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Abstract: Lung cancer is one of the most common cancers, with high mortality rate worldwide.
Autofluorescence imaging and spectroscopy is a non-invasive, label-free, real-time technique for
cancer detection. In this study, lung tissue sections excised from patients were detected by laser
scan confocal microscopy and spectroscopy. The autofluorescence images demonstrated the cellular
morphology and tissue structure, as well as the pathology of stained images. Based on the spectra
study, it was found that the majority of the patients showed discriminating fluorescence in tumor
tissues from normal tissues. Therefore, autofluorescence imaging and spectroscopy may be a potential
method for aiding the diagnosis of lung cancer.
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1. Introduction

Lung cancer is one of the most frequently diagnosed cancers and the leading cause of cancer
deaths around the world [1,2]. The five-year survival rate of lung cancer patients is approximately
18% [2]. Eighty-five percent of lung cancer patients were non-small cell lung cancer (NSCLC), whose
five-year survival rate is about 21% [3]. The common types of NSCLC are adenocarcinomas and
squamous cell carcinomas with five-year survival rates of 42.8% and 43.4% [4]. Small cell lung cancer
(SCLC) represents 12%-13% of lung cancers, with five-year survival rate of 6% [5]. As a rare form of
cancer, five-year survival of mesothelioma was 13.4% in women and 4.5% in men [6]. Early detection
and visualization of lung cancer is crucial to improve the accurate diagnosis and treatment performance.
Currently, the haematoxylin and eosin (HE)-stained histopathology is applied as the gold standard to
assess and diagnose disease by pathologists, but is time-consuming, usually taking up to one week [7].
During tumor resection, intraoperative frozen section examination can aid the surgeon to distinguish
tumor and normal tissues, which still requires the staining process and takes about 20-30 min [8,9].
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In recent years, autofluorescence of cancer was investigated based on the knowledge that
some endogenous fluorophores in the tissues change when normal tissue turns malignant [10-12].
Autofluorescence imaging and spectroscopy is a non-invasive, label-free, real-time technique for cancer
detection. Autofluorescence emitting from tissues has many intrinsic fluorophores, such as reduced
nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD), and porphyrins [13,14].
NADH and FAD are metabolic coenzymes in oxidative phosphorylation, and NADH has a free or
protein-bound state [15,16]. Porphyrins are organic compounds and are often used as a tumor-specific
marker [17]. Tumor cells exhibit a different metabolic state or microenvironment from normal cells,
which associates with changes of these intrinsic fluorophores fluorescence intensity. Thus the difference
between normal and cancerous tissues can be investigated based on their autofluorescence spectra.
However, this approach is limited by that autofluorescence spectrum features exhibit less specific
differences and the origin of the contrasts mechanisms are not clearly identified [18,19].

There have been some reports using spectroscopy with a combination of endoscopic
equipment [20-25]. Bard et al. used white-light reflectance spectroscopy during bronchoscopy
examination to differentiate normal bronchus mucosa from malignant lesions [15,20]. Fawzy et al.
differentiated bronchial cancerous lesions with fluorescence spectroscopy, and reached a sensitivity
and specificity of 71% and 74% [21]. Most of bronchoscopes measured the decrease of autofluorescence
intensity within the green spectral region for early cancerous lesions as compared to healthy tissues
under blue-violet light (around 405 nm) excitation [22,24]. According to Gabrecht et al. [23,24],
the additional detection of backscattered red light significantly improved the autofluorescence image
quality. This phenomenon could be due to the increased vasculature around cancerous lesions, and
partially due to changes in the fluorescent properties of the tissues. Previous studies have also been
performed on blood samples [26], urine samples [27], animal models [28], cell lines [29], and human
cervical tissue sections [30,31] based on the fluorescence spectroscopy. Direct studies on the optical
properties of lung tissues may be particularly useful for intraoperative margin assessment during
tumor resection [32].

In the present study, we assessed the possibilities for introducing fluorescence imaging and
spectroscopy of lung tissue samples as a potential tool to differentiate tumor from normal tissues.
The optical measurement technique is more efficient than the HE stained histopathology, and may
ultimately be used to aid the diagnosis of lung cancer.

