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Abstract: The main purpose of the paper is to present an innovative higher-order structural theory to
accurately evaluate the natural frequencies of laminated composite shells. A new kinematic model is
developed starting from the theoretical framework given by a unified formulation. The kinematic
expansion is taken as a free parameter, and the three-dimensional displacement field is described
by using alternatively the Legendre or Lagrange polynomials, following the key points of the most
typical Layer-wise (LW) approaches. The structure is considered as a unique body and all the
geometric and mechanical properties are evaluated on the shell middle surface, following the idea
of the well-known Equivalent Single Layer (ESL) models. For this purpose, the name Equivalent
Layer-Wise (ELW) is introduced to define the present approach. The governing equations are solved
numerically by means of the Generalized Differential Quadrature (GDQ) method and the solutions
are compared with the results available in the literature or obtained through a commercial finite
element program. Due to the generality of the current method, several boundary conditions and
various mechanical and geometric configurations are considered. Finally, it should be underlined
that different doubly-curved surfaces may be considered following the mathematical framework
given by the differential geometry.

Keywords: laminated composites shells; doubly-curved surfaces; natural frequencies; generalized
differential quadrature method; higher-order structural theories

1. Introduction

The development of refined structural models or higher-order theories currently represents one of
the most active areas for many researchers in the structural mechanics field. Their interest in this subject
is mainly due to the fact that the use of advanced materials has shown inadequacy of the classical
or first-order theories to capture the effective mechanical behavior of this class of materials, such as
laminated composites or functionally graded materials [1–20]. In these particular circumstances,
the fundamental hypotheses of a lower-order model could lead to inaccurate results since some effects
are neglected or not even considered. A typical situation is the case of structures made of a combination
of highly heterogeneous materials in the lamination scheme. As highlighted in the work by Librescu
and Reddy [21], many refined approaches arose to predict a more coherent structural behavior. For the
sake of completeness, the readers can find some examples of these approaches in [22–33]. It should be
noted that the aforementioned papers were mainly focused on plates and shells.

The insufficiency of classical plate and shell theories can also be highlighted in the
dynamic analysis. In order to evaluate the natural frequencies of composite structures correctly,
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several higher-order shear deformation theories (HSDTs) were developed. In general, two different
approaches are followed, namely, equivalent single layer (ESL) and layer-wise (LW) models
(see Reddy [1] for a brief review). The former is able to study a composite structure by referring
each geometric and mechanical parameter on the middle surface of the structure, which is taken as
reference domain for the governing equations. In a similar manner, the degrees of freedom of the
problem under consideration are evaluated on the middle surface, independently from the enrichment
of the kinematic model [33–46]. On the other hand, the latter approach takes into account each layer
(or ply) that composes the structure separately from the others. In general, a LW model defines
the kinematic expansion, and consequently the degrees of freedom, along the thickness of each
layer. As a result, this approach is able to deal with continuous displacements but characterized by
discontinuous derivatives at the interfaces [46–56].

The works [57–59] represent a turning point in the advancement of HSDTs. In fact, they provided
the basis for the development of a unified formulation (UF), which is able to analyze and use several
structural models within a single framework. As a matter of fact, the order of kinematic expansion
can be arbitrarily chosen in order to obtain the desired theory that is more appropriate to deal with
a particular physical phenomenon. In the review paper [57] a complete treatise about both ESL
and LW approaches is presented. It is important to cite also the works [58,59], where the so-called
zig-zag theories for layered structures were discussed. For the sake of completeness, it should be
recalled that a zig-zag theory is actually an ESL model embedded with a specific function that allows
to consider continuous through-the-thickness displacements characterized by different slope at the
interface between two plies, similar to a LW theory [31–33]. This aspect is commonly denoted as
zig-zag effect and it is generally given by the choice of different materials along the transverse direction
of the structure. For instance, this effect is particularly evident when a soft-core is included into the
lamination scheme of a generic plate or shell (sandwich structure). In general, the Murakami’s function
is employed for this purpose.

Recently, a huge number of scientific papers based on the UF is available in the literature. For the
sake of completeness, the works [60–74] can be considered as examples of higher-order ESL models.
On the other hand, the papers [75–83] can be cited as the proof of the use of this unified formulation to
develop higher-order LW approaches. It should be noticed that the UF was generalized by Demasi [84],
who developed the so-called Generalized Unified Formulation (GUF). The research provided by
Demasi represents the starting point for the development of more general theories. For this purpose,
the work by D’Ottavio [85] must also be mentioned. He proposed an optimized approach able
to consider the structure as the sum of packages of layers, each of them governed by a peculiar
structural model. This approach was named Sublaminate Generalized Unified Formulation (S-GUF).
Analogously, the paper by Fazzolari [86–88] and by Fazzolari and Banerjee [89] represent a significant
extension of the GUF. Their works aimed to extend the contributions first given by Demasi in [84]
for plates to the structural analysis of beams and shells. At this point, it is the authors’ intention to
apologize for the omissions in the present review of those papers that could be considered as important
steps in the development of HSDTs.

The main aim of the present work is to introduce a new higher-order structural model based on the
aforementioned unified formulation for the structural analysis of doubly-curved laminated composite
plates and shells, which has some elements in common with both the ESL and LW approaches.
According to the proposed methodology, the overall mechanical properties of the composites are
computed on the shell middle surface, taking into account all the layers that compose the structure.
It should be noticed that there is no limitation on the choice of the constituents, as well as their
orientation and stacking sequence, due to the general features of this approach. The displacement field
is written as a function of an arbitrary order of kinematic enrichment, whereas the Legendre and the
Lagrange polynomials are employed to describe the kinematic expansion. The degrees of freedom of
the problem are not defined on the shell middle surface as in a typical ESL model, but they are related
to specific points placed along the thickness of the structure according to what is typically done for each
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layer by the LW theory. The term Equivalent Layer-Wise (ELW) is introduced to define this approach.
Once the governing equations are obtained, they are numerically solved by means of the Generalized
Differential Quadrature (GDQ) method [90], whose main features are illustrated in detail by Tornabene
et al. in the review paper [91]. The accuracy, reliability and stability characteristic of this numerical
tool can be checked considering the excellent results shown in the works [39–41,61–74,79–83,92–102],
which have been obtained in different kinds of structural problems related to plates and shells.

2. Definition of the Geometry

As highlighted by Kraus in his book [103], each shell structure is a three-dimensional body which
is bounded by two close surfaces, whose distance measured along the normal direction defines the
thickness h of the shell. The middle surface is clearly equidistant from these two external surfaces and
can be taken as reference domain for the governing equations. Its importance is evident, since its define
the shape of the structure under consideration and rules the mechanical behavior of a shell structure if
a two-dimensional structural model is considered. By means of the differential geometry, several kinds
of shells can be studied in a general and unified manner. For instance, the same theoretical approach
is used to define the geometry of doubly-curved, singly-curved and degenerate shells (or plates).
With reference to Figure 1, in which a generic shell element is depicted, the position vector R(α1, α2, ζ)

is introduced to identify each point of the three-dimensional medium as follows

R(α1, α2, ζ) = r(α1, α2) +
h(α1, α2)

2
zn(α1, α2) (1)

where the dimensionless quantity z = 2ζ/h ∈ [−1, 1] denotes the distance of the point P from its
projection P′ on the reference domain.
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Figure 1. Representation of a generic doubly-curved shell element, edge identification and
lamination scheme.

On the other hand, r(α1, α2) is the position vector that describe the middle surface, which assumes
different meanings according to the investigated geometry. A curvilinear orthogonal coordinates
system O′α1α2ζ must be defined on the shell middle surface. In particular, the coordinates α1, α2

denote the lines of main curvature of the middle surface, whereas ζ is the normal direction that can be
specified by the following outward unit normal vector n(α1, α2)
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n =
r,1 × r,2

|r,1 × r,2|
(2)

where the symbol “×” represents the vector product. For conciseness purposes, the notation
r,i = ∂r/∂αi, for i = 1, 2, is introduced. For the sake of completeness, it should be highlighted that the
curvilinear coordinates α1, α2 vary according to the considered structure. For example, they assume
the following meaning α1 = ϕ, α2 = ϑ for a doubly-curved shell of revolution, whereas the notation
α1 = ϕ, α2 = y is introduced for a singly-curved shell of translation. In the case of a flat panel, such as
a rectangular plate, they can be assumed equal to α1 = x, α2 = y. This aspect is to underline the
effectiveness of the differential geometry. In general, the position vector of any reference surface
r(α1, α2) is expressed as

r(α1, α2) = f1(α1, α2)e1 + f2(α1, α2)e2 + f3(α1, α2)e3 (3)

where fi(α1, α2), for i = 1, 2, 3 are arbitrary functions needed to describe the surface under
consideration. On the other hand, the symbols ei, for i = 1, 2, 3, denote the unit vectors of axes
of the global reference system O′x1x2x3 as depicted in Figure 1. In the following sections, the position
vector r(α1, α2) will be specified for the various shell structures under consideration. Further details
concerning these features, as well as a wide range of shell structures, can be found in the recent books
by Tornabene et al. [2,3]. In general, the curvilinear coordinates in hand must be bounded by specific
values to define a finite domain. Without loss of generality, a three-dimensional shell is defined if the
following limits are specified

α1 ∈
[
α0

1, α1
1

]
, α2 ∈

[
α0

2, α1
2

]
, ζ ∈ [−h/2, h/2] (4)

It should be noticed that the total thickness of the shell h is defined as the summation of the
thickness of each layer (or lamina) hk, if a laminated composite material is taken into account. For a
lamination scheme that consists of l layers as the one shown in Figure 1, the overall thickness is
given by

h =
l

∑
k=1

hk (5)

It is evident that the symbol k is used to define all the geometric and mechanical properties
related to the k-th layer. The differential geometry provides also the definition of the well-known
Lamè parameters A1(α1, α2) and A2(α1, α2), which can be evaluated once the position vector r(α1, α2)

is specified as follows

A1 =
√

r,1 · r,1, A2 =
√

r,2 · r,2 (6)

where the symbol “·” is introduced to specify the scalar product. Finally, the main radii of curvature of
the reference surface R 1(α1, α2) and R 2(α1, α2) can be computed using the definition shown below

R1 = − r,1 · r,1

r,11 · n
, R2 = − r,2 · r,2

r,22 · n
(7)

in which the notation r,ii = ∂2r/∂α2
i , for i = 1, 2, is employed. Expressions (7) are valid only if the

curvilinear coordinates are orthogonal and principal. The three-dimensional effect of a shell structure
is taken into account by the parameters H1(α1, α2, ζ) and H2(α1, α2, ζ), which are defined as follows

