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Abstract: From a biological perspective, a dynamic model describing the cultivation and flocculation
of a microorganism that uses two different kinds of nutrients (carbon source and nitrogen
source) is proposed. For the proposed model, there always exists a boundary equilibrium, i.e.,
Rhodopseudomonas palustris -free equilibrium. Furthermore, under additional conditions, the model
also has five positive equilibria at most, i.e., the equilibria for which carbon source, nitrogen source,
Rhodopseudomonas palustris and flocculants are coexistent. The phenomena of backward and
forward bifurcations are extensively discussed by using center manifold theory. The global stability
of the boundary equilibrium of the proposed model is deeply investigated. Moreover, the local
stability of the positive equilibrium and the uniform persistence of the proposed model are discussed.
Under additional conditions, the global stability of the positive equilibrium is studied. Some control
strategies are given by the theoretical analysis. Finally, some numerical simulations are performed to
confirm the correctness of the theoretical results.

Keywords: dynamic model; flocculation; global stability; uniform persistence

1. Introduction

Photosynthetic bacteria, which are common microorganisms in the natural environment,
have been applied in the field of environmental protection, such as in the treatment of sewage,
domestic wastewater and the bioremediation of sediment mud polluted with organic matter (see,
for example, [1–4]). On the other hand, photosynthetic bacteria can produce relatively large amounts of
physiologically-active substances, such as vitamin B12 , ubiquinone (coenzyme Q10 ), 5-aminolevulinic
acid (ALA) and RNA (see, for example [5]). In particular, vitamin B12 has been used in treating
anemia and as an eye lotion. Recently, applications as health food supplements have received
considerable attention. Coenzyme Q10 has been used in treating heart diseases for many years.
Further, coenzyme Q10 has been used not only as a medicine, but also as some food supplements,
because of its physiological activities. One of the developments of ALA applications is in the area of
photodynamic diagnosis. RNA is an attractive source of 5′-ribonucleotides for use as a flavor enhancer
in the food industry. In recent years, the production of RNA has been used as a dietary source of
pyrimidine for human immune functions (see, for example [6,7]).

Some photosynthetic bacteria, such as Rhodopseudomonas palustris, are extensively used in
the production of lycopene, aquaculture, and so on [8]. It can use sunlight, inorganic and
organic compounds for energy. Further, Rhodopseudomonas palustris can have practical value
for removing microcystin from the water body during algal blooms [9]. It can also degrade
2,4,6-trinitrotoluene (TNT), which has negative effects on the human body and aquatic life, resulting in
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a major threat to drinking and irrigation water supplies, as well as the recreational use of surface
waters worldwide. Moreover, Rhodopseudomonas palustris is regarded as the most promising
microbial system for the biological production of hydrogen, which has been extensively developed
because of its high-energy content and clean product after combustion [10]. However, the
concentration of Rhodopseudomonas palustris is very low under anaerobic light culture conditions
(see, for example, [11,12]). Therefore, cost-efficient harvesting of Rhodopseudomonas palustris is a
new challenge. In order to harvest Rhodopseudomonas palustris from the liquid, it is necessary to
flocculate the single cells into large cell aggregates. Flocculation is a chemically-based separation
process that requires less energy than centrifugation and ultrafiltration and, thus, is regarded as the
most promising means for degrading microorganisms. Since algal toxins of blooms have happened
occasionally in recent years, the problems of degrading microorganisms have received wide attentions
(see, for example, [13–16]).

Flocculants are a kind of important water treatment reagent, which can be divided into organic
flocculants and inorganic flocculants according to the chemical compositions [17]. Although organic
flocculants, such as polyacrylamide, are frequently used in wastewater treatment and industrial
downstream processes because of their high efficiency, some of them are not easily degraded in
nature [18,19], and some of the monomers derived from synthetic polymers are harmful to the human
body (see, for example, [20,21]). To solve these environmental problems, inorganic flocculants are
increasingly being seen as an alternative in the settlement of microorganisms, more specifically
in wastewater treatment owing to their inexpensive and nontoxic characteristics. Thus, inorganic
flocculants may be used as nontoxic, cost-effective and widely-available flocculants for harvesting
Rhodopseudomonas palustris (see, for example, [22–27] and the references therein).

Mathematical models have played an important role in better understanding microbiology
and population biology (see, for example, [28,29]). In recent years, the dynamics of the chemostat
models has received considerable attentions (see, for example, [29]). The article of Smith and
Waltman has played an important role in the development of the chemostat models [30]. From then
on, much research on the chemostat models has been extensively studied by many authors.
A model describing two populations of microorganisms competing for one single limiting nutrients
was proposed in [31]. Later, the model was extended to an arbitrary number of populations in [32,33].
These models, which were studied in articles [31–33], have proven that they all include a competitive
exclusion effect. In the articles [34–39], some further developments have been performed on the
chemostat models to place the relevant models in a naturally more sensible manner.

Let S(t) and X(t) denote the concentration of the nutrients and Rhodopseudomonas palustris,
respectively, in the culture vessel at time t. P(t) denotes the concentration of inorganic flocculants,
which are used for harvesting Rhodopseudomonas palustris (see Figure 1). The constants S0 > 0 and
P0 > 0 denote the input concentration of the nutrients and flocculants, respectively. For simplicity,
it is assumed that the input of the nutrients and flocculants is continuous. The constant D > 0 is the
dilution rate of the chemostat.

Figure 1. The device for collecting Rhodopseudomonas palustris in the chemostat by inputting
inorganic flocculants.
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The constant τ ≥ 0 denotes the time delay involved in the conversion of nutrients to
Rhodopseudomonas palustris. The flocculation rate of microorganisms is assumed to be a bilinear
mass-action function response m1X(t)P(t), where m1 ≥ 0 is the per capita contact rate. At the same
time, flocculants produce loss or consumption [17], and the loss rate of flocculants is also assumed
to be a bilinear mass-action function response m2X(t)P(t), where m2 ≥ 0 is constant. Thus, in [40],
the following dynamic model has been proposed:

dS(t)
dt

= (S0 − S(t))D− r1S(t)X(t),
dX(t)

dt
= rS(t− τ)X(t− τ)− DX(t)−m1X(t)P(t),

dP(t)
dt

= (P0 − P(t))D−m2X(t)P(t).

(1)

In Model (1), r ≥ 0 and r1 ≥ 0 are constants, and the bilinear mass-action uptake function S(t)X(t)
has been used.

It should be mentioned here that, the analysis reveals that Model (1) proposed in [40] exhibits
the phenomenon of backward bifurcation for the existence of positive equilibria. Moreover, the local
stability properties of the equilibria have been dealt with in detail.

People found that the influence of different nutrients has played an important role in the culture
of microorganisms. In order to take this into consideration, appropriate combinations of nutrients
are considered in chemostat models. Models with two competitors and two perfectly-complemented
growth-limiting nutrients are studied in [41,42]. Local asymptotic conditions for the equilibria
are derived.

When there is a microorganism to compete for two or more resources, it may become necessary
to consider how the resources, once consumed, interact to promote growth. In [41], the authors
employ consumer needs to provide a criterion to classify resources and classify resources as
perfectly complementary, perfectly substitutable or imperfectly substitutable. Perfectly-complementary
resources are different essential substances that must be taken together. In this case, each substance
fulfills different functions with respect to the growth of microorganisms. For example, carbon source
and nitrogen source may be complementary for the growth of bacterium.

