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Abstract: Pathogenic microorganisms can lead to serious outbreaks of foodborne illnesses,
particularly if fresh produce becomes contaminated and then happens to be inappropriately handled
in a manner that can incubate pathogens. Pathogenic microbial contamination of produce can occur
through a variety of pathways, such as from the excrement of domesticated and wild animals,
biological soil amendment, agricultural water, worker health and hygiene, and field tools used
during growth and harvest. The use of mature manure compost and preventative control of fecal
contamination from wildlife and livestock are subject to safety standards to minimize the risk of
foodborne illness associated with produce. However, in a field production environment, neither
traces of animal feces nor the degree of maturity of manure compost can be identified by the naked
eye. In this study, we investigated hyperspectral fluorescence imaging techniques to characterize
fecal samples from bovine, swine, poultry, and sheep species, and to determine feasibilities for both
detecting the presence of animal feces as well as identifying the species origin of the feces in mixtures
of soil and feces. In addition, the imaging techniques were evaluated for assessing the maturity of
manure compost. The animal feces exhibited dynamic and unique fluorescence emission features that
allowed for the detection of the presence of feces and showed that identification of the species origin
of fecal matter present in soil-feces mixtures is feasible. Furthermore, the results indicate that using
simple single-band fluorescence imaging at the fluorescence emission maximum for animal feces,
simpler than full-spectrum hyperspectral fluorescence imaging, can be used to assess the maturity of
manure compost.

Keywords: fresh produce; pathogenic microorganism; compost; feces; hyperspectral
fluorescence imaging

1. Introduction

From 1996 to 2010, approximately 131 fresh produce-related outbreaks occurred, resulting
in 14,132 outbreak-related illnesses, 1360 hospitalizations and 27 deaths [1,2]. The increase in cases
of foodborne illness linked to fresh produce can be attributed not only to increased consumption,
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but also to the increased popularity of processed ready-to-use products, centralized production
operations, and more effective surveillance of illness incidents [3,4]. According to investigations
of pathogenic microbial outbreaks that have occurred in the United States, pathogens that were the
leading causes of foodborne illnesses, hospitalizations, and deaths have been Norovirus, Salmonella,
Clostridium perfringens, Campylobacter spp., Listeria monocytogenes, and E. coli (STEC) O157 [5].

Fresh produce can become contaminated with pathogens during growth, harvesting, packaging,
or food preparation through various routes, such as manure compost being used as a soil amendment
for soil quality, irrigation water, or fecal contamination by active wildlife or proximity to livestock in
the field [6–9]. Data on the source of outbreaks shows that the majority of outbreaks related to fresh
produce have mostly been caused by zoonotic bacterial pathogens of animal origin such as Salmonella
and E. coli O157:H7 [2]. Three surveys related to distribution of Salmonella and pathogenic E. coli shows
that they have been commonly isolated from feces of beef and dairy cattle, and over 13% of cattle
harbor either E. coli O157:H7 or Salmonella [10,11]. Similarly, two surveys found that between 13%
and 23% of feral swine tested positive for the same two pathogens, and feral swine was reported to be
the animal showing the second highest incidence of carrying pathogenic E. coli [12], with beef cattle
showing the highest incidence. Thus, it shows that the intrusion of wild or domestic animals into
production fields or the contamination of animal feces through various routes are consistent with
outbreaks related to produce.

As another source of fecal contamination, manure compost is organic material that has been
degraded into a nutrient-stabilized, humus-like substance through microbial activity that generates
sufficiently high thermophilic temperatures (≥55 ◦C) to kill enteric bacterial pathogens originally
present in the feedstocks [13]. However, even if finished compost is properly maintained, it can
become recontaminated from environmental sources, such as wild terrestrial animals and birds,
so pathogens such as Salmonella spp. and E. coli can regrow in finished compost or inadequately
composted manure [14–16]. Therefore, detecting the fecal presence in soil or compost would improve
efforts to ensure adequate maturation of composts at all stages of the composting process as well as to
avoid harvesting in contaminated field areas.