H1 = 1 +
ζ

R1
, H2 = 1 +

ζ

R2
(8)
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3. Higher-Order Equivalent Layer-Wise Approach

As already illustrated in the introduction, the well-known UF represents an extremely valid and
efficient tool to analyze a huge variety of HSDTs, which are classified in general as Equivalent Single
Layer (ESL) theories [61–74] and Layer-Wise (LW) models [79–83]. The former approach establishes
that all the mechanical and geometric parameters are evaluated on the shell middle surface, whereas
each layer is analyzed independently from the others in the latter method. The main novelty introduced
by the present work is a new higher-order formulation which keeps the main features of the ESL
approaches but uses the kinematic expansion of the displacement field commonly employed in the
LW models. For this purpose, the term Equivalent Layer-Wise (ELW) is introduced. Let us consider
the three-dimensional displacements U1 = U1(α1, α2, ζ), U2 = U2(α1, α2, ζ), and U3 = U3(α1, α2, ζ).
They can be defined in each point of the shell structure according to the following expressions

U1 = F0u(0)
1 + F1u(1)

1 + F2u(2)
1 + F3u(3)

1 + · · ·+ FNu(N)
1 + FN+1u(N+1)

1

U2 = F0u(0)
2 + F1u(1)

2 + F2u(2)
2 + F3u(3)

2 + · · ·+ FNu(N)
2 + FN+1u(N+1)

2

U3 = F0u(0)
3 + F1u(1)

3 + F2u(2)
3 + F3u(3)

3 + · · ·+ FNu(N)
3 + FN+1u(N+1)

3

(9)

in which Fτ = Fτ(ζ), for τ = 0, 1, . . . , N, N + 1, specify the thickness functions related to the
τ-th order of kinematic expansion. On the other hand, u(τ)

1 = u(τ)
1 (α1, α2), u(τ)

2 = u(τ)
2 (α1, α2),

and u(τ)
3 = u(τ)

3 (α1, α2), for τ = 0, 1, . . . , N, N + 1, are the degrees of freedom of the current model
and denote the displacements of the section placed at the height ζτ of the shell, as it can be noticed
from Figure 2. This aspect represents the main difference in comparison with the ESL approach,
where each degree of freedom is always evaluated on the shell middle surface. In other words, the τ-th
order of kinematic expansion is strictly related to the number of points along the shell thickness
(Figure 2).
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Figure 2. Kinematic expansion and degrees of freedom related to the order for the Equivalent
Layer-Wise (ELW) approach.

For the sake of clarity, it should be noticed that the displacements u(0)
1 , u(0)

2 , u(0)
3 linked to the

order of expansion τ = 0 are the displacements of the points laying on the shell bottom surface
(for ζ = −h/2). On the contrary, the displacements u(N)

1 , u(N)
2 , u(N)

3 are related to the τ = N order of
kinematic expansion and represent the displacements of the top surface of the shell.
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Similarly to the ESL approach, the (N + 1)-th order of kinematic expansion is always related to
the well-known Murakami’s function, which can be introduced to capture the zig-zag effect that can
be noticed especially if a sandwich structure is analyzed. Having in mind Figure 1, in which a general
lamination scheme is depicted, the Murakami’s function Z = Z(ζ) can be defined as follows

Z = (−1)kzk (10)

The non-dimensional parameter zk ∈ [−1, 1] is assumed equal to the following expression

zk =
2

ζk+1 − ζk
ζ − ζk+1 + ζk

ζk+1 − ζk
(11)

in which ζk represents the boundary coordinate of the k-th layer along the normal direction. Thus, if a
soft-core effect must be studied, one gets FN+1 = Z. The reader can find further details concerning
the use and the peculiar features of the Murakami’s function in the works [57–59]. Let us consider
the thickness functions related to the other orders of kinematic expansions. The first possible choice
consists in assuming them equal to the corresponding Legendre polynomials. In other words, they can
be defined as follows

Fτ =



L1 − L2

2
=

1− zk
2

for τ = 0

Lτ+2 − Lτ for τ = 1, 2, . . . , N − 1

L1 + L2

2
=

1 + zk
2

for τ = N

(12)

in which the symbol Lτ+1 is introduced to specify the τ-th order Legendre polynomial. They can be
computed conveniently in the closed interval zk ∈ [−1, 1] by using the following recursive formula
(as shown in [3])

Lτ(zk) =
(2τ − 3)zkLτ−1(zk)− (τ − 2)Lτ−2(zk)

τ − 1
(13)

for τ = 3, 4, . . . , N, assuming L1(zk) = 1 and L2(zk) = zk. For clarity purposes, let us consider a fourth
order of kinematic expansion (N = 4). The displacement field (9) becomes

U1 = F0u(0)
1 + F1u(1)

1 + F2u(2)
1 + F3u(3)

1 + F4u(4)
1 + F5u(5)

1

U2 = F0u(0)
2 + F1u(1)

2 + F2u(2)
2 + F3u(3)

2 + F4u(4)
2 + F5u(5)

2

U3 = F0u(0)
3 + F1u(1)

3 + F2u(2)
3 + F3u(3)

3 + F4u(4)
3 + F5u(5)

3

(14)

if the Murakami’s function is embedded in the model. Due to expressions (12) the first five Legendre
polynomials are required

L1 = 1

L2 = zk

L3 =
3z2

k − 1
2

L4 =
5z3

k − 3zk

2

L5 =
35z4

k − 30z2
k + 3

8

(15)

As a consequence, the thickness functions needed for the kinematic expansion at issue take the
following aspect
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F0 =
1− zk

2

F1 =
3
2
(
z2

k − 1
)

F2 =
5
2

zk
(
z2

k − 1
)

F3 =
7
8
(
5z4

k − 6z2
k + 1

)
F4 =

1 + zk
2

F5 = (−1)kzk

(16)

It should be pointed out that F5 is evidently the Murakami’s function (F5 = FN+1 = Z). If the
Legendre polynomial are used, the coordinates ζτ which define the kinematic expansion can be located
by evaluating the roots of the Legendre polynomial of highest order.

Alternatively, the Lagrange polynomials can be used as thickness functions simply assuming
Fτ(ζ) = lτ+1(ζ), in which lτ+1(ζ) denotes the Lagrange polynomial of order N defined as follows

lτ+1(ζ) =
N

∏
m=0,m 6=τ

(ζ − ζm)

(ζτ − ζm)
(17)

for τ = 0, 1, . . . , N − 1, N. The coordinates ζm, for m = 0, 1, . . . , N − 1, N, can be chosen taking into
account an arbitrary distribution of points in the closed interval ζm ∈ [−h/2, h/2]. In the present
paper, a uniform (or equally spaced) grid distribution is considered for the sake of simplicity. If the
Lagrange polynomials are employed as thickness functions, one gets

Fτ =


l1(ζ) for τ = 0

lτ+1(ζ) for τ = 1, 2, . . . , N − 1

lN+1(ζ) for τ = N

(18)

For the sake of completeness, it should be noted that the displacement field (9) without the
Murakami’s function is equivalent to the displacement approximation of the sampling surfaces (SaS)
formulation presented in the works [104,105], if the Lagrange polynomials (17)–(18) are employed as
thickness functions.

As in the previous approach, the (N + 1)-th thickness function is still given by the Murakami’s
function (FN+1 = Z). Using both the Legendre polynomials and the Lagrange ones, the thickness
functions have the following properties

Fτ(ζ = ζm) =

{
0 for τ 6= m
1 for τ = m

(19)

with τ, m = 0, 1, 2, . . . , N. As a consequence, the relations shown below can be easily deduced

U1(ζ = ζτ) = u(τ)
1 + (−1)kzk(ζτ)u

(N+1)
1

U2(ζ = ζτ) = u(τ)
2 + (−1)kzk(ζτ)u

(N+1)
2

U3(ζ = ζτ) = u(τ)
3 + (−1)kzk(ζτ)u

(N+1)
3

(20)

This means that the three-dimensional displacement evaluated at the height coordinate linked
to the τ-th order of kinematic expansion coincides with the corresponding degree of freedom of the
model, except for the Murakami’s function. At this point it should be specified also that the kinematic
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expansion is not affected by either the lamination scheme or the placement of the various layers
that compose the laminate, since this aspect is considered only when the elastic coefficients of the
composite are evaluated as it will be shown in the following paragraphs. Finally, it should be noticed
that the same kinematic model just illustrated is typically used for the LW approach to describe the
displacement field of each lamina [79–83]. A peculiar notation can be introduced now to specify
univocally the various higher-order ELW models that are employed in the following. Each theory is
identified by the maximum order of kinematic expansion N. In particular, the structural theories used
in the current work are listed below for various orders of expansion

N = 1 → ELD1
N = 2 → ELD2
N = 3 → ELD3
N = 4 → ELD4

(21)

where “EL” specifies that an ELW approach is considered, whereas “D” means that the governing
equations will be written in terms of generalized displacements. If the Murakami’s function must be
embedded in the model, the following theories are obtained for several orders of kinematic expansion

N = 1 → ELDZ1
N = 2 → ELDZ2
N = 3 → ELDZ3
N = 4 → ELDZ4

(22)

where “Z” stands clearly for the Murakami’s function (zig-zag effect).
Once the kinematic model is defined, both the constitutive relations and the motion equations

are formally equal to the ones used for the ESL approach [61–74]. Thus, in the following only
the main aspects of the model are presented for conciseness purposes. At this point, the vector
u(τ) = u(τ)(α1, α2) that collects the degrees of freedom for each order τ of kinematic expansion can be
conveniently introduced

u(τ) =
[

u(τ)
1 u(τ)

2 u(τ)
3

]T
(23)

for τ = 0, 1, . . . , N, N + 1. The generalized strain components for each order τ of kinematic expansion
can be collected in the corresponding algebraic vector ε(τ) = ε(τ)(α1, α2) defined as follows

ε(τ) =
[

ε
(τ)
1 ε

(τ)
2 γ

(τ)
1 γ

(τ)
2 γ

(τ)
13 γ

(τ)
23 ω

(τ)
13 ω

(τ)
23 ε

(τ)
3

]T
(24)

The generalized strains can be directly related to the degrees of freedom of the problem for
τ = 0, 1, . . . , N, N + 1 according to the following equation in vector notation

ε(τ) = DΩu(τ) (25)

The differential operator DΩ assumes the following matrix notation

DΩ =



1
A1

∂

∂α1

1
A1 A2

∂A2

∂α1
− 1

A1 A2

∂A1

∂α2

1
A2

∂

∂α2
− 1

R1
0 1 0 0

1
A1 A2

∂A1

∂α2

1
A2

∂

∂α2

1
A1

∂

∂α1
− 1

A1 A2

∂A2

∂α1
0 − 1

R2
0 1 0

1
R1

1
R2

0 0
1

A1

∂

∂α1

1
A2

∂

∂α2
0 0 1



T

(26)

where A1, A2 are the Lamè parameters (6), and R1, R2 the principal radii of curvature (7) of the shell
middle surface.