Motivated by the papers mentioned above, in this paper, we further consider a dynamic model
describing the cultivation and flocculation of Rhodopseudomonas palustris, and the nutrients presented
in [40] will be divided into carbon source and nitrogen source, which are perfectly complementary in
the culture of Rhodopseudomonas palustris (see, for example, [5,41–44]). We assume that the growth
of Rhodopseudomonas palustris is always co-limited by carbon and nitrogen for all possible nutrient
conditions. We do not consider the case where only one of these nutrients limits growth, for example,
in environmental scenarios of high carbon, but very low nitrogen loads, the growth of bacteria may be
purely nitrogen limited.

Let C(t) and N(t) denote the concentration of carbon source and nitrogen source, respectively,
in the culture vessel at time t. The constants C0 > 0 and N0 > 0 denote the input concentration
of carbon source and nitrogen source, respectively. We assume that the conversion of nutrients to
microorganism biomass occurs instantly. That is, the time delay τ in Model (1) equals zero. Hence,
we have the following dynamic model describing the cultivation and flocculation of a microorganism:

dC(t)
dt

= (C0 − C(t))D− X(t)
δ1

r1µ1(C(t))µ2(N(t)),

dN(t)
dt

= (N0 − N(t))D− X(t)
δ2

r2µ1(C(t))µ2(N(t)),

dX(t)
dt

= rµ1(C(t))µ2(N(t))X(t)− DX(t)−m1X(t)P(t),
dP(t)

dt
= (P0 − P(t))D−m2X(t)P(t).

(2)
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In Model (2), the parameters D, r, m1, m2 and P0 are the same as Model (1).
The term rµ1(C(t))µ2(N(t)) is the growth rate of Rhodopseudomonas palustris, and the terms
r1µ1(C(t))µ2(N(t)) and r2µ1(C(t))µ2(N(t)) represent the quantity of the decreasing of the carbon
source and nitrogen source, respectively, where r1 and r2 are non-negative constants; the functions
µ1(C(t)) and µ2(N(t)) are nonnegative and continuous for C(t) ≥ 0, N(t) ≥ 0. For the simplicity of
the theoretical analysis, in this paper, the functions µ1(C(t)) and µ2(N(t)) are chosen as Monod-type
functions, i.e.,

µ1(C(t)) =
C(t)

K1 + C(t)
, µ2(N(t)) =

N(t)
K2 + N(t)

,

where K1 > 0 and K2 > 0 are the half-saturation constants with respect to the carbon source and
nitrogen source, respectively. δi (i = 1, 2) are yield coefficients (see, for example, [29]), which are
defined as:

δi =
mass o f organism f ormed

mass o f substrate consumed
, (i = 1, 2).

Therefore, the dynamic Model (2) can be rewritten in the following form:

dC(t)
dt

= (C0 − C(t))D− r1C(t)N(t)X(t)
δ1(K1 + C(t))(K2 + N(t))

,

dN(t)
dt

= (N0 − N(t))D− r2C(t)N(t)X(t)
δ2(K1 + C(t))(K2 + N(t))

,

dX(t)
dt

=
rC(t)N(t)X(t)

(K1 + C(t))(K2 + N(t))
− DX(t)−m1X(t)P(t),

dP(t)
dt

= (P0 − P(t))D−m2X(t)P(t).

(3)

It is convenient to introduce dimensionless variables. In particular, we define:

C =
C
C0 , N =

N
N0 , X = X, P =

P
P0 , K1 =

K1

C0 , K2 =
K2

N0 , t = tD,

r1 =
r1

δ1DC0 , r2 =
r2

δ2DN0 , r =
r
D

, m1 =
m1P0

D
, m2 =

m2

D
,

and still denote C, N, X, P, K1, K2, t, r1, r2, r, m1 and m2 with C, N, X, P, K1, K2, t, r1, r2, r, m1 and
m2, then Model (3) becomes:

dC(t)
dt

= 1− C(t)− r1C(t)N(t)X(t)
(K1 + C(t))(K2 + N(t))

,

dN(t)
dt

= 1− N(t)− r2C(t)N(t)X(t)
(K1 + C(t))(K2 + N(t))

,

dX(t)
dt

=
rC(t)N(t)X(t)

(K1 + C(t))(K2 + N(t))
− X(t)−m1X(t)P(t),

dP(t)
dt

= 1− P(t)−m2X(t)P(t).

(4)

According to the biological considerations, the initial condition of Model (4) is given as:

C(0) = C0 ≥ 0, N(0) = N0 ≥ 0, X(0) = X0 ≥ 0, P(0) = P0 ≥ 0, (5)

where the constants C0, N0, X0 and P0 represent the initial concentration of the carbon source,
nitrogen source, Rhodopseudomonas palustris and flocculants respectively.

The purpose of this paper is to tackle the existence of backward and forward bifurcations by using
center manifold theory and to investigate the global stability properties of the two classes of equilibria
by constructing the suitable Lyapunov functions.
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The organization of the paper is as follows. The global existence, nonnegativity and boundedness
of the solutions of Model (4) are investigated in Section 2. In Section 3, the existence of the equilibria
and the phenomena of backward and forward bifurcations are extensively discussed. In Section 4,
the global stability of the boundary equilibrium of Model (4) is discussed by the stability theory of
ordinary differential equations. Furthermore, we consider the local stability of positive equilibrium,
the uniform persistence of Model (4) and the global asymptotic stability of the positive equilibrium in
Section 5. In Section 6, some control strategies are given by the theoretical analysis. Some discussions
are given in Section 7.

2. The Global Existence, Nonnegativity and Boundedness of Solutions

From the biological considerations, it is necessary to show that all of the solutions of Model (4) are
nonnegative and bounded for all t ≥ 0. By using the basic theory of ordinary differential equations [45]
and some simple calculations, it is not difficult to show the following result.

Theorem 1. The solution (C(t), N(t), X(t), P(t)) of Model (4) with the initial Condition (5) is existent,
unique and nonnegative for all t ≥ 0 and satisfies:

lim sup
t→∞

C(t) ≤ 1, lim sup
t→∞

N(t) ≤ 1, lim sup
t→∞

M(t) ≤ α,

lim sup
t→∞

P(t) ≤ 1, lim inf
t→∞

C(t) ≥ C, lim inf
t→∞

N(t) ≥ N, lim inf
t→∞

P(t) ≥ P,

where M(t) = r
2r1

C(t) + r
2r2

N(t) + X(t), α = r
2r1

+ r
2r2

, C = K1(K2+1)
K1(K2+1)+r1α

, N = K2(K1+1)
K2(K1+1)+r2α

, P = 1
1+m2α .

Proof. From the theory of the local existence of solutions for ordinary differential equations,
it can be obtained that the solution (C(t), N(t), X(t), P(t)) of Model (4) is existent and unique for
t ∈ [0, δ). Here, δ is some positive constant [29,45,46]. Furthermore, we also have that the solution
(C(t), N(t), X(t), P(t)) is nonnegative for t ∈ [0, δ).

We can easily show that C(t), N(t) and P(t) are bounded on t ∈ [0, δ). Let us further show that
X(t) is also bounded on t ∈ [0, δ). For t ≥ 0, define:

M(t) =
r

2r1
C(t) +

r
2r2

N(t) + X(t).

From Model (4), we obtain that, for t ≥ 0,

Ṁ(t) ≤ r
2r1

+
r

2r2
−M(t). (6)

From (6) and the well-known comparison principle, we have that M(t) is also bounded for
t ∈ [0, δ). Hence, by employing the continuation theorems of the solutions [29,45,46], the solution
(C(t), N(t), X(t), P(t)) is existent and unique for any t ≥ 0. Similarly, the solution is nonnegative for
any t ≥ 0.