Microbial standards for the biological amendments of animal origin such as manure compost
provide the biological criteria for applying biological amendments to the field to ensure the safety of
produce [17]. These analytical methods for microbial standards, being mostly conventional detection
methods relying on cultivation, are time-consuming and material- and labor-intensive [18]. In general,
microbial contamination tends to occur in a limited and randomized manner. Thus, before conducting
a regulated traditional method, a more effective and rapid on-site method for screening contaminated
samples has been requested over the past years [19].

Optical sensing techniques including hyperspectral imaging (HSI), as research tools, have gained
increasing attention as tools for the rapid detection of anomalies in food products in recent years [20–24].
Hyperspectral imaging, which combines imaging and spectroscopic technology, can rapidly acquire
spectral information at each pixel in an image in a non-invasive and non-destructive manner, and thus
has the potential for use in screening products for contaminants based on unique spectral features
across the sample image [25]. Originally, hyperspectral imaging was developed for remote sensing
applications, but it has now been applied in a number of fields including food safety and quality,
pharmaceuticals and material science [26].

In particular, regarding the detection of animal feces, the investigation of optimal fluorescence
excitation and emission bands found that fluorescence emissions with excitation at 410 to 420 nm from
naturally occurring chlorophyll a and its metabolites were good markers for fecal contamination [27].
Moreover, hyperspectral fluorescence imaging has been applied to detect bovine fecal contamination
on produce for biological safety, and various methods of image processing, spectral pretreatment,
and modeling have been developed and refined to improve resolution and lower detection limits.
For example, hyperspectral fluorescence imaging showed great potential for detecting cow fecal
contamination spots on apples [28–30], cantaloupes [31] and tomatoes [32] and was found to be
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more sensitive than reflectance imaging. Moreover, recent studies include hyperspectral fluorescence
imaging on green leaves with high concentrations of chlorophyll a, such as romaine lettuce and baby
spinach, and a two-band ratio method was determined for distinguishing fecal contamination spots on
leafy greens because the emission peaks from bovine fecal matter (near 670 nm) and green plant leaves
(near 685 nm) occur in close proximity to the same visible spectral region [33–35]. This rapid screening
method using fluorescence imaging can potentially be used in situ to detect fecal matter in soils and
manure compost samples and to enhance the efficacies of soil and compost sampling operations.

In this research, hyperspectral fluorescence imaging techniques were investigated (1) to
characterize feces samples from bovine, swine, poultry, and sheep species; and (2) to determine
feasibilities for detecting and identifying the presence of animal feces and the species origin of the
feces, respectively, on or in soil-feces mixtures. In addition, the imaging technique was evaluated for
the potential determination of manure compost maturity. The aim of this investigation was to develop
field portable imaging devices for in situ screening of soil and compost samples for animal fecal matter.
Ultimately, such devices will greatly enhance the efficacies and economics of the current sampling
regimes for microbial testing.

2. Materials and Methods

2.1. Sample Preparation

Fresh samples of animal feces from dairy cows, pigs, chickens, and sheep were collected from
animal research facilities and farms at the Beltsville Agricultural Research Center (BARC), Agricultural
Research Service, United States Department of Agriculture. All fecal samples consisted of fresh
droppings, and for each species, four samples of about 40 to 80 g each from individual animals were
collected into polypropylene containers of 100 mL using sterilized disposable spatulas. The feces of
dairy cows, chicken, and pigs were collected from individually housed animals, while very fresh sheep
droppings were collected from free-ranging animals (outdoors). Collected samples are immediately
stored at −20 ◦C, and later allowed to stand at least 30 min to acclimate to room temperature before
being used for imaging. Amended soil (sandy loam) samples were obtained from BARC high tunnel
facilities usually used to grow produce. First, the fecal samples from each animal species and the soil
samples were placed on a non-fluorescent tray, with each sample weighing approximately 30–35 g and
covering an area approximately 5 cm in diameter. Hyperspectral fluorescence line-scan images of the
feces and soil samples were replicated four times. Second, to evaluate soil-feces mixture matrix, soil
samples were placed into four Petri dishes: one contained only soil, two contained soil topped with
aggregated feces particles (approximately 5 to 10 mm in size) from each of the four animal species, and
one contained soil mixed randomly with finely-cut feces particles (less than 3 mm in size) from each
of the four animal species. All four Petri dishes were scanned together in one pass for hyperspectral
image acquisition/analysis, replicated four times.