2. Materials and Methods

2.1. Lung Tissue Sample Preparation

All involved patients were diagnosed as NSCLC by Department of Respiratory Diseases, Huashan
hospital and Huashan North Hospital. The 10 patients in this study include nine adenocarcinoma
and one squamous carcinoma. The ratio of man/woman was 6/4, whose average age was
59.7 £ 9.1 years old. In the study, all involved patients with tumor size over 2 cm. According to the
clinical practice guidelines [33], the lobectomy or greater resection was applied, thus, the tumor free
margin was at least 5 cm away from the tumor during resection. Tissue samples embedded in paraffin
were obtained after the pulmonary surgeries with the standard procedures [34] by pathologists from
the Department of Pathology on a protocol approved by their institutional review board. Two sections
of 3 pm thick were cut off from a portion of the tissue for each patient, in excess of what was needed for
histopathological diagnosis. One section was cut from the center of tumor, and the other was obtained
at 5 cm away from the tumor margin and treated as normal lung tissues. Then tissue sections were
placed on glass slides and imaged by a laser scanning confocal microscope and measured by an optical
fiber spectrometer.
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The other two sections from tumor and normal part were stained by haematoxylin and eosin
(H E) using standard protocols for optical imaging. For three-dimensional (3D) fluorescence confocal
imaging, samples of about 30 um thick were obtained following similar procedures.

2.2. Autofluorescence Imaging and Spectral Measurement

Autofluorescence images of lung tissue samples were acquired by a laser scanning confocal
microscope (LSCM, Olympus, FV300/IX 71, Tokyo, Japan) equipped with a 405 nm CW laser
(BDL-405-SMC, Becker and Hickl, Berlin, Germany) and an oil-dipping objective (40x, NA = 1.2).
The autofluorescence of tissue samples were recorded simultaneously in two channels with a
505-550 nm bandpass and a 590 nm long-pass filter, respectively.

On the basis of the obtained autofluorescence micrographs, the spectra measurements were
performed at multiple locations using the clip-scan mode of the microscope. All spectra were recorded
with an average power of 0.5 mW at the focal plane. The autofluorescence at the selected area output
from the right port of the microscope was focused into an optical fiber spectrometer (Ocean Optics,
USB2000+, Dunedin, FA, USA) with a 420 nm long-pass filter. At least seven different areas were
measured for each tissue sample.

The 3D fluorescence images were obtained for 30 um thick samples by using the z-scan mode of
the confocal microscope with a 20x objective.

3. Results

3.1. Autofluorescence Images of Lung Tissues

Figure 1 demonstrated four HE images on stained lung tissue samples (left column) and
autofluorescence images of the corresponding unstained samples (middle and right columns).
Figure 1a showed several alveolar structures in normal tissues. Figure 1b,c presented representative
adenocarcinoma and squamous carcinoma tissues. It is well known that NADH and FAD emit
fluorescence of 450-560 nm and porphyrins emit fluorescence of over 590 nm [35]. Thus the middle
column in Figure 1 showed the autofluorescence of NADH and FAD in lung tissue samples, and the
right column showed the fluorescence images of porphyrins. It can be seen that the autofluorescence
images demonstrated the cellular morphology and tissue structure, as well as the HE staining images.
In Figure 1d, a blood vessel wall with erythrocytes (marked by a white arrow) can be seen in lung
tissue. Considering the vascular wall and erythrocytes can influence the autofluorescence spectra,
the areas with blood vessels or erythrocytes should be avoided during the further spectra study.
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(a) Normal

(b) Adenocarcinoma

(c) Squamous carcinoma

(d) Blood vessel

Figure 1. HE and autofluorescence images of lung tissue samples: (a) normal tissue; (b) adenocarcinoma;
(c) squamous carcinoma; and (d) blood vessel in lung tissue. Scale bar is 50 pm.

To study the fluorescence imaging capability on thick tissues, the 3D images of two samples were
acquired and shown in Figure 2a,b; normal tissue and cancerous tissue. The cellular morphology
features were clearly different between normal and cancerous tissue from the surface of the tissue
(0 pm) down to the deep position (—24 pm).
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(a) Normal (b) Cancerous
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Figure 2. Autofluorescence 3D images of (a) normal (Video S1) and (b) cancerous (Video S2) lung
tissues at different depths. Scale bar is 50 pm.