Thus, from the comparison principle, we have that:

lim sup
t→∞

C(t) ≤ 1, lim sup
t→∞

N(t) ≤ 1, lim sup
t→∞

M(t) ≤ r
2r1

+
r

2r2
= α, lim sup

t→∞
P(t) ≤ 1.

By the first equation of Model (4), we obtain that, for t ≥ 0,

Ċ(t) = 1− C(t)− r1C(t)N(t)X(t)
(K1 + C(t))(K2 + N(t))

≥ 1−
(

1 +
r1α

K1(K2 + 1)

)
C(t).
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Again, we can conclude that lim inf
t→∞

C(t) ≥ C. By using the technique similar above, we can show

that lim inf
t→∞

N(t) ≥ N, lim inf
t→∞

P(t) ≥ P. We complete the proof of Theorem 1.

Theorem 2. The compact set:

Ω = {(C, N, X, P) ∈ R4
+| C ≤ C ≤ 1, N ≤ N ≤ 1, 0 ≤ M ≤ α, P ≤ P ≤ 1}

attracts all of the solutions of Model (4) and is positively invariant with respect to Model (4).

Proof. According to Theorem 1, it only needs to be proven that Ω is positively invariant with respect
to Model (4). That is, it needs to be shown that C ≤ C(t) ≤ 1, N ≤ N(t) ≤ 1, M(t) ≤ α, P ≤ P(t) ≤ 1
for any t ≥ 0 if (C(0), N(0), X(0), P(0)) ∈ Ω. Let us show M(t) ≤ α for any t ≥ 0.

In fact, if there exists some t1 > 0, such that M(t1) > α, then t∗1 = sup{t|M(t) = α, t ∈ [0, t1]} is
existent and t∗1 ≥ 0. Hence, we obtain that M(t∗1) = α, M(t1) > α and M(t) > α for t ∈ (t∗1 , t1). By the

Lagrange mean-value theorem, there exists some t2 ∈ (t∗1 , t1), such that Ṁ(t2) =
M(t1)−M(t∗1)

t1−t∗1
> 0.

On the other hand, from (6), we have that Ṁ(t2) ≤ α − M(t2) < α − α = 0, which is a
contradiction. Thus, M(t) ≤ α for any t ≥ 0. Therefore, from Model (4), we have that for any
t ≥ 0, Ċ(t) ≤ 1− C(t), Ṅ(t) ≤ 1− N(t), Ṗ(t) ≤ 1− P(t), from which we easily have that C(t) ≤ 1,
N(t) ≤ 1, P(t) ≤ 1 for any t ≥ 0.

Next, we prove that C ≥ C for any t ≥ 0 if (C(0), N(0), X(0), P(0)) ∈ Ω.
In fact, if there exists some t3 > 0, such that C(t3) < C, then t∗2 = sup{t|C(t) = C, t ∈ [0, t3]} is

existent and t∗2 ≥ 0. Hence, we have that C(t∗2) = C, C(t3) < C and C(t) < C for t ∈ (t∗2 , t3). By the

Lagrange mean-value theorem, there exists some t4 ∈ (t∗2 , t3), such that Ċ(t4) =
C(t3)−C(t∗2)

t3−t∗2
< 0.

On the other hand, from Model (4), we obtain that:

Ċ(t4) ≥ 1− C(t4)−
r1C(t4)α

K1(K2 + 1)
> 1−

(
1 +

r1α

K1(K2 + 1)

)
C = 0,

which is a contradiction. Thus, C(t) ≥ C for any t ≥ 0. Therefore, from Model (4), we obtain that,
for any t ≥ 0,

Ṅ(t) ≥ 1−
(

1 +
r2α

K2(K1 + 1)

)
N(t), Ṗ(t) ≥ 1− (1 + m2α)P(t),

from which we easily obtain that N ≤ N(t), P ≤ P(t), for any t ≥ 0. This completes the proof of
Theorem 2.

3. The Existence of the Equilibria and Its Classification

Let (C, N, X, P) be any equilibrium of Model (4). Then, (C, N, X, P) satisfies the following
nonlinear algebraic equations,

1− C− r1CNX
(K1 + C)(K2 + N)

= 0,

1− N − r2CNX
(K1 + C)(K2 + N)

= 0,

rCNX
(K1 + C)(K2 + N)

− X−m1XP = 0,

1− P−m2XP = 0.

(7)

Model (4) always has the boundary equilibrium E0(1, 1, 0, 1). The existence of E0 indicates
that, if there is no Rhodopseudomonas palustris to be added into the culture vessel at the beginning
of the culture, the concentrations of the carbon source, nitrogen source and flocculants always
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maintain the constant values 1, 1 and 1, respectively. The equilibrium E0(1, 1, 0, 1) is also called
Rhodopseudomonas palustris-free equilibrium.

Define the basic bifurcation parameter as:

R0 =
r

(K1 + 1)(K2 + 1)(m1 + 1)
.

Let (C∗, N∗, X∗, P∗) be any positive equilibrium of Model (4). From (7), we have that:

(K1 + C∗)(K2 + N∗)(1 +
m1

1 + m2X∗
)− rC∗N∗ = 0,

P∗ =
1

1 + m2X∗
,

C∗ =
−r1m2(X∗)2 + (m2r− r1(m1 + 1))X∗ + r

r(1 + m2X∗)
,

N∗ =
−r2m2(X∗)2 + (m2r− r2(m1 + 1))X∗ + r

r(1 + m2X∗)
.

(8)

Clearly, X∗ should satisfy the following conditions:

−r1m2(X∗)2 +
(

m2r− r1(m1 + 1)
)

X∗ + r > 0,

−r2m2(X∗)2 +
(

m2r− r2(m1 + 1)
)

X∗ + r > 0.
(9)

Substituting the second, third and forth equations of (8) into the first equation gives a fifth order
algebraic equation,

f (X∗) =a(X∗)5 + b(X∗)4 + c(X∗)3 + d(X∗)2 + eX∗ + f = 0,

where:

a = r1r2m3
2(1− r),

b = r1m3
2r
(

r− (K2 + 1)− r2(m1 + 2)
m2

)
+ 3r1r2m2

2(m1 + 1)

+ r2m3
2r
(

r− (K1 + 1)− r1(m1 + 1)
m2

)
,

c = m3
2r2
(
(K1 + 1)(K2 + 1) +

(r1 + r2)(m1 + 3)
m2

− r
)
+ q,

d = m2
2rR0(K1 + 1)2(K2 + 1)2(m1 + 1)2(1− R0) + d1,

e = r1r(m1 + 1)
(

r− (K2 + 1)(m1 + 1)
)
+ r2r(m1 + 1)

(
r− (K1 + 1)(m1 + 1)

)
+ m2r2

(
(K1 + 1)(K2 + 1)(2m1 + 3)− 3r

)
,

f = rR0(K1 + 1)2(K2 + 1)2(m1 + 1)2(1− R0),

q = r1r2m2(3− r)(1 + m1)
2 − 2q1r(1 + m1)− rm2

2(K1r2 + K2r1),

q1 = r1m2
2 + r1r2m2 + r2m2

2 + K1r2m2
2 + K2r1m2

2,

d1 = m2
2r2
(

2(K1 + 1)(K2 + 1) +
(r1 + r2)(2m1 + 3)

m2
− 2r

)
+ h,

h = −m2
2r
(

2(m1 + 1) + 1
)
(r2K1 + r1K2) + 2r1r2m2(1 + m1)

2

− r1m2
2r− r2m2

2r− h1r(1 + m1),

h1 = 2r1m2
2 + 3r1r2m2 + r2m2

2 + r2m2
2 + K2m2

2.