The complete treatise concerning the definition of the generalized strain components, as well as
further details about their meaning, can be found in the books by Tornabene et al. [2,3]. As highlighted
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above, the interested reader can notice some similarities between the present approach and
the aforementioned SaS formulation. In particular, the definitions of the first six generalized
strains collected in (24) coincide exactly with the corresponding strain parameters of the SaS
formulation [104,105].

The stress resultants related to the τ-th order of kinematic expansion can be collected in the
algebraic vector S(τ) = S(τ)(α1, α2), whose extended vector form is shown below

S(τ) =
[

N(τ)
1 N(τ)

2 N(τ)
12 N(τ)

21 T(τ)
1 T(τ)

2 P(τ)
1 P(τ)

2 S(τ)
3

]T
(27)

Due to the duality between strains and stresses, the generalized stresses (or stress resultants) can
be related directly to the degrees of freedom of the model for τ = 0, 1, . . . , N, N + 1 according to the
following equation

S(τ) =
N+1

∑
η=0

A(τη)DΩu(η) (28)

where the constitutive operator A(τη) is introduced for each order of kinematic expansion
(for τ, η = 0, 1, 2, . . . , N, N + 1). It should be noticed that A(τη) represents the stiffness matrix of the
considered shell structure. In particular, if a laminated composite structure made of l orthotropic layers
is considered, the constitutive operator takes the following aspect

A(τη) =



A(τη)
11(20) A(τη)

12(11) A(τη)
16(20) A(τη)

16(11) 0 0 0 0 A(τη̃)
13(10)

A(τη)
12(11) A(τη)

22(02) A(τη)
26(11) A(τη)

26(02) 0 0 0 0 A(τη̃)
23(01)

A(τη)
16(20) A(τη)

26(11) A(τη)
66(20) A(τη)

66(11) 0 0 0 0 A(τη̃)
36(10)

A(τη)
16(11) A(τη)

26(02) A(τη)
66(11) A(τη)

66(02) 0 0 0 0 A(τη̃)
36(01)

0 0 0 0 A(τη)
44(20) A(τη)

45(11) A(τη̃)
44(10) A(τη̃)

45(10) 0

0 0 0 0 A(τη)
45(11) A(τη)

55(02) A(τη̃)
45(01) A(τη̃)

55(01) 0

0 0 0 0 A(τ̃η)
44(10) A(τ̃η)

45(01) A(τ̃η̃)
44(00) A(τ̃η̃)

45(00) 0

0 0 0 0 A(τ̃η)
45(10) A(τ̃η)

55(01) A(τ̃η̃)
45(00) A(τ̃η̃)

55(00) 0

A(τ̃η)
13(10) A(τ̃η)

23(01) A(τ̃η)
36(10) A(τ̃η)

36(01) 0 0 0 0 A(τ̃η̃)
33(00)



(29)

Each term collected in the stiffness matrix can be evaluated by means of the following definitions

A(τη)
nm (pq) =

l
∑

k=1

ζk+1r

ζk

B(k)
nmFη Fτ

H1H2

Hp
1 Hq

2
dζ

A(τ̃η)
nm (pq) =

l
∑

k=1

ζk+1r

ζk

B(k)
nmFη

∂Fτ

∂ζ

H1H2

Hp
1 Hq

2
dζ

A(τη̃)
nm (pq) =

l
∑

k=1

ζk+1r

ζk

B(k)
nm

∂Fη

∂ζ
Fτ

H1H2

Hp
1 Hq

2
dζ

A(τ̃η̃)
nm (pq) =

l
∑

k=1

ζk+1r

ζk

B(k)
nm

∂Fη

∂ζ

∂Fτ

∂ζ

H1H2

Hp
1 Hq

2
dζ

(30)



Appl. Sci. 2017, 7, 17 10 of 34

for τ, η = 0, 1, 2, . . . , N, N + 1, n, m = 1, 2, 3, 4, 5, 6, and p, q = 0, 1, 2. It should be noticed that the
symbols τ, η specify the thickness function order, whereas τ̃, η̃ denote that the derivatives of the
corresponding thickness functions Fτ , Fη with respect to ζ must be evaluated. It is pointed out that this
evaluation can be easily performed since the definition of the thickness functions is shown in extended

form in (12) and (18), respectively. Quantities B(k)
nm are defined as follows

B(k)
nm = E(k)

nm (31)

for n, m = 1, 2, 3, 6 and

B(k)
nm = κE(k)

nm (32)

for n, m = 4, 5. This distinction is performed to introduce the shear correction factor κ = 1/χ that has
to be included in the model if the chosen order of kinematic expansion does not provide a parabolic
profile of the through-the-thickness shear stresses. Typically, a constant value is used to define the
shear correction factor κ. In the present paper, the value χ = 1.2 is used for this purpose. Nevertheless,
it should be noticed that a parabolic function can be chosen as shear correction function as illustrated

in the work by Tornabene and Reddy [92]. On the other hand, quantities E(k)
nm, for n, m = 1, 2, 3, 4, 5, 6,

represent the elastic constant of the material of the k-th layer. They can assume different meanings
depending on the case. If the strain along the shell thickness is neglected, the plane-stress-reduced

elastic coefficients are needed (E(k)
nm = Q(k)

nm). On the contrary, if the stretching effect is taken into

account the non-reduced elastic coefficients must be used (E(k)
nm = C(k)

nm). The trace over these symbols
means that these quantities must be evaluated in the local reference system O′α1α2ζ. In other words,
the constitutive equations of each lamina must be transferred into the geometric coordinate system by
means of the proper transformation laws which take into account the different orientation that can be
given to an orthotropic medium. In fact, since each layer can be arbitrarily oriented with respect to the
laminate reference system as shown in Figure 1, in which the symbols α, β, γ, δ are introduced for this
purpose, the constitutive relations of each lamina must be converted into the local reference system
O′α1α2ζ. Further details concerning these relations can be found in the book by Reddy [1]. For the
sake of completeness, it should be specified that in the present work the mechanical properties of each
layer k are fully described by means of the engineering constants of the materials, which are E(k)

1 , E(k)
2 ,

E(k)
3 , G(k)

12 , G(k)
13 , G(k)

23 , ν
(k)
12 , ν

(k)
13 , ν

(k)
23 for an orthotropic medium, and E(k), G(k), ν(k) for an isotropic one.

In any case, the lamination scheme is identified by the notation (α, β, . . . , γ, . . . , δ), in which α, β, γ, δ

represent the orientation of each ply. It should be recalled that in the current approach each layer is
assumed to be linear elastic. In any circumstance, the use of both the shear correction factor and the
plane stress-reduced elastic coefficients is specified by adding a proper notation to the acronym of the
structural theory. In particular, the superscript χ = 1.2 is added to specify the use of the constant value
for the shear correction factor, whereas the subscript RS stands for “Reduced Stiffness” and means
that the reduced elastic coefficients are employed.

The motion equations are obtained by means of the well-known Hamilton’s variational principle.
For the sake of conciseness, only the equations at issue are shown. For each order of kinematic
expansion τ, the free vibration problem is governed by the following matrix equation

D∗ΩS(τ) =
N+1

∑
η=0

M(τη) ..
u(η) (33)

The equilibrium operator D∗Ω takes the following aspect
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D∗Ω =



1
A1

∂

∂α1
+

1
A1 A2

∂A2

∂α1
− 1

A1 A2

∂A1

∂α2
− 1

R1

− 1
A1 A2

∂A2

∂α1

1
A2

∂

∂α2
+

1
A1 A2

∂A1

∂α2
− 1

R2

1
A1 A2

∂A1
∂α2

1
A1

∂

∂α1
+

1
A1 A2

∂A2

∂α1
0

1
A2

∂

∂α2
+

1
A1 A2

∂A1

∂α2

1
A1 A2

∂A2

∂α1
0

1
R1

0
1

A1

∂

∂α1
+

1
A1 A2

∂A2

∂α1

0
1

R2

1
A2

∂

∂α2
+

1
A1 A2

∂A1

∂α2

−1 0 0
0 −1 0
0 0 −1



T

(34)

in which A1, A2 represent the Lamè parameters defined in (6), and R1, R2 are the principal radii of
curvature of the shell middle surface shown in (7). On the contrary, the matrix M(τη) collects the inertia
terms I(τη) for every order of kinematic expansion τ, η = 0, 1, 2, . . . , N, N + 1 as follows

M(τη) =

 I(τη) 0 0
0 I(τη) 0
0 0 I(τη)

 (35)

If ρ(k) denotes the mass density of the k-th ply, the definition shown below is used to evaluate the
inertia masses I(τη) of the laminated composite in hand

I(τη) =
l

∑
k=1

ζk+1w

ζk

ρ(k)Fτ Fη H1H2dζ (36)

It is clear that
..
u(η) represents the generalized acceleration component vector defined as follows

..
u(η)

=
[

..
u(η)

1
..
u(η)

2
..
u(η)

3

]T
(37)

for η = 0, 1, 2, . . . , N, N + 1. By inserting definition (28) into the motion equation shown in (33),
the governing system can be conveniently written as a function of the degrees of freedom of the
problem. As a consequence, one gets

N+1

∑
η=0

L(τη)u(η) =
N+1

∑
η=0

M(τη) ..
u(η) (38)

where the so-called fundamental operator L(τη) = D∗ΩA(τη)DΩ is introduced. In matrix form,
it assumes the following aspect

L(τη) =


L(τη)

11 L(τη)
12 L(τη)

13

L(τη)
21 L(τη)

22 L(τη)
23

L(τη)
31 L(τη)

32 L(τη)
33

 (39)
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For conciseness purposes, the definition of each term L(τη)
f g , for f , g = 1, 2, 3, is omitted in

the present paper. Nevertheless, the reader can find their complete meaning in the work by
Tornabene et al. [61]. It should be noticed that they are formally equal to the ones employed in
the ESL approach. Relation (38) represents the fundamental nucleus of the ELW approach and it
identify a set of three differential equations for each order of kinematic expansions. Thus, 3(N + 2)
equations must be solved to obtain the solution of this structural problem. In order to fully characterize
the problem at issue, the proper set of boundary conditions must be enforced along each external edge.
For a clamped edge (denoted by letter “C”), these conditions are written in terms of displacements.
On the contrary, specific prescription are given to the generalized stress resultants for a free edge
(indicated by letter “F”). Let us consider Figure 1 to identify each external edge. In particular, if an
edge is defined by α1 = α0

1 or α1 = α1
1, for α0

2 ≤ α2 ≤ α1
2, the boundary conditions become

C → u(τ)
1 = u(τ)

2 = u(τ)
3 = 0

F → N(τ)
1 = N(τ)

12 = T(τ)
1 = 0

(40)

These edges are the Southern (S) and the Northern (N) ones in Figure 1. On the other hand, if the
coordinates of an edge are α2 = α0

2 or α2 = α1
2, for α0

1 ≤ α1 ≤ α1
1, one gets

C → u(τ)
1 = u(τ)

2 = u(τ)
3 = 0

F → N(τ)
21 = N(τ)

2 = T(τ)
2 = 0

(41)

This is clearly the case of the Western (W) and Eastern (E) edges. In the present paper, the
boundary conditions are specified for the panel under consideration following the sequence WSEN.
For instance, this means that the acronym FCCF specifies that the Western and the Northern edges are
free, whereas the other two are completely clamped.