3.2. Autofluorescence Spectra of Lung Tissue Samples

On the basis of the obtained fluorescence images, the areas of interest were measured by the
spectrometer with a 420 nm long-pass filter. The spectra were normalized to 100% at the peak maximum
and then calculated with curve-fitting. The wide spectra were contributed by several endogenous
fluorophores, such as free NADH, protein-bound NADH, free FAD, basic form, and neutral form
of porphyrins [36], tryptophan, collagen, and elastin. The fluorescence of protein-bound FAD is
very weak [37] and not considered in this study. According to the reported emission spectra of the
endogenous fluorophores listed in Table 1, it can be found that tryptophan, collagen, and elastin
need to be excited by ultraviolet light [38]. With the excitation light of 405 nm in the present study,
five fluorophores should be considered including free NADH, protein-bound NADH, free FAD, basic
form, and neutral form of porphyrins. The normalized spectra of lung tissue samples were fitted with
five peaks, as shown in Figure 2. Each peak was of a Gaussian function and representing the emission
of a pure fluorophore. The goodness of fit was evaluated through an adjusted R-square, and all were
more than 0.98 in our study.
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Table 1. The fitting parameters are reported as excitation wavelength, emission peak, and full width at
half maximum (FWHM) of different fluorophores [38—40].

Fluorophores Excitation (nm) Emission Peak (nm) FWHM (nm)
Free NADH [39] 405 487 84
Protein-bound NADH [39] 405 501 64
Free FAD [39] 405 544 75
Basic form of porphyrins [40] 405 590 25
Neutral form of porphyrins [40] 405 630 25
Tryptophan [38] 287 342 65
Collagen [38] 339 380 40
Elastin [38] 351 410 70

Typically, compared with the normal tissues, the fluorescence intensity of free FAD in cancerous
tissues increased, while the free and protein-bound NADH contributed less for the spectra. The optical
oxidation reduction (redox) ratio is a measurement of cellular metabolism, which is defined as the ratio
between NADH and FAD [41,42]. In this study, the optical redox was calculated as the ratio of NADH
(free and protein-bound) to free FAD, INapH/Irap. In this case (Figure 3, which is Patient 1 in Figure 4),
InapH/Irap were calculated as 1.76 and 1.04 for normal and cancerous tissues, respectively. We also
found that the fluorescence of porphyrins changed in cancerous tissues. The intensity ratio of neutral
form of porphyrins (with peak at 630 nm) to the basic form (with peak at 590 nm), Is30 nm /1590 nm, Were
calculated as 1.10 and 1.59 for normal and cancerous tissues, respectively. The change of fluorescence
intensity ratios between normal and cancerous tissues may indicate changes of cellular metabolism
and cancer development.
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Figure 3. Two example spectra curves of (a) normal and (b) cancerous lung tissue samples.
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Figure 4. Scatterplot of the average ratio of (a) INapy/Irap and (b) I¢30 nm/ 1590 nm for the normal
(solid square) tissues and cancerous tissues (hollow triangle) from the ten lung cancer patients.

3.3. Statistical Analysis

For every patient, at least 7-10 different areas of each section were measured and the spectra were
analyzed following the above-mentioned fitting procedure. Then the averaged ratios of INapH/IFAD
and Ig30 nm/I590 nm for every tissue sample were obtained and the results were shown in Figure 4.
It can be seen that the majority of the patients (80.0%) have lower INapx/Irap values and higher
I630 nm / Is90 nm values in cancerous tissues than in normal tissues. For most patients (patients 1-7, 9),
the differences of INapH /IraD between normal and cancerous samples from each patient were ranging
from 0.42 to 2.11, with the average value of 1.04 & 0.64, and the differences of I¢30 nm /500 nm between
normal and cancerous tissue samples from each patient (patients 1-7, 10, in Figure 4) were ranging
from —0.02 to —2.0, with the average value of —0.26 £ 0.39. It can be seen that the heterogeneity
between different patients is remarkable. Patient 8, in Figure 4, had a different result, which showed
higher INapn/Irap values and lower Ig30 nm/Is90 nm Values in the cancerous tissue, while Patient 10
had a higher InapH/Ipap Value in cancerous tissue and the average Is30 nm /1590 nm value of Patient 9
in normal tissue was equal to the cancerous one.

We examined the pathological data of neutrophil:lymphocyte ratio (NLR) for all the patients
before any treatment. There were four patients (patients 5-8 in Figure 4) having high NLR values of
5.22,5.24, 5.37, and 7.10. The remaining patients were of lower NLR values (<3) with the average
value of 2.54 + 0.74. This result will be discussed further in the next section.