Appl. Sci. 2016, 6, 221 8 of 26

Let us consider the necessary condition for the existence of the positive equilibria of Model (4).
From the first equation in (8), we obtain the following function:

F(X∗) =
m1(K1 + C∗)(K2 + N∗)

1 + m2X∗
+ K1K2 + K1N∗ + K2C∗ + (1− r)C∗N∗,

which implies that r > 1 is a necessary condition for a positive equilibrium to exist.
Using the methods similar to [47], we can give the sufficient conditions of the existence of the

positive equilibria of Model (4). The following results (Theorem 3) follow from the various possibilities
enumerated in Table A1 (see Appendix A):

Theorem 3. (i) Model (4) has a unique positive equilibrium if R0 < 1 and Conditions (9) hold and whenever
Cases 1, 9, 13, 15 and 16 in Table A1 are satisfied;

(ii) Model (4) could have more than one positive equilibrium if R0 < 1 and Conditions (9) hold and
whenever Cases 2–8, 10–12 and 14 in Table A1 are satisfied;

(iii) Model (4) could have five positive equilibria at most if R0 > 1 and Conditions (9) hold and whenever
Cases 1–16 in Table A1 are satisfied.

Hence, under suitable conditions, there may be at most five different positive roots for the fifth
order algebraic equation. Let X = X∗ be any such positive root, which also satisfies Conditions (9).
Thus, from (8), C = C∗ > 0, N = N∗ > 0 and P = P∗ > 0 can be obtained. Therefore, Model (4) at
most has five positive equilibria of the type of E∗(C∗, N∗, X∗, P∗). The equilibrium E∗(C∗, N∗, X∗, P∗)
indicates that the carbon source, nitrogen source, Rhodopseudomonas palustris and flocculants may be
coexistent for any time t ≥ 0.

Remark 1. The existence of multiple positive equilibria of Model (4) when R0 < 1 (shown in Table A1; see
Appendix A) indicates the possibility of the existence of backward bifurcation (see, for example, [40,47,48]),
where the stable boundary equilibrium co-exists with a stable positive equilibrium. This can be explored below
via numerical simulations (see Figure 2a,b). A rigorous result can be obtained using center manifold theory [49].
The detailed proof is given in Appendix B.
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Figure 2. (a) Simulations of backward bifurcation for Model (4) with K1 = 0.36, K2 = 0.3, m1 = 0.0001,
m2 = 4, r1 = 0.96, r2 = 1.0001; (b) simulations of forward bifurcation for Model (4) with K1 = 0.36,
K2 = 0.3, m1 = 0.0001, m2 = 4, r1 = 0.96, r2 = 1.0001. Solid curves represent stable equilibrium and
dashed curves represent unstable equilibrium.

From the analysis given in Appendix B, we have established the following result.
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Theorem 4. (i) If:

m1m2 >
rr1K1

(K1 + 1)3(K2 + 1)2 +
rr2K2

(K1 + 1)2(K2 + 1)3 ,

then Model (4) undergoes a backward bifurcation at R0 = 1.
(ii) If:

m1m2 <
rr1K1

(K1 + 1)3(K2 + 1)2 +
rr2K2

(K1 + 1)2(K2 + 1)3 ,

then Model (4) undergoes a forward bifurcation at R0 = 1.

The existence of backward bifurcation implies that stable boundary equilibrium and stable positive
equilibrium may be coexistent. In biology, this means that the basic bifurcation parameter R0 is not the
threshold value, which is used to determine whether Rhodopseudomonas palustris can be harvested
successfully or not. In this case, more complicated dynamic properties may occur. There may exist a
new threshold value, which is less than R0 and used to determine whether Rhodopseudomonas palustris
can be harvested successfully or not.

4. The Global Stability of the Boundary Equilibrium

Global stability properties of the equilibria E0 or E∗ imply that the asymptotic properties of the
carbon source, nitrogen source, Rhodopseudomonas palustris and flocculants in the culture vessel are
not dependent on the initial values C0, N0, X0 and P0. For the global stability property of the boundary
equilibrium E0 of Model (4), we have the following result.

Theorem 5. If R0 < 1, then the boundary equilibrium E0(1, 1, 0, 1) of Model (4) is locally asymptotically
stable. Further, if:

R0 ≤
m1P + 1
m1 + 1

< 1, (10)

then the boundary equilibrium E0 of Model (4) is globally asymptotically stable.

Proof. It is easy to show that the boundary equilibrium E0(1, 1, 0, 1) of Model (4) is locally
asymptotically stable by the characteristic equation of the linearization of Model (4). Next, we prove
the global asymptotic stability of the boundary equilibrium E0 of Model (4).

Since Ω is attractive and positively forward invariant for Model (4), hence it just considers
Model (4) in Ω. Define:

V1 = X.

Apparently, V1(1, 1, 0, 1) = 0 and V1 is continuous on Ω. If R0 ≤ m1P+1
m1+1 < 1, then the derivative

of V1 along the solutions of Model (4) is:

V̇1 =
rC(t)N(t)X(t)

(K1 + C(t))(K2 + N(t))
− X(t)−m1X(t)P(t)

≤( rC(t)N(t)
(K1 + C(t))(K2 + N(t))

− 1−m1P)X(t)

≤(m1 + 1)(
rC(t)N(t)

(K1 + C(t))(K2 + N(t))
1

m1 + 1
− R0)X(t)

≤(m1 + 1)(
r

(K1 + 1)(K2 + 1)
1

m1 + 1
− R0)X(t) = 0
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for any t ≥ 0. Hence, V1 is a Lyapunov function of Model (4) on Ω.
Define E = {(C, N, X, P)|(C, N, X, P) ∈ Ω, V̇1 = 0}. We have that:

E ⊂ {(C, N, X, P)|(C, N, X, P) ∈ Ω, X = 0, or C = 1 and N = 1}.

Let M̂ be the largest set in E, which is invariant with respect to Model (4). Clearly, M̂ is not empty,
since (1, 1, 0, 1) ∈ M̂. For any (C0, N0, X0, P0) ∈ M̂, let (C(t), N(t), X(t), P(t)) be the solution of Model
(4) with the initial Condition (5). From the invariance of M̂, we get (C(t), N(t), X(t), P(t)) ∈ M̂ ⊆ E
for any t ∈ R. Thus, we get, for each t, X(t) = 0, or C(t) = 1, and N(t) = 1.

If for some t̃, C(t̃) = 1 and N(t̃) = 1, then we have that Ċ(t̃) = Ṅ(t̃) = 0. Hence, from the first or
second equation of Model (4), we obtain that X(t̃) = 0. Thus, for any t ∈ R, we have that X(t) ≡ 0.

Subsequently, from the first, second and forth equations of Model (4), we have that, for any t ∈ R,

Ċ(t) = 1− C(t), Ṅ(t) = 1− N(t), Ṗ(t) = 1− P(t).

Furthermore, for any t ∈ R, we have that:

C(t) = 1− (1− C(0))e−t, N(t) = 1− (1− N(0))e−t, P(t) = 1− (1− P(0))e−t.

If C(0) < 1 or N(0) < 1 or P(0) < 1, then C(t), N(t) and P(t) become negative values
(t → −∞). Then, we obtain that C(0) = 1, N(0) = 1 and P(0) = 1. Hence, we obtain
that, for any t ∈ R, C(t) = N(t) = P(t) ≡ 1. Therefore, we obtain M̂ = {(1, 1, 0, 1)}. The classical
Lyapunov–LaSalle invariance principle shows that E0 is globally attractive. Since it has been shown
that, if R0 ≤ m1P+1

m1+1 < 1, the boundary equilibrium E0 of Model (4) is locally asymptotically stable.
Hence, the boundary equilibrium E0 of Model (4) is globally asymptotically stable.