4. Generalized Differential Quadrature Method

In the present paper, the governing equations shown in matrix form in (38) are solved by means
of the GDQ method. According to this numerical technique, it is possible to approximate the n-th
derivative of a sufficiently smooth function at a generic point within the reference domain as a weighted
linear sum of the values that the function assumes in some chosen grid points. Starting from this
definition, it is clear that the strong form of the governing equations is solved. Let us consider a
two-dimensional domain, as the one needed to describe any doubly-curved surface, in which a generic
function f (α1, α2) is defined. Three types of derivative can be computed at a generic point

(
α1i, α2j

)
for i = 1, 2, . . . , IN and j = 1, 2, . . . , IM: the n-th derivative with respect to the first coordinate α1

∂n f (α1, α2)

∂αn
1

∣∣∣∣
α1=α1i ,α2=α2j

∼=
IN

∑
k=1

ς
(n)
α1(ik)

f
(
α1k, α2j

)
(42)

the m-th derivative with respect to the second coordinate α2

∂m f (α1, α2)

∂αm
2

∣∣∣∣
α1=α1i ,α2=α2j

∼=
IM

∑
l=1

ς
(m)
α2(jl) f (α1i, α2l) (43)

and the mixed derivative of order (n + m)

∂n+m f (α1, α2)

∂αn
1 ∂αm

2

∣∣∣∣
α1=α1i ,α2=α2j

∼=
I N

∑
k=1

ς
(n)
α1(ik)

(
IM

∑
l=1

ς
(m)
α2(jl) f (α1k, α2l)

)
(44)
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It is pointed out that IN , IM denote the overall number of discrete points within the reference
domain. The symbols ς

(n)
α1(ik)

and ς
(m)
α2(jl) are introduce to specify the weighting coefficients for the

derivatives at issue. It is clear that the key points of the present numerical approach are the
choice of a proper discrete grid point distribution and the evaluation of the weighting coefficients.
If the Lagrange polynomials are chosen to approximate the function, there is no restriction on the
choice of the grid points. This aspect represents one of the main advantages of the GDQ method.
In addition, the weighting coefficients can be easily evaluated if the recursive formulae given by
Shu are employed [90]. Further details concerning this technique and its major applications can
be found in the review paper by Tornabene et al. [91]. As far as the choice of the grid points is
concerned, several distributions can be used, as highlighted in the work [91]. Some examples of
grid distributions typically employed in many structural problems are listed in Table 1. It should be
recalled that a discrete grid must be applied along the two principal coordinates α1, α2 as shown in the
following relations

α1i =
α1

1 − α0
1

rIN − r1
(ri − r1) + α0

1 (45)

α2j =
α1

2 − α0
2

rIM − r1

(
rj − r1

)
+ α0

2 (46)

Table 1. Eight different kinds of grid distributions. The indices k and N specify respectively i and
IN , when α1 direction is taken into account. On the other hand, they correspond to j and IM when
α2 direction is considered. Finally, if the grid distribution has to be applied along the coordinate ζ,
one gets k = m and N = IT . It should be noted that LN denotes the Legendre polynomials.

Chebyshev I kind (Cheb I) Chebyshev II kind (Cheb II)

rk = cos
(

2(N − k) + 1
2N

π

)
for k = 1, 2, . . . , N, r ∈ [−1, 1]

rk = cos
(

N − k + 1
N + 1

π

)
for k = 1, 2, . . . , N, r ∈ [−1, 1]

Chebyshev III kind (Cheb III) Chebyshev IV kind (Cheb IV)

rk = cos
(

2(N − k) + 1
2N + 1

π

)
for k = 1, 2, . . . , N, r ∈ [−1, 1]

rk = cos
(

2(N − k + 1)
2N + 1

π

)
for k = 1, 2, . . . , N, r ∈ [−1, 1]

Chebyshev-Gauss (Cheb-Gau) Chebyshev-Gauss-Lobatto (Cheb-Gau-Lob)

r1 = −1, rN = 1, rk = cos
(

2(N − k)− 1
2(N − 2)

π

)
for k = 2, 3, . . . , N − 1, r ∈ [−1, 1]

rk = cos
(

N − k
N − 1

π

)
for k = 1, 2, . . . , N, r ∈ [−1, 1]

Legendre-Gauss (Leg-Gau) Legendre-Gauss-Lobatto (Leg-Gau-Lob)

rk = roots of
(
1− r2) · LN−1(r)

for k = 1, 2, . . . , N, r ∈ [−1, 1]

rk = roots of
(
1− r2) · d

dr
(LN(r))

for k = 1, 2, . . . , N, r ∈ [−1, 1]

The values of ri and rj, for i = 1, 2, . . . , IN and j = 1, 2, . . . , IM, can be found in Table 1.

5. Generalized Integral Quadrature Method

A numerical approach has to be introduced to evaluate the integrals needed to compute the elastic
constants A(τη)

nm (pq), A(τ̃η)
nm (pq), A(τη̃)

nm (pq), A(τ̃η̃)
nm (pq) defined in (30). In the present paper, the Generalized

Integral Quadrature (GIQ) method is employed for this purpose. In fact, a numerical solution to the
integrals in (30) must be found since it is impossible to solve them analytically due to their definition.
According to this approach, the integral of a smooth function f (ζ) defined in a close domain [ζl , ζe]
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can be evaluated as a weighted linear sum of the values that the function f (ζ) assumes in each point
of the reference domain. In other words, this definition can be written as follows

ζew

ζl

f (ζ)dζ =
IT

∑
k=1

(wek − wlk) f (ζk) (47)

where IT represents the number of discrete points defined within the reference domain, whereas
wek, wlk are the weighting coefficients for the integration. These last quantities can be computed
directly from the definitions of the corresponding weighting coefficients of the first order derivatives,
as illustrated in depth in the review paper by Tornabene et al. [91]. It is clear that the GIQ method
shares the same fundamentals with the GDQ method. Thus, the same recursive formulae given by
Shu can be used once again to evaluate the weighting coefficients at issue, once an arbitrary grid
distribution is chosen to discretize the reference domain. It should be noticed that differently from the
well-known Gaussian integration schemes, this method is able to compute the weighting coefficients
without any restriction on the position of the points within the reference domain. Therefore, all the
different kinds of grid distributions listed in Table 1 can be used with this aim. For the sake of clarity,
it should be specified that the one-dimensional domain in which the integrals in (30) must be evaluated
is defined along the coordinate ζ of the local reference system.

In other words, the integration procedure is performed through the shell thickness. As a
consequence, the discrete nodes in which the functions are evaluated are placed following the definition
shown below

ζm =
h

rIT − r1
(rm − r1)−

h
2

(48)

for m = 1, 2, . . . , IT . The values of rm, for m = 1, 2, . . . , IT , can be found in Table 1, as well. For the sake
of simplicity, in the present paper the Chebyshev-Gauss-Lobatto grid distribution is employed in any
numerical test with IT = 25 due to its accuracy and stability features.

6. Free Vibration Analysis

The free vibrations of a doubly-curved laminated composite shell can be evaluated starting from
the fundamental equation (38) by means of the GDQ method. A solution to the fundamental system
can be found in the following form

u(τ)(α1, α2, t) = U(τ)(α1, α2)eiωt (49)

in which the vector U(τ) =
[

U(τ)
1 (α1, α2) U(τ)

2 (α1, α2) U(τ)
3 (α1, α2)

]T
collects the mode shapes for

each order of kinematic expansion τ. On the other hand, the symbol ω is introduce to specify the
corresponding circular frequencies, which allow to compute the natural frequencies as f = ω/2π.
Once the first and second order derivatives with respect to the time variable t of definition (49) are
evaluated and substituted into relation (38), one gets

N+1

∑
η=0

L(τη)U(η) + ω2
N+1

∑
η=0

M(τη)U(η) = 0 (50)

for τ = 0, 1, 2, . . . , N, N + 1. It should be recalled that equation (50) is the fundamental equation system
which rules the free vibrations of any laminated composite shell. The system (50) can be easily solved
by means of the GDQ method illustrated in the previous section. Once each derivative is discretized
following definitions (42)–(44), the governing system can be conveniently written in its discrete form
as follows

Kδ = ω2Mδ (51)
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where K denotes the global stiffness matrix, M the inertia matrix, and δ the mode shape vector. Relation
(51) is clearly a generalized linear eigenvalue problem, whose eigenvalues are the circular frequencies
by definition. It is clear that the corresponding eigenvectors allow to define the mode shapes of the
structures under consideration. The well-known kinematic condensation of non-domain degrees of
freedom, the quantities related to the internal points of the domain (denoted by the subscript “d”) can
be separated from the ones linked to the boundaries (specified by the subscript “b”). In this manner,
the initial problem is noticeably simplified and can be written as follows
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assuming that I is the identity matrix. The vector δ that collects the degrees of freedom is clearly
subdivided into δb and δd, respectively. For the sake of clarity, δb denotes the vector of the degrees
of freedom along the boundary, whereas δd represents the vector related to the internal degrees of
freedom. The same partition is performed for both the stiffness matrix K and the mass matrix M.
The solution of the system (53) allows to obtain the circular frequencies and consequently the natural
frequencies.