4. Discussion

Generally, the coenzymes NADH and FAD are dominant in the autofluorescence signals in
cells and tissues. When lung cancer develops, the redox equilibria in tissues changes with different
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metabolic conditions [43], which can be monitored through the autofluorescence spectra. In this
study, we found the majority of patients presented lower INapn/Irap Values in tumor tissues, which
means a lower concentration of NADH and a higher concentration of FAD were in cancerous tissues
compared with normal lung tissues. Our results agreed with some recent reports that the amount of
FAD in tissues increased in the neoplasia, such as colonic cancer [44], cervical cancer [45], and human
papillomavirus immortalized epithelial cells [46]. It implied the cellular metabolism changed due to
the rapid tumor cell division. The alteration of NADH and FAD in cancerous tissues can serve as
markers of metabolic activity and the cellular microenvironment [47].

Particular attention was given to the endogenous porphyrin derivatives for the detection of
cancer in recent decades. Moesta et al. observed enhanced fluorescence of protoporphyrin (PpIX) and
uroporphyrin IIT in colon tumor tissues and involved lymph node tissues [17]. Masilamani et al.
observed enhanced fluorescence bands (one around 590 nm and another around 630 nm) in
blood samples for several different types of cancers, such as gastric cancer, breast cancer, and
Hodgkin’s lymphoma [40]. Kalaivani et al. found elevated porphyrin fluorescence in the blood
components of cervical cancer patients [36]. It indicates that porphyrins accumulate more in tumor
parts. The knowledge about the mechanisms of precursor 5-ALA lead to PpIX accumulation was
demonstrated in many tumor diseases [48-50]. Our results showed that for the majority of the patients
(80.0%), Is30 nm/ I590 nm Of each individual patient’s tumor sample was higher than that of normal
sample. This further supported that the tumor metabolic alterations cause the accumulation of products
of porphyrins.

Masilamani et al. found that the ratio of Is30 nm/I585 nm in blood or urine samples was about
one for normal controls and 2-3 for advanced cervical cancer patients [51]. Similar findings were
also reported in blood samples of gastric cancer and breast cancer patients [40]. However, for lung
tissue samples in our study, the porphyrins were present in fairly low amounts (Figure 3). It should
be noted that 430 nm /590 nm between normal and cancerous tissue samples showed considerable
overlap among the patients as shown in Figure 4. Similar results can also be found for INapx/IraD
values. This inter-patient variation was disadvantageous to analyze the averaged spectra data of
patients. Therefore, the signature of spectra for lung tissues may be applicable for the assessment of
per individual patient, instead of comparing one patient data with average values.

Several studies reported that high NLR value is always associated with inflammation, poor
survival and a higher risk of distant metastasis [52,53]. The patients could be separated into two groups
according to their NLR values. One group (numbers 1-4, 9-10) was of low NLR values (<3) and the
other group (numbers 5-8) of high NLR values (>5). The low NLR group presented similar results
of spectra with small fluctuation, while the high NLR group showed fairly large heterogeneity for
each patient. Especially, the spectra of patient 8 with a high NLR value had different results both
in INapH/IraD and Ig30 nm/Is90 nm values than the remaining patients. Some studies showed that
smoking can activate increased numbers of neutrophils, which associated with the destruction of
alveolar structures and extracellular matrix [54]. However, in our study, patients with high NLR
values (>5) did not have the habit of cigarette smoking. Further study is needed to reveal the potential
connection between the blood test result and the cellular energetic metabolism.

There were several reports on the autofluorescence in vivo using the endoscopic equipment [22-24].
Typically, the autofluorescence spectrum features exhibited little difference in the previous studies, and
they differentiated malignant lesions from healthy tissues by the autofluorescence intensity change [22,24].
Although this present study is on tissue sections without ongoing blood flow, the spectrum features
of sections were similar with the previous reports using the bronchoscope [22,24]. As the excitation
power density for section samples could be much higher than that of endoscopy, this study enabled the
elaborate analysis on the autofluorescence spectrum features.
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5. Conclusions

Autofluorescence imaging and spectroscopy can provide not only the cellular images, but also
the characteristic spectra of normal and cancerous lung tissues. It has the advantage of high speed and
non-invasion. It was found that the majority of the patients have lower INapH/Irap Values and higher
I630 nm / I590 nm values in cancerous tissues than in normal tissues. Thus, autofluorescence imaging and
spectroscopy may be a potential method for aiding the diagnosis of lung cancer. Furthermore, it may be
developed with a fiber-optics probe and ultimately serve as a complementary pathology examination.

Supplementary Materials: The following are available online www.mdpi.com/2076-3417/7/1/32/s1. Video S1:
autofluorescence 3D images of normal lung tissue; Video S2: autofluorescence 3D images of cancerous lung tissue.
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