Remark 2. Let us use some numerical simulations to check the correctness of the theoretical analyses. We set

r = 1.5, K1 = 0.36, K2 = 0.3, m1 = 1.5, m2 = 4, r1 = 0.96, r2 = 1.0001.

By the analysis of Theorem 5, we obtain that the boundary equilibrium E0 of Model (4) is globally asymptotically
stable (see Figure 3a).
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Figure 3. (a) Simulations of the global stability of the boundary equilibrium with r = 1.5, K1 = 0.36,
K2 = 0.3, m1 = 1.5, m2 = 4, r1 = 0.96, r2 = 1.0001; (b) simulations of the global stability of
the positive equilibrium E∗ ≈ (0.6709, 0.4515, 0.3181, 0.7587) with r = 5.8, K1 = 1, K2 = 0.6,
m1 = 0.0001, m2 = 1, r1 = 6, r2 = 10. The initial conditions are C0 = 2, N0 = 4, X0 = 1, P0 = 3.
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Furthermore, if the parameters are chosen as follows, r = 3.5, K1 = 0.36, K2 = 0.3, m1 = 1.5, m2 = 4,
r1 = 0.96, r2 = 1.0001, it is easy to check that the condition R0 < 1 holds, but there are two positive equilibria,
E∗1 (C

∗, N∗, X∗, P∗)≈ (0.4783, 0.4565, 1.5782, 0.1376) and E∗2 (C
∗, N∗, X∗, P∗) ≈ (0.9100, 0.9063, 0.1741,

0.5895). Then, the backward bifurcation phenomenon is illustrated. Therefore, sufficient Condition (10)
is reasonable.

5. Stability and Uniform Persistence

In this section, we give the local asymptotic stability of the positive equilibrium and uniform
persistence of Model (4). Further, under additional conditions, the global asymptotic stability of the
positive equilibrium is obtained by using some techniques of constructing Lyapunov functions.

5.1. The Local Asymptotic Stability of the Positive Equilibrium

For the local asymptotic stability of the positive equilibrium of Model (4), we have the
following result.

Theorem 6. If the positive equilibrium E∗(C∗, N∗, X∗, P∗) of Model (4) exists and the condition:

m1 <
K1(1− C∗)

P∗C∗(K1 + C∗)
+

K2(1− N∗)
P∗N∗(K2 + N∗)

(11)

holds, then the positive equilibrium E∗(C∗, N∗, X∗, P∗) of Model (4) is locally asymptotically stable.

Proof. For convenience, we assume that:

∆ =
K1r1N∗X∗

(K1 + C∗)2(K2 + N∗)
+

K2r2C∗X∗

(K1 + C∗)(K2 + N∗)2 .

For the linearized system, the corresponding characteristic equation of Model (4) can be expressed
as follows:

λ4 + A1λ3 + A2λ2 + A3λ + A4 = 0,

where:

A1 = 3 + m2X∗ + ∆,

A2 = ∆(m1P∗ + 2 + m2X∗) + 1 + ∆ + 2(1 + m2X∗)−m1m2P∗X∗,

A3 = ∆(2m1P∗ + 3 + 2m2X∗)− 2m1m2P∗X∗ + 1 + m2X∗,

A4 = m2X∗(∆−m1P∗) + (1 + m1P∗)∆.

According to the Routh-Hurwitz criterion, we need to show that:

A1 A2 − A3 > 0, A3(A1 A2 − A3)− A2
1 A4 > 0, A4 > 0.

For the sake of simplicity, we define:

∆1 = A1, ∆2 = A1 A2 − A3, ∆3 = A3(A1 A2 − A3)− A2
1 A4, ∆4 = A4∆3.
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By computation, it can be obtained that:

∆1 = A1 > 0,

∆2 = m2X∗(1 + ∆ + m2X∗)(∆−m1P∗) + (2 + 2m2X∗ + ∆)(3 + m2X∗)

+ ∆(6 + m1P∗) + ∆(m2X∗ + ∆)(3 + m1P∗),

∆3 = P1(∆−m1P∗) + Q,

P1 = 2m2X∗∆(1 + ∆)(3 + m1P∗ + m2X∗) + 4m2X∗
(

1 + ∆(1 + m2X∗)
)

+ 4m2X∗(1 + m2X∗)(m2X∗ + 3) + 2(m2X∗)2∆(1 + m2X∗)

+ m2X∗∆(1 + m2X∗)(2m1P∗ + 3 + 2m2X∗),

Q = a1(1 + m1P∗) + a2(3 + m1P∗ + m2X∗) + a3(1 + m2X∗) + a4m1P∗m2X∗∆

+ 2a5m1P∗m2X∗ + a6m2X∗∆ + ∆2(2 + 3m2X∗)(3 + 2m2X∗) + 14∆ + 4∆2,

a1 = 2∆3 + 8∆2 + 7∆ + m2X∗∆(m2X∗ + 7) + m1P∗∆2(∆ + 2),

a2 = ∆(1 + ∆)(1 + m2X∗) + ∆3(2 + m1P∗) + ∆2,

a3 = 2
(

1 + (1 + m2X∗)(3 + m2X∗)
)

,

a4 = 2(m2X∗)2 + (1 + ∆)2,

a5 = 4 + (m2X∗)2 + m1P∗m2X∗ + 2m2X∗,

a6 = 4m2X∗ + 4∆ + 13,

∆4 = A4∆3.

If:
∆ =

K1r1N∗X∗

(K1 + C∗)2(K2 + N∗)
+

K2r2C∗X∗

(K1 + C∗)(K2 + N∗)2 > m1P∗,

that is,

m1 <
K1(1− C∗)

P∗C∗(K1 + C∗)
+

K2(1− N∗)
P∗N∗(K2 + N∗)

,

we obtain that ∆1 > 0, ∆2 > 0, ∆3 > 0, and ∆4 > 0. Hence, from the Routh-Hurwitz criterion,
we obtain that the positive equilibrium E∗(C∗, N∗, X∗, P∗) of Model (4) is locally asymptotically stable.
This completes the proof of Theorem 6.

5.2. Uniform Persistence

As pointed out in [29,45,50], uniform persistence is an important concept in the cultivation of
microorganisms. From a biological perspective, one basic question about biological models involves
the long-time survival of the species. To this end, we may want to know whether the constructed
model is uniformly persistent with respect to one or more species. That is, the number of the species
will keep positive and bounded away from zero for any positive time. In recent years, this kind of
research has been particularly common in microorganisms (see, for example, [45]), especially in the
simulation of harmful algae growth, where we usually want to predict if the harmful algae will go
towards extinction or if blooms of the harmful algae will remain, which directly impacts human health
and food webs in aquatic ecosystems. From a mathematical point of view, uniform persistence can
give sufficient criteria for the existence of a positive equilibrium for the dissipative system [51].
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Model (4) is said to be uniformly persistent if there are positive constants n1, n2, n3,
n4, N1, N2, N3, N4, such that each positive solution (C(t), N(t), X(t), P(t)) of Model (4) satisfies:

n1 ≤ lim inf
t→∞

C(t) ≤ lim sup
t→∞

C(t) ≤ N1,

n2 ≤ lim inf
t→∞

N(t) ≤ lim sup
t→∞

N(t) ≤ N2,

n3 ≤ lim inf
t→∞

X(t) ≤ lim sup
t→∞

X(t) ≤ N3,

n4 ≤ lim inf
t→∞

P(t) ≤ lim sup
t→∞

P(t) ≤ N4.