7. Numerical Results

In the present section, several applications are presented to show the validity of both the present
theoretical approach and the numerical methods for the evaluation of the free vibrations of various
laminated composite shells. For this purpose, a preliminary convergence analysis is performed for
two different mechanical configurations. Then, six shell structures are investigated. The results are
compared with the natural frequencies available in the literature and the solutions obtained by means
of a Finite Element model (FEM). The GDQ analysis is performed through a MATLAB code [106],
whereas the commercial software Strand 7 is employed to obtain the FEM solution. It should be noticed
that a specific tool has been developed to export the geometry of the considered doubly-curved shells
into the commercial finite element code, as specified in the work [98]. For the sake of completeness,
it should be specified that a different FEM model is used according to the investigated structure.
For thick plates and shells, a three-dimensional model made of 20-node hexahedrons (“Hexa20”)
is employed. On the other hand, a two-dimensional model made of 9-node quadrilateral elements
(“Quad9”) is used for thin structures. The notations 3D-FEM and 2D-FEM are introduced to denote
these solutions, respectively.

Table 2. Mechanical properties of the materials employed in the numerical analyses.

Material Mechanical properties

Ceramic Foam E = 0.232 GPa, ν = 0.2, ρ = 320 kg/m3

Aluminum E = 70 GPa, ν = 0.3, ρ = 2707 kg/m3

Graphite-Epoxy E1 = 137.9 GPa, E2 = E3 = 8.96 GPa, G12 = G13 = 7.1 GPa,
G23 = 6.21 GPa, ν12 = ν13 = 0.3, ν23 = 0.49, ρ = 1450 kg/m3

7.1. Convergence Analysis

A flat panel is considered in order to perform the convergence analysis. The length of each edge
of the plate is equal to Lx = Ly = 2m, whereas the thickness is given by h = 0.1m. Two different
lamination schemes are taken into account in order to prove the capability of the current approach to
deal with different mechanical configurations. In particular, an isotropic plate made of Aluminum is
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considered firstly. Then, the same structure is taken with (90/0/90/0/90) as lamination scheme. In this
circumstance, each ply has the same thickness and is made of the same material (Graphite-Epoxy).
For conciseness purposes, the mechanical properties of the materials employed in this section are
summarized in Table 2. As far as the boundary conditions are concerned, the structure under
consideration is fully clamped along each edge (CCCC). Figure 3 shows the convergence characteristics
of the first three natural frequencies as a function of the total number of grid points IN = IM varying
the grid distribution. It can be easily noticed that the current approach reaches the maximum level
of convergence with a number of point equal to IN = IM = 11, for both the two lamination schemes.
In a similar manner, the various grids lead to similar tendency. It should be noticed that the graphs
depicted in Figure 3 are related to the ELD1χ=1.2

RS model. This means that both the reduced elastic
coefficients and the shear correction factor (χ = 1.2) are employed.

Appl. Sci. 2016, 6, 446  16 of 34 

this circumstance, each ply has the same thickness and is made of the same material (Graphite-Epoxy). 

For conciseness purposes, the mechanical properties of the materials employed in this section are 

summarized in Table 2. As far as the boundary conditions are concerned, the structure under 

consideration is fully clamped along each edge (CCCC). Figure 3 shows the convergence 

characteristics of the first three natural frequencies as a function of the total number of grid points 

N MI I  varying the grid distribution. It can be easily noticed that the current approach reaches the 

maximum level of convergence with a number of point equal to 11N MI I  , for both the two 

lamination schemes. In a similar manner, the various grids lead to similar tendency. It should be 

noticed that the graphs depicted in Figure 3 are related to the 1.2ELD1RS

  model. This means that both 

the reduced elastic coefficients and the shear correction factor ( 1.2  ) are employed. 

Isotropic:  Aluminum   Laminated:  90 / 0 / 90 / 0 / 90  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3. Convergence characteristics of the first three frequencies for a completely clamped (CCCC) 

square plate ( 2mx yL L  ) of thickness 0.1mh   for two different lamination schemes as a function 

of the number of grid points N MI I , varying the grid distribution. The ELW theory is the 1.2ELD1RS

  

in both the circumstances. (a) and (b) are related to the first frequency, (c) and (d) to the second one 

and (e) and (f) to the third one. 

Figure 3. Convergence characteristics of the first three frequencies for a completely clamped (CCCC)
square plate (Lx = Ly = 2m) of thickness h = 0.1m for two different lamination schemes as a function
of the number of grid points IN = IM, varying the grid distribution. The ELW theory is the ELD1χ=1.2

RS
in both the circumstances. (a) and (b) are related to the first frequency, (c) and (d) to the second one
and (e) and (f) to the third one.
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Table 3. First 10 natural frequencies ([Hz]) for a CCCC isotropic square plate (Lx = Ly = 2m) of
thickness h = 0.1m for several higher-order ELW approaches. The Cheb-Gau-Lob grid distribution is
used for the numerical solution assuming IN = IM = 21.

f [Hz] ELD1χ=1.2
RS ELD2χ=1.2 ELD3 ELD4 3D − FEM

1 214.190 214.683 214.920 214.876 215.192
2 427.796 428.731 429.542 429.441 430.078
3 427.796 428.731 429.542 429.441 430.078
4 619.213 620.487 622.090 621.925 622.811
5 745.318 746.861 749.071 748.859 749.996
6 750.039 751.614 753.784 753.573 754.725
7 920.267 922.063 925.309 925.028 926.343
8 920.267 922.063 925.309 925.028 926.343
9 1154.276 1156.519 1161.320 1160.926 1162.800
10 1154.276 1156.519 1161.320 1160.926 1162.800

Table 4. First 10 natural frequencies ([Hz]) for a CCCC laminated square plate (Lx = Ly = 2m) of
thickness h = 0.1m for several higher-order ELW approaches, with and without the Murakami’s
function. The Cheb-Gau-Lob grid distribution is used for the numerical solution assuming IN = IM = 25.

f [Hz] ELD1χ=1.2
RS ELD2χ=1.2 ELD3 ELD4 3D − FEM

1 246.307 246.446 246.990 246.953 246.557
2 400.851 401.212 397.979 397.819 396.214
3 538.474 538.624 543.753 543.681 542.389
4 637.955 638.255 640.618 640.449 638.515
5 662.429 663.095 651.032 650.582 645.907
6 841.047 841.625 835.932 835.494 831.216
7 929.665 929.798 943.448 943.286 940.162
8 996.922 997.663 972.260 971.273 961.592
9 1001.255 1001.729 1012.078 1011.826 1008.405
10 1135.506 1136.416 1116.413 1115.444 1106.702

f [Hz] ELD1χ=1.2
RS ELD2χ=1.2 ELD3 ELD4 3D − FEM

1 245.325 245.508 246.829 246.7925 246.557
2 399.522 400.009 397.570 397.4074 396.214
3 534.090 534.394 543.140 543.0737 542.389
4 633.512 634.066 639.870 639.7048 638.515
5 659.868 660.852 650.005 649.5405 645.907
6 835.967 837.007 834.717 834.2726 831.216
7 919.201 919.694 941.974 941.8281 940.162
8 988.765 989.603 970.247 969.219 961.592
9 994.118 995.639 1010.533 1010.296 1008.405
10 1128.690 1130.407 1114.321 1113.323 1106.702

The same graphs could be achieved also for higher-order theories, whose results are just
summarized in Table 3 (for the isotropic case) and in Table 4 (for the laminated one) for conciseness
purposes. It should be noticed that the natural frequencies presented in Tables 3 and 4 are obtained
considering the Cheb-Gau-Lob grid distribution with IN = IM = 21. In addition, the 3D-FEM solution
(9000 brick elements “Hexa20”) is also included in these tables. The GDQ solution is evidently in
good agreement with the one used as a reference. For the sake of completeness, the analysis is carried
out considering HSDTs with and without the Murakami’s function for the laminated composite plate
(Table 4). In this circumstance, since the mechanical properties of each layer are the same, the benefits
introduced by embedding this function are negligible. It should be noticed also that the reduced elastic
coefficients are used only for a first order kinematic expansion (N = 1). On the other hand, a constant
value of the shear correction factor equal to χ = 1.2 is used for both the first-order and second order
theories (N = 1, 2) due to the reasons illustrated in the previous sections.
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7.2. Free vibrations of Laminated Composite Shells

In this paragraph, the free vibrations are investigated for the six structures depicted in Figure 4,
in which the GDQ grid and local coordinate reference systems are shown for each geometry.

The first two laminated shells are taken from the work by Wang et al. [13] and they are employed
to compare the results given by the current approach with the ones obtained by using the Fourier-Ritz
Method. The reference surface of the toro-circular panel at issue (Figure 4a,b) can be described by the
following position vector r(ϕ, ϑ)

r(ϕ, ϑ) = (R sin ϕ + Rb) cos ϑe1 − (R sin ϕ + Rb) sin ϑe2 + R(1− cos ϕ)e3 (54)

where ϕ, ϑ are the curvilinear coordinates of the surface. R = 3m is the radius of the circular meridian
and Rb represents an offset from the revolution axis. The first toro-circular panel is obtained by setting
Rb = 1.5m, whereas the second one can be achieved by using Rb = −1.5m. In both these circumstances,
the surfaces are bounded assuming the limitations ϕ ∈ [π/3, 2π/3] and ϑ ∈ [−π/3, π/3], whereas the
thickness of the shells is h = 0.2m. In order to perform the validation test, the following mechanical
properties are employed for each orthotropic ply: E1 = 150 GPa, E2 = E3 = 10 GPa, G12 = G13 =

6 GPa, G23 = 5 GPa, ν12 = ν13 = ν23 = 0.23, and ρ = 1500 kg/m3. The natural frequencies are written
in their non-dimensional form Ω = 2π f R

√
ρ/E2 in Table 5 for the toro-circular panel with Rb = 1.5 m,

whereas the results shown in Table 6 are related to the second surface (Rb = −1.5 m). Several
lamination schemes and boundary conditions are taken into account. As far as the GDQ solutions
are concerned, the natural frequencies are computed by using the Cheb-Gau-Lob grid distribution
assuming IN = 21 and IM = 31 for the first case, and IN = IM = 25 for the second one. As in
the previous example, various orders of kinematic expansion are considered for the ELW approach
without embedding the Murakami’s function. From Tables 5 and 6, the excellent agreement with the
reference solution can be easily noticed independently from the HSDTs, for each boundary condition
and lamination scheme. It should be noted that in the reference work by Wang [13], a modified Fourier
series approach in conjunction with a Ritz method is used to obtain a semi-analytical solution based
on the First-order Shear Deformation Theory (FSDT).