In addition, samples of animal-manure-based compost aged for one, two, three, and four months
were obtained from the BARC Composting Research Facility on 11 February 2016. The exposed
outdoor compost piles had been created on 7 January 2016 (one month prior), 2 December 2015
(two months prior), 7 November 2015 (three months prior), and 7 October 2015 (four months prior),
placed over bare earth in windrows approximately 50 m long, 1.5 m wide, and 1 m high. In terms
of species origin of the animal feces present, the compost was mainly derived from cow feces along
with mixtures of feces from other animal species such as horse, pig, sheep, and chicken. Note that
compost contains mixtures of landscape trimmings and animal feed/bedding materials as well as
feces/manure, and that the exact makeup and quantity of animal-fecal species were not quantified in
this investigation. From each aged compost windrow, approximately 3 kg of compost was shoveled
out to one mixing bucket from each of five holes distributed along the length of the 50 m windrow,
for a total of 15 kg to mix together to produce a representative batch of the aged compost. Immediately
after the mixing, approximately 3 kg of each representative compost batch was placed into a plastic
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bag for storage at −20 ◦C. The four bags of aged compost were allowed to stand at room temperature
for at least 30 min before being used for the imaging study. Each of the four batches of aged composts
was used to fill five individual Petri dishes, for an arrangement of 20 samples in Petri dishes (four aged
compost batches, five dishes per batch) that were then scanned together in one pass for hyperspectral
imaging. Images were acquired for a total of 80 compost samples in four sets of 20 Petri dishes
(in 4 aged month × 5 sample arrangement).

2.2. Hyperspectral Imaging System

A line-scan (push-broom) hyperspectral imaging (HSI) system and LED-based violet fluorescence
excitation light were used in this study. The HSI system consists of a 14-bit electron-multiplying
charge-coupled-device (EMCCD) camera (MegaLuca R EMCCD camera, Andor Technology PLC,
Belfast, Northern Ireland), an imaging spectrograph (Hyperspec VS imaging spectrograph, Headwall
Photonics, Fitchburg, MA, USA) with 60 µm slit, a lens (Schneider-Xenoplan 1.4/23 C-mount lens,
Schneider Optics, Hauppauge, NY, USA) and a motorized positioning table (Velmex, Bloomfield, NY,
USA). Figure 1 shows a schematic illustration and a photo of the HSI system which can acquire visible
or near-infrared reflectance images by using quartz-tungsten halogen lights as well as fluorescence
images by using either ultraviolet (UV) or violet (V) excitation lights. The two UV/violet LED-based
line lights were built in-house and each incorporated four 365 nm and four 405 nm 10 W light-emitting
diodes (LEDs; LedEngin, CA, USA). A 480 nm long wavelength pass filter (Kodak Wratten Gelatin
Filter, No. 8) was placed in front of the object lens to remove the tail-end of the excitation light and
second-order effect. In this study, the HSI system was used only with the 405 nm violet excitation light
because previous research found that fluorescence from the violet excitation (e.g., 410 nm) enhanced
the detection of fecal matter on produce to a greater degree when compared to fluorescence from UV
excitation or visible/near-infrared reflectance [33].