Now, we give a result on the uniform persistence of Model (4). To proceed, we introduce
the following notation and terminology. Denote by R(t) (t ≥ 0) the family of solution operators
corresponding to Model (4). The ω-limit set ω(x) of x consists of y , such that there exists a sequence
tn → ∞ as n→ ∞ with R(tn)x → y as n→ ∞. Define:

G = {(C, N, X, P) ∈ R4
+ | C ≤ C ≤ 1, N ≤ N ≤ 1, X ≥ 0, P ≤ P ≤ 1},

G0 = {(C, N, X, P) ∈ G | C ≤ C ≤ 1, N ≤ N ≤ 1, X > 0, P ≤ P ≤ 1},

∂G0 = G \ G0,

M∂ = {(C, N, X, P) ∈ ∂G0 | R(t)(C, N, X, P) satisfies Model (4) and R(t)(C, N, X, P) ∈ ∂G0, ∀t ≥ 0},

Ω(M∂) = ∪x∈M∂
ω(x).

From Theorem 2, we obtain that G is positively invariant corresponding to R(t). It is easy to see
that G0 is also positively invariant.

Clearly, ∂G0 is relatively compact in G. Now, we show that Ω(M∂) = {(1, 1, 0, 1)}.
In fact, {(1, 1, 0, 1)} ⊆ Ω(M∂). For any (C(0), N(0), X(0), P(0)) ∈ M∂, it has that, for all t ≥ 0,

X(t) ≡ 0 and limt→+∞ C(t) = limt→+∞ N(t) = limt→+∞ P(t) = 1. Thus, Ω(M∂) = {(1, 1, 0, 1)}.

Theorem 7. If R0 > 1, then Model (4) is uniformly persistent.

Proof. By Theorem 1, it can be obtained that nonnegative solutions of Model (4) are point dissipative.
According to the definitions above, it suffices to show that ∂G0 repels uniformly nonnegative solutions
of Model (4). It is obvious that there is only one equilibrium E0 in M∂.

We now show that Ws(E0) ∩ G0 = ∅. Assume Ws(E0) ∩ G0 6= ∅, then there exists a positive
solution of Model (4), such that lim

t→∞
(C(t), N(t), X(t), P(t)) = (1, 1, 0, 1). Assume:

U(C(t), N(t), P(t)) =
rC(t)N(t)

(K1 + C(t))(K2 + N(t))
− 1−m1P(t),

then:

U(1, 1, 1) =
r

(K1 + 1)(K2 + 1)
− 1−m1.

Then, r > (K1 + 1)(K2 + 1)(1 + m1) is equivalent to U(1, 1, 1) > 0.
Since lim

t→∞
U(C(t), N(t), P(t)) = U(1, 1, 1) > 0, there exists T > 0, such that, for any t ≥ T,

U(C(t), N(t), P(t)) >
1
2

U(1, 1, 1) > 0.
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By the third equation of Model (4), we obtain that, for any t ≥ T,

Ẋ(t) =
rC(t)N(t)X(t)

(K1 + C(t))(K2 + N(t))
− X(t)−m1P(t)X(t)

= U(C(t), N(t), P(t))X(t)

>
1
2

U(1, 1, 1)X(t).

This implies that X(t)→ +∞ as t→ +∞, which leads to a contradiction. Thus, Ws(E0)∩G0 = ∅.
In the following, let us show that E0 is factually isolated. That is, there exists some neighborhood

U of E0, such that E0 is the largest invariant set in U.
In fact, for sufficiently small positive constant ε, let us choose:

U = U(E0) = {(C, N, X, P) ∈ G|1− C < ε, 1− N < ε, X < ε, 1− P < ε}.

We show that E0 is the largest invariant set of U for some ε.
If not, for any sufficiently small ε, there exists some invariant set W(W ⊂ U), such that W\E0 is

not empty. Let (C0, N0, X0, P0) ∈W\E0 and (C(t), N(t), X(t), P(t)) be the solution of Model (4) with
the initial function (5). Then, we have that (C(t), N(t), X(t), P(t)) ∈ U, t ∈ (−∞, +∞). From the third
equation of Model (4), we obtain that, for t ∈ (−∞,+∞),

Ẋ(t) ≥ r(1− ε)(1− ε)X(t)
(K1 + 1− ε)(K2 + 1− ε)

− X(t)−m1X(t).

Since r > (K1 + 1)(K2 + 1)(m1 + 1), we can choose sufficiently small ε, such that:

r(1− ε)(1− ε) > (K1 + 1− ε)(K2 + 1− ε)(1 + m1).

If X0 > 0, then we have X(t) → +∞ (t → +∞), which contracts the boundedness of X(t).
Hence, we get X0 = 0. From the third equation of Model (4), we obtain that X(t) ≡ 0. From the
first, second and forth equations of Model (4), for t ∈ (−∞,+∞), we obtain that Ċ(t) = 1− C(t),
Ṅ(t) = 1− N(t) and Ṗ(t) = 1− P(t). Hence, we must have that C0 = N0 = P0 = 1. Therefore,
(C0, N0, X0, P0) = (1, 1, 0, 1), which is a contradiction. Thus, we obtain that E0 is factually isolated.

Clearly, E0 is acyclic in M∂. By paper [52], ∂G0 repels uniformly nonnegative solutions of
Model (4). It then follows that Model (4) is persistent.

Define p : X → R+ by p(C, N, X, P) = X, (C, N, X, P) ∈ G. Obviously, we obtain that G0 = p−1

(0,+∞) and ∂G0 = p−1(0). Thus, by ([53], Theorem 3), we have lim inf
t→∞

(C(t), N(t), X(t), P(t)) ≥
(η, η, η, η). It then follows that Model (4) is uniformly persistent. The proof of Theorem 7
is completed.

According to [51,53], we easily obtain the following result.

Corollary 8. If R0 > 1, then Model (4) has one global attractor A0 and also has at least one positive equilibrium
E∗(C∗, N∗, X∗, P∗) ∈ A0.

5.3. The Global Asymptotic Stability of the Positive Equilibrium

In this subsection, the global asymptotic stability of the positive equilibrium E∗(C∗, N∗, X∗, P∗)
of Model (4) is studied.
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Theorem 9. Assume that R0 > 1 and Model (4) has a unique positive equilibrium E∗(C∗, N∗, X∗, P∗). Let:

D1 = r1(2 + m1P∗)(K1 + C∗)(K2 + N∗)− r2N∗,

D2 = r2(2 + m1P∗)(K1 + C∗)(K2 + N∗)− r2,

D3 = b2
13 + b2

23 + 4b33,

D4 = 4b33b44 + (b2
23 + b2

13)b44 + (b2
14 + b2

24)b33 − b2
34 + b23b24b34 + b13b14b34.

If D1 ≥ 0, D2 ≥ 0, D3 < 0 and D4 > 0 hold, then the positive equilibrium E∗(C∗, N∗, X∗, P∗) of
Model (4) is globally asymptotically stable. Here:

b13 =
2r1 + r1m1P∗

r
+

r
(K1 + 1)(K2 + 1)(K1 + C∗)

− rN∗

(K1 + C∗)(K2 + N∗)
,

b14 =
r1m1α

r
, b23 =

2r2 + r2m1P∗

r
, b24 =

r2m1α

r
, b33 = −

(r2
1 + r2

2)(1 + m1P∗)
r2 ,

b34 =
(r2

1 + r2
2)m1α

r2 + m1 + m2, b44 = −(1 + m2X∗).

Proof. Let us consider the following Lyapunov function on A0,

V2 =
1
2

(
C− C∗ +

r1

r
(X− X∗)

)2
+

1
2

(
N − N∗ +

r2

r
(X− X∗)

)2

+ X− X∗ − X∗ ln
X
X∗

+ P− P∗ − P∗ ln
P
P∗

.