The next structure is a CCFC singly-curved cylindrical panel whose profile is defined by a catenary
section (Figure 4c). It can be obtained by sliding a catenary curve on an inclined straight line, whose
slope is equal to α = π/12. The reference surface can be described by the following position vector
r(ϕ, y)

r(ϕ, y) = (d arcsinh(tan ϕ) + y sin α sin ϕ) e1 − y cos α e2+

+ (d(cos h(arcsinh(tan ϕ))− 1)− y sin α cos ϕ)e3
(55)

in which ϕ, y are the curvilinear coordinates of the surface, assuming ϕ ∈ [−1.131728, 1.131728] and
y ∈ [0, L], with L = 5 m and d = −2 m. The structure is made of five layers of equal thickness
and material (Graphite-Epoxy) oriented according to the scheme (90/30/45/60/0). The numerical
solution is obtained by employing the Cheb-Gau-Lob grid distribution with IN = 31 and IM = 21.
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Table 5. Comparison of the frequency parameter Ω = 2π f R
√

ρ/E2 for a laminated composite
toro-circular panel (Rb = 1.5m) with different boundary conditions and lamination schemes. The ELW
solutions are obtained by means of the GDQ method, using the Cheb-Gau-Lob grid distribution and
assuming IN = 21 and IM = 31.

Lamination scheme: (0/90)

CCCC FCFC

Ω Ref. [13] ELD1χ=1.2
RS ELD2χ=1.2 ELD3 ELD4 Ref. [13] ELD1χ=1.2

RS ELD2χ=1.2 ELD3 ELD4
1 2.2088 2.1984 2.1933 2.2096 2.2009 1.8129 1.8011 1.7928 1.8121 1.8019
2 2.2167 2.2051 2.2010 2.2171 2.2085 1.8129 1.8014 1.7930 1.8123 1.8021
3 2.3361 2.3356 2.3397 2.3431 2.3413 2.1349 2.1317 2.1315 2.1338 2.1326
4 2.3711 2.3602 2.3566 2.3727 2.3645 2.1883 2.1774 2.1727 2.1888 2.1800
5 2.3760 2.3619 2.3599 2.3754 2.3673 2.2132 2.2103 2.2119 2.2200 2.2162
6 - 2.3769 2.3804 2.3851 2.3828 - 2.2185 2.2135 2.2297 2.2211
7 - 2.4511 2.4524 2.4574 2.4550 - 2.2588 2.2607 2.2674 2.2641
8 - 2.5504 2.5444 2.5614 2.5533 - 2.2862 2.2842 2.2996 2.2913
9 - 2.5583 2.5581 2.5641 2.5613 - 2.3245 2.3287 2.3325 2.3305

10 - 2.7545 2.7495 2.7575 2.7536 - 2.3581 2.3622 2.3668 2.3645

Lamination scheme: (0/90/0)

CCCC FCFC

Ω Ref. [13] ELD1χ=1.2
RS ELD2χ=1.2 ELD3 ELD4 Ref. [13] ELD1χ=1.2

RS ELD2χ=1.2 ELD3 ELD4
1 2.6711 2.6695 2.6709 2.6701 2.6698 2.1593 2.1562 2.1561 2.1562 2.1560
2 2.8511 2.8459 2.8509 2.8497 2.8494 2.5823 2.5791 2.5803 2.5798 2.5794
3 2.9112 2.9049 2.9105 2.9092 2.9088 2.6841 2.6804 2.6805 2.6823 2.6815
4 2.9297 2.9258 2.9272 2.9294 2.9286 2.6842 2.6806 2.6806 2.6826 2.6817
5 2.9315 2.9278 2.9290 2.9312 2.9304 2.7699 2.7644 2.7693 2.7684 2.7680
6 - 2.9717 2.9773 2.9758 2.9755 - 2.8093 2.8149 2.8139 2.8136
7 - 2.9899 2.9924 2.9947 2.9939 - 2.8519 2.8576 2.8564 2.8561
8 - 3.0306 3.0316 3.0335 3.0327 - 2.8937 2.8996 2.8983 2.8979
9 - 3.0690 3.0741 3.0722 3.0718 - 2.9204 2.9214 2.9235 2.9228

10 - 3.1432 3.1442 3.1457 3.1449 - 2.9285 2.9301 2.9324 2.9316

Lamination scheme: (0/90/0/90)

CCCC FCFC

Ω Ref. [13] ELD1χ=1.2
RS ELD2χ=1.2 ELD3 ELD4 Ref. [13] ELD1χ=1.2

RS ELD2χ=1.2 ELD3 ELD4
1 2.4341 2.4330 2.4348 2.4341 2.4316 2.1490 2.1461 2.1460 2.1459 2.1455
2 2.5172 2.5155 2.5174 2.5164 2.5129 2.2328 2.2293 2.2002 2.1951 2.1740
3 2.5813 2.5769 2.5539 2.5488 2.5306 2.2331 2.2295 2.2004 2.1953 2.1742
4 2.5831 2.5793 2.5556 2.5503 2.5319 2.3303 2.3280 2.3286 2.3280 2.3243
5 2.6361 2.6347 2.6343 2.6326 2.6285 2.3939 2.3917 2.3928 2.3919 2.3876
6 - 2.7196 2.7000 2.6953 2.6776 - 2.4371 2.4391 2.4383 2.4348
7 - 2.7709 2.7472 2.7416 2.7234 - 2.4867 2.4892 2.4882 2.4849
8 - 2.7868 2.7858 2.7833 2.7780 - 2.5514 2.5275 2.5222 2.5037
9 - 3.0031 2.9781 2.9716 2.9527 - 2.5579 2.5599 2.5587 2.5445

10 - 3.0362 3.0440 3.0421 3.0366 - 2.5899 2.5675 2.5625 2.5552
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Table 6. Comparison of the frequency parameter Ω = 2π f R
√

ρ/E2 for a laminated composite
toro-circular panel (Rb = −1.5m) with different boundary conditions and lamination schemes. The ELW
solutions are obtained by means of the GDQ method, using the Cheb-Gau-Lob grid distribution and
assuming IN = IM = 25.

Lamination scheme: (0/90)

CCCC FCFC

Ω Ref. [13] ELD1χ=1.2
RS ELD2χ=1.2 ELD3 ELD4 Ref. [13] ELD1χ=1.2

RS ELD2χ=1.2 ELD3 ELD4
1 2.8072 2.7959 2.7873 2.7959 2.7913 1.7885 1.7822 1.7820 1.7824 1.7819
2 3.3888 3.3786 3.3647 3.3833 3.3747 1.9473 1.9363 1.9294 1.9462 1.9379
3 3.5562 3.5453 3.5193 3.5458 3.5337 1.9718 1.9606 1.9540 1.9710 1.9628
4 3.9024 3.8846 3.8603 3.8919 3.8791 2.1600 2.1405 2.1452 2.1489 2.1470
5 4.7013 4.6738 4.6458 4.6878 4.6687 2.2434 2.2266 2.2307 2.2351 2.2329
6 - 5.0277 4.9884 5.0442 5.0210 - 2.4506 2.4532 2.4556 2.4542
7 - 5.1616 5.0838 5.1565 5.1231 - 2.9766 2.9724 2.9835 2.9776
8 - 5.3075 5.2971 5.3167 5.3050 - 2.9978 2.9895 2.9968 2.9928
9 - 5.5571 5.5530 5.5797 5.5667 - 3.4699 3.4549 3.4732 3.4657

10 - 5.7521 5.6697 5.7570 5.7221 - 3.6648 3.6427 3.6825 3.6620

Lamination scheme: (0/90/0)

CCCC FCFC

Ω Ref. [13] ELD1χ=1.2
RS ELD2χ=1.2 ELD3 ELD4 Ref. [13] ELD1χ=1.2

RS ELD2χ=1.2 ELD3 ELD4
1 3.0041 2.9988 3.0018 2.9987 2.9980 1.8115 1.8067 1.8065 1.8067 1.8062
2 3.5866 3.5814 3.5859 3.5780 3.5771 2.5355 2.5256 2.5293 2.5286 2.5278
3 3.7324 3.7309 3.7329 3.7334 3.7323 2.6693 2.6655 2.6643 2.6675 2.6659
4 4.0905 4.0886 4.0917 4.0890 4.0873 2.6769 2.6733 2.6722 2.6750 2.6735
5 4.6909 4.6891 4.6919 4.6681 4.6664 2.7271 2.7188 2.7239 2.7229 2.7223
6 - 5.0867 5.0964 5.0929 5.0895 - 2.9030 2.9078 2.9063 2.9058
7 - 5.1400 5.1635 5.1547 5.1530 - 3.2385 3.2426 3.2398 3.2392
8 - 5.4655 5.4688 5.4446 5.4420 - 3.5339 3.5357 3.5381 3.5370
9 - 5.5482 5.5507 5.5604 5.5581 - 3.8158 3.8176 3.8176 3.8166

10 - 5.7894 5.7931 5.7994 5.7969 - 3.9129 3.9159 3.9074 3.9069

Lamination scheme: (0/90/0/90)

CCCC FCFC

Ω Ref. [13] ELD1χ=1.2
RS ELD2χ=1.2 ELD3 ELD4 Ref. [13] ELD1χ=1.2

RS ELD2χ=1.2 ELD3 ELD4
1 3.1249 3.1134 3.0945 3.0849 3.0749 1.7945 1.7891 1.7889 1.7889 1.7885
2 3.8595 3.8491 3.8144 3.8033 3.7836 2.2467 2.2327 2.2350 2.2350 2.2322
3 4.0712 4.0550 4.0193 4.0018 3.9832 2.3020 2.2942 2.2660 2.2651 2.2462
4 4.4237 4.4044 4.3688 4.3571 4.3358 2.3438 2.3360 2.3085 2.3077 2.2895
5 5.3687 5.3488 5.2850 5.2716 5.2334 2.3644 2.3517 2.3538 2.3535 2.3503
6 - 5.7751 5.7068 5.6908 5.6487 - 2.6369 2.6375 2.6357 2.6326
7 - 5.8228 5.7791 5.7581 5.7328 - 3.2942 3.2753 3.2709 3.2577
8 - 6.0390 5.9696 5.9195 5.8717 - 3.4992 3.4803 3.4693 3.4592
9 - 6.0813 6.0252 6.0053 5.9862 - 4.0633 4.0325 4.0220 4.0041