Total 81 layers of hyperspectral images were collected across the range of 480 to 800 nm at
approximately 4 nm intervals. The EMCCD has 1004 × 1002 pixels (spatial × spectral), which include
spectral bands below and above the 480 to 800 nm spectral region of interest. Of the 1002 spectral
pixels, only the 405 pixels within the spectral region of interest were acquired. In addition, pixel
binning (averaging) was used to reduce the data volume by two horizontally and by five vertically,
resulting in 502 spatial pixels and 81 spectral wavebands. Hyperspectral images were acquired
using line-scan incremental steps of 1 mm with 0.09 s exposure time for pure fecal, soil-fecal matrix,
and compost samples.
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HSI system data acquisition was carried out using software developed in-house in Visual Basic
(Version 6, Microsoft, Seattle, WA, USA). Sample images were corrected with subtraction of EMCCD
dark current and adjustment for spatial flat-field responses using two additionally acquired images,
respectively. A dark current image was acquired with the light source turned off and the camera
lens covered. A flat-field image of a uniform fluorescent target sample (i.e., white plotter paper) was
used to correct for heterogeneous illumination and responses of the HSI system. Image processing
and analyses, such as dark current and flat-field corrections, spectral data extraction, and principal
component analysis (PCA), were accomplished with combined use of in-house software written in
Visual Basic and Matlab (Version R2007b, The MathWorks, Inc., Natick, MA, USA, 2007).

3. Results and Discussion

3.1. Fluorescence Characteristics of Animal Feces and Soil

Figure 2a shows a color photo of representative animal fecal and soil samples as arranged
for the imaging study for comparison with each other; Figure 2b shows the mean sample spectra
extracted from a nine-pixel (3 × 3 pixels) region of interest within the area of each sample type in the
hyperspectral images that illustrate the dynamic fluorescence emission characteristics of fecal materials.
The most common fluorescence characteristic of the fecal materials was an emission maximum in the
red region of the spectrum at about 676 nm, with a secondary peak at about 720 nm, especially for cow
and sheep feces. Pig and chicken feces exhibited a relatively strong emission in the green region with
an emission maximum at approximately 520 nm. In addition, emission peaks were observed in the pig
and chicken spectra near 635 nm, where a more pronounced emission peak can be seen in the chicken
spectrum [27]. The emission features of pig, cow, and chicken feces obtained from the HSI system
using 405 nm excitation were consistent with previously reported results from a spectrofluorometer.
Fluorescence spectral features of sheep feces were nearly the same as those for cow feces with a
minimal emission in the green region and dominant emissions in the red region at 676 nm and 720 nm.
Figure 2b also shows a representative soil spectrum that exhibits minimal fluorescence emissions
through the green and red regions.

Chlorophyll a molecules are present in green plants and emit unique fluorescence features in
the red and far-red regions of the spectrum, with emission peaks at 685 and 730 nm having been
reported [36,37]. Using a fluorescence excitation maximum at around 410 nm, strong fluorescence
emissions were previously observed for the feces of cow, pig, chicken and sheep in the red region of
the visible spectrum, with peaks near 676 nm. The red emissions observed in animal fecal matter are
suggested to be chlorophyll a or its metabolites such as pheophorbide a. The spectral change resulted
from the green roughages consumed by the animals, and the blue-shifted spectral change was reported
to occur with chlorophyll a having passed through the digestive tract of animals [27]. For chicken feces,
the 635 nm emission peak is thought to emanate from Protoporphine IX.

Figure 2c,d show hyperspectral images of the samples at 520 nm and 676 nm, respectively.
The 520 nm green-band image shows that the relative intensities of chicken feces followed by pig feces
were significantly higher than those of sheep and cow feces. At 676 nm, the chicken feces exhibited the
highest fluorescence emissions compared to other fecal samples. Both cow and sheep feces exhibited
some bright spots where the relative fluorescence intensities were similar to chicken feces. The 676 nm
image demonstrates that the fecal matter can be potentially differentiated from soil.
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3.2. Discrimination of Fecal Matter on Soil and in Mixtures with Soil

Pathogenic microbial contamination of agricultural products by feces may occur in fields during
planting, growing, or harvesting as a result of wildlife intrusion, immature compost used as an
amendment for soil quality, or irrigation water contaminated by feces of either wildlife or livestock.

