussion and analysis from
the aspects of vehicle dynamics and nonlinear tire property. As a conclusion, for the vehicle system
with EDS control, there should be an adjustable feedback gain, rather than a fixed one, to deliver
good steering characteristics. This feedback mechanism will contribute to the future research and
development on EDS, especially to improvement in the vehicle steering characteristics.
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