10 - 6.7394 6.6178 6.5692 6.5142 - 4.2428 4.1774 4.1735 4.1322
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Table 7. First 10 natural frequencies ([Hz]) for a CCFC laminated cylindrical surface with
(90/30/45/60/0) as lamination scheme for several higher-order ELW approaches, with and without
the Murakami’s function. The Cheb-Gau-Lob grid distribution is used for the numerical solution
assuming IN = 31 and IM = 21.

f [Hz] ELD1χ=1.2
RS ELD2χ=1.2 ELD3 ELD4 3D − FEM

1 56.890 58.220 58.166 58.113 57.997
2 74.436 75.752 75.622 75.536 75.229
3 116.262 118.091 117.910 117.753 117.083
4 150.388 152.559 152.155 152.044 151.589
5 151.874 154.839 154.584 154.518 153.710
6 162.006 164.176 164.010 163.810 162.855
7 176.095 178.608 178.291 178.160 177.017
8 187.827 188.950 188.336 188.123 187.234
9 216.823 220.875 220.638 220.328 218.822

10 222.697 226.597 226.457 226.199 224.561

f [Hz] ELDZ1χ=1.2
RS ELDZ2χ=1.2 ELDZ3 ELDZ4 3D − FEM

1 56.857 58.187 58.164 58.112 57.997
2 74.327 75.631 75.617 75.527 75.229
3 116.016 117.814 117.899 117.735 117.083
4 150.213 152.283 152.135 152.024 151.589
5 151.657 154.684 154.570 154.509 153.710
6 161.698 163.823 163.995 163.792 162.855
7 175.890 178.377 178.271 178.145 177.017
8 187.370 188.489 188.305 188.092 187.234
9 216.456 220.277 220.613 220.301 218.822

10 222.165 226.227 226.438 226.183 224.561

The first 10 natural frequencies of this structure are shown in Table 7 for different higher-order
ELW models. As in the previous tests, each order of kinematic expansion is taken with and without
the Murakami’s function to investigate its contribution. It is easy to notice that in the present case all
the theories give the same results, independently from this function. The accuracy of the numerical
technique is proven also by the comparison with the 3D-FEM solution (8000 brick elements “Hexa20”),
which is nearly equal to the proposed ones. It should be recalled that the same considerations illustrated
above concerning the use of both the shear correction factor and the reduced elastic coefficients are
still valid. Finally, the first nine mode shapes for the shell structure at issue are depicted in Figure 5.

The following structure is a CCCC doubly-curved revolution shell, whose reference surface is
generated by the rotation about the revolution axis of a branch of a catenary (Figure 4d).

r(ϕ, ϑ) = a cosh
(

arcsinh
(

1
tan ϕ

))
cos ϑ e1 − a cosh

(
arcsinh

(
1

tan ϕ

))
sin ϑ e2+

+ a arcsinh
(

1
tan ϕ

)
e3

(56)

where ϕ, ϑ are the curvilinear coordinates of the surface defined in the intervals ϕ ∈ [2.626124, 0.515469]
and ϑ ∈ [−π/3, π/3], with a = 0.75 m. The lamination scheme is chosen to define a so-called sandwich
structure in which the core exhibits mechanical properties that are considerably different from the ones
that characterize the external face-sheets, especially along the transverse direction.
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Figure 5. First nine mode shapes for a CCFC laminated cylindrical surface with (90/30/45/60/0) as
lamination scheme.

In other words, if the stiffness of the constituent materials along the transverse direction is really
different the zig-zag effect is generated. As a consequence, the Murakami’s function is embedded
in the kinematic model to represent the effective behavior of the structure. The lamination scheme
here is given by (45/Core/− 45), assuming that the external orthotropic layers have equal thickness
h1 = h3 = 0.02 m and are made of Graphite-Epoxy. On the other hand, the isotropic core is made of
Ceramic Foam and it is defined by a thickness equal to h2 = 0.06 m. With reference to the mechanical
properties of Table 2, it is easy to notice that E(1)

3 = E(3)
3 � E(2)

3 . Thus, the shell falls into the class
of sandwich structures. The first 10 natural frequencies are shown in Table 8 and are evaluated by
using the Cheb-Gau-Lob grid distribution with IN = IM = 31. In the same table, the 3D-FEM solution
is also reported for comparison purposes. It should be noticed that the first two orders of kinematic
expansion (N = 1, 2) are taken into account with and without the shear correction factor. From Table 8
it can be noted that the use of the shear correction factor χ = 1.2 leads to a solution that are slightly
different from the others. On the other hand, if the correction is not applied (which means χ = 1)
the natural frequencies are similar to the ones obtained for higher-order theories, as well as the ones
given by the 3D-FEM (11560 brick elements “Hexa20”). This aspect has been noticed by the authors in
their previous work [69], where the same considerations were made for the corresponding theories
based on the ESL approach embedded with the Murakami’s function. Thus, the shear correction factor
should be neglected in those structural theories with the Murakami’s function, if a sandwich structure
is analyzed. Finally, the related first nine mode shapes can be found in Figure 6.
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Figure 6. First nine mode shapes for a CCCC sandwich panel of revolution with (45/Core/− 45) as
lamination scheme.

Table 8. First 10 natural frequencies ([Hz]) for a CCCC sandwich panel of revolution with
(45/Core/− 45) as lamination scheme for several higher-order ELW approaches embedded with
the Murakami’s function. The Cheb-Gau-Lob grid distribution is used for the numerical solution
assuming IN = IM = 31.

f [Hz] ELDZ1χ=1.2
RS ELDZ1χ=1

RS ELDZ2χ=1.2 ELDZ2χ=1 ELDZ3 ELDZ4 3D− FEM

1 357.779 365.750 361.564 369.297 369.263 368.569 368.755
2 360.035 368.863 365.443 374.047 374.010 373.200 373.480
3 375.519 385.606 379.308 389.515 389.469 388.520 388.730
4 383.773 393.567 387.618 397.411 397.367 396.434 396.820
5 417.052 430.082 421.774 434.854 434.791 433.342 433.661
6 418.612 431.731 423.729 437.000 436.935 435.462 435.912
7 461.401 474.554 470.283 483.093 483.035 481.662 481.188
8 470.591 485.171 478.858 493.098 493.034 491.534 490.978
9 475.427 492.995 481.536 499.146 499.050 496.646 497.065

10 480.125 496.486 484.349 501.024 500.928 498.549 498.905

The next structure is a CFCF (clamped-free-clamped-free) doubly-curved panel of translation,
obtained by sliding an elliptic profile (defined by the semi diameters a, b) over a parabola (described
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through the parameters a, b, d). It should be noticed that this surface is obtained by moving the elliptic
curve along the parabolic curve, keeping the plane containing the ellipse always orthogonal to the
parabola (Figure 4e). The position vector r(α1, α2), which defines the doubly-curved translational
surface in hand, can be written as a function of the curvilinear coordinates α1, α2

r(α1, α2) =
(

Rα1
0 (α1)− xα2

3 (α2) sin α1
)

e1 − Rα2
0 (α2)e2 +

(
xα1

3 (α1) + xα2
3 (α2) cos α1

)
e3 (57)

where the quantities expressed as a function of the coordinate α1 are related to the parabola
(curve which the other curve is sliding on), whereas the geometric parameters that depend on α2

are linked to the ellipse (curve that is moving on the other one). As far as the parabolic branch is
concerned, one gets

Rα1
0 (α1) =

kα1 tan α1

2
(58)

xα1
3 (α1) =

kα1 tan2 α1

4
(59)

where kα1 =
(
a2 − d2)/b is the characteristic parameter of the curve at issue, assuming the following

values a = 2 m, b = 1 m, c = −2 m, d = 0 m. Further details concerning the geometric features of the
parabolic arch, as well as the meaning of each parameter, can be found in the work [68]. On the other
hand, the following terms are related to the elliptic curve

Rα2
0 (α2) =

akα2 tan α2√
1 + (kα2)2 tan2 α2

(60)

xα2
3 (α2) = b−

√√√√ a2 −
(

Rα2
0 (α2)

)2

(kα2)2 (61)

in which the characteristic parameter of the ellipse is given by kα2 = a/b, with a = 1 m and
b = 1.5 m. The doubly-curved panel of translation is defined by setting α1 ∈ [−0.785398, 0.785398] and
α2 ∈ [−5π/12, 5π/12]. The total thickness of the structure is equal to h = 0.1m and the lamination
scheme is (0/30/60/90). Each ply made of Graphite-Epoxy has the same thickness. The GDQ solution
is obtained by using the Cheb-Gau-Lob grid distribution and the number of grid points is equal to
IN = 35 and IM = 25. The natural frequencies are shown in Table 9 for several higher-order ELW
approaches, with and without the Murakami’s function. In the same table, the 3D-FEM solution is
also given for comparison purposes. The use of the shear correction factor and the reduced elastic
coefficients follows the same considerations illustrated before. It should be noticed that the analyses
are carried out considering both the two types of Thickness functions defined in the previous sections.
In the first row, the natural frequencies are obtained by means of the Legendre Polynomials, whereas in
the second raw the results are related to the Lagrange ones. It can be noticed that the solutions are not
affected by this choice, since the natural frequencies are the same independently from the approach.
Even in this circumstance, the solutions are in excellent agreement with the ones provided by the FEM
(9600 brick elements “Hexa20”). The first nine mode shapes are depicted in Figure 7. It is important to
noticed that the deformed shapes follow the boundary conditions applied to the structure. It should be
noted that all the structures considered until now are included in the category of thick and moderately
thick shells.
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Table 9. First 10 natural frequencies ([Hz]) for a CFCF (clamped-free-clamped-free) laminated panel
of translation with (0/30/60/90) as lamination scheme for several higher-order ELW approaches,
with and without the Murakami’s function. The Cheb-Gau-Lob grid distribution is used for the
numerical solution assuming IN = 35 and IM = 25.