To explore the potential identification of the species origin of animal feces, the hyperspectral
images of animal feces and soil samples shown in Figure 3 were subjected to PCA. The sample materials
exhibited dynamic fluorescence characteristics, and PCA can reduce high spectral dimensions into
a few significant principal components. The results showed that the first five principal components
accounted for 99.8% of the spectral variation found in the samples. Figure 3a shows, from top to
bottom, the first to fourth principal component (PC) score images. Note that the other PC score images
were omitted for brevity. The first PC score image exhibited the relatively high emission features of the
chicken feces followed by pig feces throughout the wavelength region under investigation. The second
PC to fourth PC images highlighted differences between the individual feces samples.

Figure 3b illustrates the distributions of individual feces and soil pixels in a scatter plot of the
PC1, PC2 and PC3 domains. Chicken feces pixels were the most scattered, yet are clearly separated
from other samples. Soil with minimal fluorescence emission intensities exhibited the least scattered
grouping. The pixels for cow and sheep feces were districted in a close proximity in the PC1 to PC3
domain, as suggested by the spectral similarity observed in Figure 2b. Figure 3c is an RGB-composite
image created using PC2, PC3, and PC4 score images (in Figure 3a). Individual feces samples exhibited
unique color schemes suggesting that the identification of animal-fecal species in an animal feces-soil
matrix may be possible using hyperspectral fluorescence imaging techniques.
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As shown in the color photo in Figure 4a, small feces particles present on top of or mixed in with
soil cannot be easily distinguished by the naked eye, except sometimes for chicken feces particles
because they tend to be much lighter in color compared to the adjacent soil particles. Figure 4b shows
a hyperspectral image at 676 nm (animal fecal peak wavelength). In this image, spatial placement
of the fecal samples on or mixed in the soils can be seen clearly due relatively high fecal emission
characteristics. On the basis of a single animal fecal emission band, a qualitative assessment of fecal
presence is feasible—an automated threshold of the 676 nm image allows the detection of feces pieces
in the samples (Figure 4c). Subjecting the hyperspectral images to PCA showed that the identification
of individual animal-fecal species is also feasible in a soil-feces matrix, as illustrated in the RGB color
composite image of the PC2, PC 3, and PC4 score images (Figure 4d). Individual PC score images were
not shown for brevity. The upper-right Petri dish with the feces-soil mixture exhibited the four distinct
color schemes of the feces for the four animal species. These results suggest that a simpler single-band
imaging system can provide the detection of the presence of feces on or in soils, while a HSI technique
is needed to determine the animal species of fecal materials.
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Figure 4. (a) Photo of representative feces-soil sample matrix where (in clockwise order from upper left)
one Petri dish contains only soil, one Petri dish contains a random mixture of soil and fecal particulates
from all animal species, and two Petri dishes (at bottom) each contain soil topped with larger fecal
particulates from each of four animal species; (b) Fluorescence image of the representative soil-feces
sample matrix acquired at 676 nm; (c) Binary feces distribution image obtained by applying automated
Otsu threshold (Otsu, 1979) to the 676 nm fluorescence image of soil-feces sample matrix; (d) RGB color
composite image obtained from a combination of PC2, PC3, and PC4 score images of the soil-feces
sample matrix.

3.3. Identification of Fecal Presence as Related to Degree of Compost Fermentation

In brief, mature compost is the result of a managed biological process that involves the
microbiologically self-heated decomposition of organic residuals and byproducts such as animal feces,
food/bedding materials, and landscape trimmings. Through this process, biosolids are stabilized,
potential pathogens are reduced, and odors and insect attraction are eliminated [38,39]. Compost
which is not adequately exposed to high temperatures for sufficient time periods may harbor some
surviving bacterial pathogens, and these survivors may thrive and multiply under favorable conditions.
Salmonella spp. has been reported to persist for 161 and up to 231 days in soils amended with
contaminated composts where lettuce and parsley, respectively, were grown. The pathogens were
detected on the plants for up to 63 days (lettuce) and 231 days (parsley) [6].