Clearly, V2(C∗, N∗, X∗, P∗) = 0, and V2 is positive definite with respect to E∗(C∗, N∗ , X∗, P∗).
The derivative of V2 along the solutions of Model (4) is:

V̇2 =
(

C(t)− C∗ +
r1

r
(X(t)− X∗)

)(
Ċ(t) +

r1

r
Ẋ(t)

)
+
(

N(t)− N∗ +
r2

r
(X(t)− X∗)

)(
Ṅ(t) +

r2

r
Ẋ(t)

)
+

X(t)− X∗

X(t)
Ẋ(t) +

P(t)− P∗

P(t)
Ṗ(t)

=
(

C(t)− C∗ +
r1

r
(X(t)− X∗)

)(
1− C(t)− r1

r
X(t)− r1m1X(t)P(t)

r

)
+
(

N(t)− N∗ +
r2

r
(X(t)− X∗)

)(
1− N(t)− r2

r
X(t)− r2m1X(t)P(t)

r

)
+ (X(t)− X∗)

( rC(t)N(t)
(K1 + C(t))(K2 + N(t))

− 1−m1P(t)
)

+
P(t)− P∗

P(t)
(1− P(t)−m2X(t)P(t))

for any t ≥ 0.
Noting that: 

1− C∗ − r1C∗N∗X∗

(K1 + C∗)(K2 + N∗)
= 0,

1− N∗ − r2C∗N∗X∗

(K1 + C∗)(K2 + N∗)
= 0,

rC∗N∗X∗

(K1 + C∗)(K2 + N∗)
− X∗ −m1X∗P∗ = 0,

1− P∗ −m2X∗P∗ = 0.
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Thus, we have that:

V̇2 =
(

C(t)− C∗ +
r1

r
(X(t)− X∗)

)(
C∗ − C(t) +

r1

r
(X∗ − X(t)) +

r1m1

r
(X∗P∗ − X(t)P(t))

)
+
(

N(t)− N∗ +
r2

r
(X(t)− X∗)

)(
N∗ − N(t) +

r2

r
(X∗ − X(t)) +

r2m1

r
(X∗P∗ − X(t)P(t))

)
+ (X(t)− X∗)

( rC(t)N(t)
(K1 + C(t))(K2 + N(t))

− rC∗N∗

(K1 + C∗)(K2 + N∗)

)
+ m1(X(t)− X∗)(P∗ − P(t)) +

P(t)− P∗

P(t)

(
P∗ − P(t) + m2(X∗P∗ − X(t)P(t))

)
for any t ≥ 0.

For any t ≥ 0, we have that:

rC(t)N(t)
(K1 + C(t))(K2 + N(t))

− rC∗N∗

(K1 + C∗)(K2 + N∗)

= − rC∗N∗

(K1 + C∗)(K2 + N∗)
+

rC(t)N∗

(K1 + C∗)(K2 + N∗)
− rC(t)N∗

(K1 + C∗)(K2 + N∗)

+
rC(t)N(t)

(K1 + C∗)(K2 + N∗)
− rC(t)N(t)

(K1 + C∗)(K2 + N∗)
+

rC(t)N(t)
(K1 + C∗)(K2 + N(t))

− rC(t)N(t)
(K1 + C∗)(K2 + N(t))

+
rC(t)N(t)

(K1 + C(t))(K2 + N(t))
.

Hence, it can be obtained that, for any t ≥ 0,

V̇2 =
(

C(t)− C∗ +
r1

r
(X(t)− X∗)

)(
C∗ − C(t) +

r1

r
(X∗ − X(t))

+
r1m1P∗

r
(X∗ − X(t)) +

r1m1X(t)
r

(P∗ − P(t))
)

+
(

N(t)− N∗ +
r2

r
(X(t)− X∗)

)(
N∗ − N(t) +

r2

r
(X∗ − X(t))

+
r2m1P∗

r
(X∗ − X(t)) +

r2m1X(t)
r

(P∗ − P(t))
)

+ (X(t)− X∗)
(
− rC∗N∗

(K1 + C∗)(K2 + N∗)
+

rC(t)N∗

(K1 + C∗)(K2 + N∗)

− rC(t)N∗

(K1 + C∗)(K2 + N∗)
+

rC(t)N(t)
(K1 + C∗)(K2 + N∗)

− rC(t)N(t)
(K1 + C∗)(K2 + N∗)

+
rC(t)N(t)

(K1 + C∗)(K2 + N(t))
− rC(t)N(t)

(K1 + C∗)(K2 + N(t))
+

rC(t)N(t)
(K1 + C(t))(K2 + N(t))

)
− (P(t)− P∗)2

P(t)
+

m2(P(t)− P∗)
P(t)

(
X∗(P∗ − P(t)) + P(t)(X∗ − X(t))

)
+ m1(X(t)− X∗)(P∗ − P(t)).
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Motivated by the papers mentioned in [50,54], the derivative of V2 along the solutions of Model (4)
is represented in quadratic form. Then, we obtain that:

V̇2 = − (C(t)− C∗)2 − (N(t)− N∗)2 +
(2r1 + r1m1P∗

r
+

rC(t)N(t)
(K1 + C(t))(K2 + N(t))(K1 + C∗)

− rN∗

(K1 + C∗)(K2 + N∗)

)
(C(t)− C∗)(X∗ − X(t)) +

(2r2 + r2m1P∗

r

+
rC(t)N(t)

(K2 + N(t))(K2 + N∗)(K1 + C∗)
− rC(t)

(K1 + C∗)(K2 + N∗)

)
(N(t)− N∗)(X∗ − X(t))

− 1 + m2X∗

P(t)
(P(t)− P∗)2 +

r1m1X
r

(C(t)− C∗)(P∗ − P(t))

−
(r2

1 + r2
2)(1 + m1P∗)

r2 (X(t)− X∗)2 +
( (r2

1 + r2
2)m1X(t)
r2 + m1 + m2

)
(X∗ − X(t))(P∗ − P(t))

+
r2m1X(t)

r
(N(t)− N∗)(P∗ − P(t))

for any t ≥ 0.
If the condition D1 ≥ 0 holds, we obtain that, for any t ≥ 0,

2r1 + r1m1P∗

r
+

rC(t)N(t)
(K1 + C(t))(K2 + N(t))(K1 + C∗)

− rN∗

(K1 + C∗)(K2 + N∗)
≥ 0.

Furthermore, from the condition D2 ≥ 0 and C(t) ≤ 1 for any t ≥ 0, we obtain that:

2r2 + r2m1P∗

r
+

rC(t)N(t)
(K2 + N(t))(K2 + N∗)(K1 + C∗)

− rC(t)
(K1 + C∗)(K2 + N∗)

≥ 0.