Thickness functions: Legendre Polynomials

f [Hz] ELD1χ=1.2
RS ELDZ1χ=1.2

RS ELD2χ=1.2 ELDZ2χ=1.2 ELD3 ELDZ3 ELD4 ELDZ4 3D− FEM

1 122.947 122.185 125.737 125.687 125.918 125.808 125.779 125.835 125.713
2 155.668 155.006 159.086 159.037 159.181 159.051 159.072 159.150 158.697
3 231.539 229.731 238.266 238.112 238.944 238.618 238.482 238.630 238.079
4 240.059 238.120 246.659 246.500 247.382 247.107 246.952 247.061 246.443
5 327.335 326.622 333.781 333.697 334.027 333.964 333.892 333.893 332.061
6 384.994 384.495 389.841 389.760 390.008 389.934 389.831 389.834 388.658
7 388.042 386.488 393.963 393.830 394.506 394.373 394.185 394.207 392.639
8 417.904 415.005 426.528 426.222 428.037 427.658 427.306 427.408 425.921
9 422.965 420.254 433.492 433.235 434.847 434.558 434.193 434.256 433.063

10 451.770 449.739 458.130 457.903 458.815 458.635 458.367 458.367 456.530

Thickness functions: Lagrange Polynomials

f [Hz] ELD1χ=1.2
RS ELDZ1χ=1.2

RS ELD2χ=1.2 ELDZ2χ=1.2 ELD3 ELDZ3 ELD4 ELDZ4 3D− FEM

1 122.947 122.185 125.737 125.687 125.918 125.808 125.779 125.835 125.713
2 155.668 155.006 159.086 159.037 159.181 159.051 159.072 159.150 158.697
3 231.539 229.731 238.266 238.112 238.944 238.618 238.482 238.630 238.079
4 240.059 238.120 246.659 246.500 247.382 247.107 246.952 247.061 246.443
5 327.335 326.622 333.781 333.697 334.027 333.964 333.892 333.893 332.061
6 384.994 384.495 389.841 389.760 390.008 389.934 389.831 389.834 388.658
7 388.042 386.488 393.963 393.830 394.506 394.373 394.185 394.207 392.639
8 417.904 415.005 426.528 426.222 428.037 427.658 427.306 427.408 425.921
9 422.965 420.254 433.492 433.235 434.847 434.558 434.193 434.256 433.063

10 451.770 449.739 458.130 457.903 458.815 458.635 458.367 458.367 456.530

The last example is focused on the free vibration analysis of a completely clamped (CCCC) thin
helicoidal shell, whose geometry is shown in Figure 4f. The reference surface can be described in
principal curvilinear coordinates α1, α2 according to the following position vector r(α1, α2)

r(α1, α2) = −a cos(α1 + α2)sinh(α1 − α2)e1 − a sin(α1 + α2)sinh(α1 − α2)e2 + a(α1 − α2)e3 (62)

in which a = 1 m, whereas the domain is defined by the limits α1 ∈ [0, 1.5] and α2 ∈ [0, 1.5].
The structure is made of four plies (Graphite-Epoxy) of equal thickness oriented as (0/90/0/90).
The overall thickness is given by h = 0.01 m. The first 10 natural frequencies for this shell are
shown in Table 10 for various ELW models. The GDQ solution is achieved by setting IN = IM = 31
for the Cheb-Gau-Lob grid distribution. On the other hand, the solution obtained by the FEM is
two-dimensional (1600 plate elements “Quad9”).
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Figure 7. First nine mode shapes for a CFCF laminated panel of translation with (0/30/60/90) as
lamination scheme.

It can be noticed from the proposed results match perfectly even in this case. The Murakami’s
function is not taken into account due to the reduced value of thickness that allows to neglect the
possible zig-zag effect. The first nine mode shapes are depicted in Figure 8. This last example has
clearly proven also the accuracy of the present method for the free vibration analysis of thin shells.

Table 10. First 10 natural frequencies ([Hz]) for a CCCC thin laminated helicoidal surface with
(0/90/0/90) as lamination scheme for several higher-order ELW approaches. The Cheb-Gau-Lob grid
distribution is used for the numerical solution assuming IN = IM = 31.

f [Hz] ELD1χ=1.2
RS ELD2χ=1.2 ELD3 ELD4 2D − FEM

1 206.173 206.427 206.425 206.412 206.683
2 218.464 219.333 219.329 219.310 219.650
3 238.304 238.702 238.699 238.680 239.026
4 246.655 247.102 247.097 247.070 247.489
5 260.468 261.159 261.152 261.118 261.653
6 261.249 262.055 262.052 262.031 262.382
7 261.294 262.189 262.187 262.173 262.408
8 268.205 269.147 269.140 269.107 269.750
9 281.329 281.691 281.683 281.637 282.434

10 301.474 302.267 302.261 302.231 302.725
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7.3. Comparison with the LW and ESL Approaches

In this last paragraph, the results obtained by means of the proposed ELW approach are compared
to the ones achievable through the ESL and LW models. For this purpose, the laminated conical shell
described in the works [61,83] is considered. The same work can be taken as a reference for both the
geometric and mechanical properties of the laminated composite shell at issue. For completeness
purposes, the conical surface in hand is given by the following position vector

r(x, ϑ) = R 0(x) cos ϑe1 − R0(x) sin ϑe2 + x sin ϕe3 (63)

where R0(x) = R + x cos ϕ. The constant angle ϕ = π/3 represents the slope of the straight meridian
profile, whereas R = 1 m is the radius measured at the top of the shell. The two-dimensional domain is
bounded by the limitations x ∈ [0, Lx] and ϑ ∈ [ϑ0, ϑ1], with Lx = 3 m, ϑ0 = 0 and ϑ1 = 2π. The shell
is made of two layers of Graphite-Epoxy characterized by the same thickness value h1 = h2 = 0.15 m.
On the other hand, the lamination scheme is given by (−45/45). As far as the boundary conditions are
concerned, the conical shell is completely clamped along the top edge, whereas the lower circumference
is free.

The GDQ method is employed to obtain the numerical solution even in this circumstance, for all
the considered approaches. Since various orders of kinematic expansion are taken into account,
the comparison should be performed by considering the corresponding higher-order displacement field
for each approach (ESL, ELW, and LW). In particular, the ESL solutions are taken from the paper [61],
whereas the work [83] is the reference for the LW ones. The same grid distributions and total values of
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discrete points specified in the works [61,83] are used also in the present paper. The natural frequencies
of the conical shell are shown in Table 11, where the solutions obtained through a three-dimensional
finite element model are presented too. It should be noted that both the ESL and ELW models are taken
with and without the Murakami’s function. In general, the ELW approach provides values of natural
frequencies placed between the ones given by the corresponding ESL and LW models. In other words,
the results obtained by the ELW approach are closer to the LW solutions, as well as to the 3D-FEM,
than the corresponding ESL ones. Nevertheless, the computational cost of the ELW model is reduced
if compared to the one that characterizes the LW approach, since the proposed methodology does
not require to consider each layer separately. For the sake of completeness, the reader can refer to the
papers [61,83] to understand the meaning of the ESL and LW models introduced in Table 11.

Table 11. Comparison of the natural frequencies for a laminated composite conical shell [61,83].
The solutions obtained through the present approach are compared to the results given by the
corresponding ESL and Layer-Wise (LW) models.

f [Hz] ED1
Ref. [61] ELD1χ=1.2

RS
EDZ1

Ref. [61] ELDZ1χ=1.2
RS

LD1
Ref. [83]

3D− FEM
Ref. [61]

1 62.262 60.585 61.907 61.455 61.561 61.35
2 62.262 60.585 61.907 61.455 61.561 61.35
3 95.989 94.941 96.156 95.702 96.075 95.60
4 95.989 94.941 96.156 95.702 96.075 95.60
5 101.520 97.536 99.441 98.713 99.214 98.15
6 101.520 97.536 99.441 98.713 99.214 98.15
7 172.139 165.402 168.296 166.637 168.175 165.68
8 172.139 165.402 168.296 166.638 168.175 165.68
9 182.026 180.740 181.769 181.516 182.330 181.15
10 220.673 220.535 221.022 220.573 220.587 219.91

f [Hz] ED2
Ref. [61] ELD2χ=1.2 EDZ2

Ref. [61] ELDZ2χ=1.2 LD2
Ref. [83]

3D− FEM
Ref. [61]

1 61.343 61.314 61.716 61.260 61.169 61.35
2 61.343 61.314 61.716 61.260 61.169 61.35
3 95.651 95.628 96.071 95.615 95.660 95.60
4 95.651 95.628 96.071 95.615 95.660 95.60
5 98.286 98.273 98.781 98.061 98.273 98.15
6 98.286 98.273 98.781 98.061 98.273 98.15
7 165.873 165.867 167.038 165.413 166.297 165.68
8 165.873 165.867 167.038 165.413 166.297 165.68
9 181.462 181.450 181.680 181.425 181.808 181.15
10 220.558 220.558 220.997 220.548 219.741 219.91

8. Conclusions

A new higher-order approach is presented to analyze the natural frequencies of thin and thick
laminated composite shells. The method, named Equivalent Layer-Wise (ELW) method, is used
to evaluate the overall mechanical and geometric properties directly on the shell middle surface,
as commonly done in the Equivalent Single Layer (ESL) approaches, and the displacement field has
been described by using the same kinematic expansions employed in the most typical Layer-Wise (LW)
models, but without considering each layer separately. The governing equation are solved numerically
by the GDQ method. This new approach has been validated by comparison with the results available
in the literature and those obtained using a commercial finite element code. It has been illustrated that
the solutions are in excellent agreement with the reference ones for several boundary conditions and
various mechanical configurations. When compared to the corresponding three-dimensional finite
element model, the present methodology requires a lower number of degrees of freedom to reach
the same level of accuracy. In addition, since the differential geometry is employed to describe the
reference doubly-curved surface, several geometric shapes have been easily obtained and analyzed.
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In fact, the domain has been defined using only one element, whereas the FEM models required many
brick or plate elements to describe the same geometry accurately. It should be noted that the present
methodology provides a physical meaning to the degrees of freedom of the problem for each order of
kinematic expansion, different from the ESL approach, in which the generalized displacements related
to higher-order expansions represent a mathematical parametrization of these quantities. Furthermore,
the structural analysis of a laminated composite structure has not required the same computational
resources needed by the LW methods. Thus, the computational time has been noticeably reduced when
compared to the LW models. It should be noted also that the use of the Murakami’s function has been
also investigated by taking into account a sandwich structure. The linear static analysis of laminated
composite shell structures can be seen as a future development of the present approach. Finally,
it should be highlighted that the presented methodology could be used to deal with some typical
aerospace applications which require an efficient tool to analyze composite structures characterized by
complex geometries, with different material and thickness distributions.
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