Figure 5a,b show a color photo and a 676 nm fluorescence image, respectively, for the
representative compost samples obtained from compost windrows aged for one, two, three, and
four months. The results show that (hyperspectral) fluorescence imaging was able to detect the fecal
presence in the compost samples even though it was not identifiable by the naked eye. As shown in
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the F676 nm image, much fecal content was detectable in the one-month compost, but with the passing
of time there was significant decomposition. However, the imaging results indicated that some trace
fecal presence remained even after four months of composting. This observation was attributable to
relatively slow composting rates during the cooler winter months, since all the compost samples were
acquired from the outdoor facility in February 2015. Note that compost maturation depends on many
factors including ambient temperature and environmental circumstances.

To further verify the change in fluorescence intensities based on aged compost samples, mean and
standard deviation values for the fluorescence intensities at 676 nm were calculated. The total numbers
of pixels acquired from 20 samples for each month were approximately 150,000. The results are plotted
in Figure 5c. The average values of fluorescence intensities at 676 nm for the aged compost samples
were 2040.2, 914.3, 803.7, and 799.2, respectively. The fluorescence value between the one-month sample
and the two-, three- and four-month samples showed a significant difference (p < 0.0001). However,
statistically significant differences could not be confirmed between the two-, three- and four-month
samples. Nevertheless, the mean and standard deviation of fluorescence intensities decreased with the
aged months because the pixels with high fluorescence intensity (676 nm) were reduced. Therefore,
these results suggest that the fluorescence value at 676 nm is related to the composting rates of manure.

Appl. Sci. 2016, 6, 243  9 of 12 

passing of  time  there was significant decomposition. However,  the  imaging results  indicated  that 

some  trace  fecal presence  remained even after  four months of  composting. This observation was 

attributable  to  relatively  slow  composting  rates  during  the  cooler winter months,  since  all  the 

compost  samples were  acquired  from  the  outdoor  facility  in  February  2015. Note  that  compost 

maturation  depends  on  many  factors  including  ambient  temperature  and  environmental 

circumstances. 

To further verify the change in fluorescence intensities based on aged compost samples, mean 

and standard deviation values for the fluorescence intensities at 676 nm were calculated. The total 

numbers of pixels acquired from 20 samples for each month were approximately 150,000. The results 

are plotted in Figure 5c. The average values of fluorescence intensities at 676 nm for the aged compost 

samples were 2040.2, 914.3, 803.7, and 799.2,  respectively. The  fluorescence value between  the one‐

month sample and the two‐, three‐ and four‐month samples showed a significant difference (p < 0.0001). 

However, statistically significant differences could not be confirmed between the two‐, three‐ and 

four‐month  samples. Nevertheless,  the mean  and  standard  deviation  of  fluorescence  intensities 

decreased with the aged months because the pixels with high fluorescence intensity (676 nm) were 

reduced. Therefore,  these  results  suggest  that  the  fluorescence value  at  676 nm  is  related  to  the 

composting rates of manure. 

 

Figure 5. (a) Photo of aged compost samples; (b) Fluorescence image of the aged compost samples 

shown  in  the  color photo  acquired  at  676 nm. The presence of  fecal matter  (gray‐white  spots)  is 

evident  even  after  the  two‐,  three‐,  and  four‐month  composting  for  the  compost  samples  under 

investigation. Note  that  the  rest of  the  samples,  sets 2  to 4, exhibited  similar  responses and were 

omitted for brevity. The white boundary edges of the sample materials/Petri dishes were added to 

outline individual samples; (c) Mean and standard deviation values for fluorescence intensities at 676 

nm. 

The U.S. Environmental Protection Agency, the U.S. Composting Council, and the FDA stipulate 

microbial criteria for finished compost to ensure biological safety when it is applied to the land, and 

the presence and amounts of fecal coliforms and Salmonella spp. must be confirmed as indicators of 

the total pathogen content [17,40,41]. Because making such determinations with current conventional 

methods is time‐consuming and expensive, especially for small‐scale farmers, there is a great need 

for new methods that can be used directly in‐field and at lower cost to estimate whether compost is 

finished.  The  fluorescence  imaging  techniques  demonstrated  in  this  investigation may  provide 

efficient and economical means to determine fecal presence at all stages of the composting process 

because fecal presence in the composting process means the process is under continuation or is not 

entirely finished. In the future, additional research for the relationship between the images of fecal 

spots at all stages of the composting process and the presence of microbial standards such as fecal 

Figure 5. (a) Photo of aged compost samples; (b) Fluorescence image of the aged compost samples
shown in the color photo acquired at 676 nm. The presence of fecal matter (gray-white spots) is evident
even after the two-, three-, and four-month composting for the compost samples under investigation.
Note that the rest of the samples, sets 2 to 4, exhibited similar responses and were omitted for brevity.
The white boundary edges of the sample materials/Petri dishes were added to outline individual
samples; (c) Mean and standard deviation values for fluorescence intensities at 676 nm.

The U.S. Environmental Protection Agency, the U.S. Composting Council, and the FDA stipulate
microbial criteria for finished compost to ensure biological safety when it is applied to the land,
and the presence and amounts of fecal coliforms and Salmonella spp. must be confirmed as indicators
of the total pathogen content [17,40,41]. Because making such determinations with current conventional
methods is time-consuming and expensive, especially for small-scale farmers, there is a great need
for new methods that can be used directly in-field and at lower cost to estimate whether compost is
finished. The fluorescence imaging techniques demonstrated in this investigation may provide efficient
and economical means to determine fecal presence at all stages of the composting process because
fecal presence in the composting process means the process is under continuation or is not entirely
finished. In the future, additional research for the relationship between the images of fecal spots at all
stages of the composting process and the presence of microbial standards such as fecal coliforms or
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Salmonella spp. is planned to compare the results between the fluorescence imaging method and the
conventional biological method.

4. Conclusions

In this study, a hyperspectral fluorescence imaging system developed in-house was used to
characterize the unique spectral features of feces samples from dairy cows, pigs, chickens, and sheep.
Furthermore, it was also demonstrated that the detection of animal feces and the identification of
species origin in soil-feces mixtures are feasible. The results suggest that a simpler single-band imaging
system can provide a means for the detection of the presence of feces on soils, while HSI imaging
techniques are needed to determine the animal origin of fecal materials. In addition, single-band
fluorescence imaging at 676 nm (feces emission maximum band) illustrated the detection of the
presence of fecal matter in aged composts. Given the limited sampling of compost and animal
fecal matter used in the present study, additional work to comprehensively test these methods will
incorporate greater variety by sampling compost from different locations and production methods,
and fecal material from a greater variety of animals whose environments, feeding regimes, and breeds
differ in ways that may be typical for different animal production operations. However, the current
results suggest that the methods presented in this investigation can be developed for the use of rapid
in situ screening for animal feces in soil and compost samples where the presence or incomplete
composting of fecal matter is a potential source of pathogenic microorganisms in agricultural fields.

Effective in-field fecal contaminant detection will help prevent the harvesting of produce
considered to be contaminated due to in-field proximity with animal feces, and will also enable more
precise and effective field sampling for off-site microbial pathogen detection tests. The development of
field portable imaging devices for in situ screening of soil and compost samples for animal fecal matter
is in progress. Ultimately, such devices will greatly enhance the efficacies and economics of the current
sampling regimes for microbial testing. Further research will help optimize the use of image-based
fecal detection methods to complement and support conventional microbiological testing methods.
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