These conditions ensure that the coefficients of (C(t) − C∗)(X(t) − X∗) and
(N(t)− N∗)(X(t)− X∗) are nonnegative. Thus, we obtain that, for any t ≥ 0,

V̇2 ≤ − (C(t)− C∗)2 − (N(t)− N∗)2 +
(2r1 + r1m1P∗

r
+

r
(K1 + 1)(K2 + 1)(K1 + C∗)

− rN∗

(K1 + C∗)(K2 + N∗)

)
|C(t)− C∗| |X∗ − X(t)|

+ (
2r2 + r2m1P∗

r
) |N(t)− N∗| |X∗ − X(t)| − (1 + m2X∗)(P(t)− P∗)2

+
r1m1α

r
|C(t)− C∗| |P∗ − P(t)| −

(r2
1 + r2

2)(1 + m1P∗)
r2 (X(t)− X∗)2

+
( (r2

1 + r2
2)m1α

r2 + m1 + m2

)
|X∗ − X(t)| |P∗ − P(t)|+ r2m1α

r
|N(t)− N∗| |P∗ − P(t)|

=YT(t)WY(t),

where Y(t) = (|C(t)− C∗| , |N(t)− N∗| , |X(t)− X∗| , |P(t)− P∗|). W is a symmetric 4× 4 matrix and
W = {bij}1≤i,j≤4 with:

W =



b11
1
2

b12
1
2

b13
1
2

b14

1
2

b12 b22
1
2

b23
1
2

b24

1
2

b13
1
2

b23 b33
1
2

b34

1
2

b14
1
2

b24
1
2

b34 b44


.

Here, b11 = −1, b12 = 0, b22 = −1. The other parameters have the same definitions as in
Theorem 9. Then, W is negative definite. By Lemma 6.2 provided in [50], we can obtain that
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the real quadratic form YT(t)WY(t) is negative definite. Then, by using some classical analysis
techniques of differential equations, the positive equilibrium E∗(C∗, N∗, X∗, P∗) of Model (4) is globally
asymptotically stable.

Remark 3. Obviously, it is easy to obtain that b11 = −1 < 0, and:∣∣∣∣∣∣∣
b11

1
2

b12

1
2

b12 b22

∣∣∣∣∣∣∣ = 1 > 0.

If the conditions D3 < 0 and D4 > 0 hold, we obtain that:∣∣∣∣∣∣∣∣∣∣
b11

1
2

b12
1
2

b13

1
2

b12 b22
1
2

b23

1
2

b13
1
2

b23 b33

∣∣∣∣∣∣∣∣∣∣
< 0,

and: ∣∣∣∣∣∣∣∣∣∣∣∣∣

b11
1
2

b12
1
2

b13
1
2

b14

1
2

b12 b22
1
2

b23
1
2

b24

1
2

b13
1
2

b23 b33
1
2

b34

1
2

b14
1
2

b24
1
2

b34 b44

∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0.

Next, we illustrate that the conditions given in Theorem 9 are reasonable. We set r = 5.8, K1 = 1,
K2 = 0.6, m1 = 0.0001, m2 = 1, r1 = 6, r2 = 10. It is easy to see that there exists a unique
positive equilibrium E∗(C∗, N∗, X∗, P∗) ≈ (0.6709, 0.4515, 0.3181, 0.7587), and the conditions D1–D4 hold.
By Theorem 9, the positive equilibrium of Model (4) is globally asymptotically stable (see Figure 3b).

In general, it is very difficult to obtain the global stability properties of the positive equilibrium of
Model (4). In this paper, we have obtained the sufficient conditions to ensure the global stability properties of the
positive equilibrium by constructing a suitable Lyapunov function. Because of the complexity of the conditions, it
is difficult to grasp biological intuition. However, from the numerical simulations, we have found some interesting
biological phenomena. The conditions D1–D4 can be satisfied if the flocculation rate of microorganisms (m1) is
small enough (see, Figure 3b). From a biological point of view, these conditions are reasonable. For more detailed
biological considerations, we will leave it for further investigation.

6. Control Strategies

In this section, some control strategies are provided by suitable theoretical analysis. If R0 < 1
holds, then, we have from Theorem 5 that the boundary equilibrium E0 of Model (4) is locally
asymptotically stable. We note that the condition R0 < 1 is equivalent to the following inequality,

R0 =
r

(K1 + 1)(K2 + 1)(m1 + 1)
< 1. (12)

All of the parameters r, K1, K2 and m1 in (12) are defined as in Model (4). (12) can be further
written as the following form,

r

(K1
C0 + 1)( K2

N0 + 1)(m1P0 + D)
< 1. (13)
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Here, all of the parameters r, K1, K2, m1, C0, N0, P0 and D in (13) are defined as in Model (3).
In view of the biological meanings of the parameters in Model (3) and Condition (13), Theorem 5

indicates that the concentration of Rhodopseudomonas palustris in the chemostat tends to zero, and
the concentration of the carbon source, nitrogen source and flocculants may tend to the constant
values C0, N0 and P0, respectively, as time t increases, if one of the following two cases occurs:
(a) reducing the absorption of Rhodopseudomonas palustris or the carbon input concentration, or the
nitrogen input concentration; (b) improving the velocity or the flocculation effect or flocculant
input concentration. These cases are reasonable, since they imply the insufficient sources for
Rhodopseudomonas palustris to grow. Hence, in the environmental science field, it can be used to
remove algae and heavy metals.

From Theorem 7, we have that Model (3) is uniformly persistent if R0 > 1. This means that the
concentrations of the carbon source, nitrogen source, Rhodopseudomonas palustris and flocculants in
the chemostat may be ultimately maintained at some positive constant values, as time t increases,
if one of the following two cases occurs: (a) improving the absorption of Rhodopseudomonas palustris,
or the carbon input concentration, or the nitrogen input concentration; (b) reducing the velocity or the
flocculation effect or flocculant input concentration.

These control strategies can be performed by numerical simulations.
In the following, for convenience, we simulate the extinction or persistence of microorganism

(X(t)) numerically by using (12) and Model (4).
If the parameters are chosen as in Table A2 (see Appendix A), Rhodopseudomonas palustris in the

chemostat will tend to extinction (see Figure 4a).
If the absorption of Rhodopseudomonas palustris (r) is improved from r = 5.8 to r = 8 and the

other parameters are the same as Table A2, Rhodopseudomonas palustris in the chemostat will tend to
be constant (see Figure 4b).

If the flocculation effect (m1) is reduced from m1 = 1 to m1 = 0.1, Rhodopseudomonas palustris in
the chemostat will tend to be constant (see Figure 5a).
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Figure 4. (a) Rhodopseudomonas palustris in the chemostat will tend to extinction with the parameters
in Table A1. (b) Rhodopseudomonas palustris in the chemostat will tend to be constant if the
absorption of Rhodopseudomonas palustris (r) is improved. The initial conditions are C0 = 2, N0 = 4,
X0 = 1, P0 = 3.

If Michaelis–Menten constant of carbon (K1) is reduced from K1 = 1 to K1 = 0.5,
Rhodopseudomonas palustris in the chemostat will tend to be constant (see Figure 5b).
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Figure 5. (a) Rhodopseudomonas palustris in the chemostat will tend to be constant if the flocculation
effect (m1) is reduced. (b) Rhodopseudomonas palustris in the chemostat will tend to be constant if
the Michaelis–Menten constant of carbon (K1) is reduced. The initial conditions are C0 = 2, N0 = 4,
X0 = 1, P0 = 3.

If Michaelis–Menten constant of nitrogen (K2) is reduced from K2 = 1 to K2 = 0.25,
Rhodopseudomonas palustris in the chemostat will tend to be constant (see Figure 6).
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Figure 6. Rhodopseudomonas palustris in the chemostat will tend to be constant if the Michaelis–Menten
constant of nitrogen (K2) is reduced. The initial conditions are C0 = 2, N0 = 4, X0 = 1, P0 = 3.

7. Discussion and Conclusions

In the paper, based on some biological considerations and chemostat models, a dynamic model
governed by ordinary differential equations with four variables (carbon source, nitrogen source,
Rhodopseudomonas palustris and flocculants) is presented. There is a boundary equilibrium and at
most five positive equilibria for the proposed model. To give a theoretical analysis for the existence of
all of the positive equilibria of Model (4), the method of the Descartes rule of signs is applied to the
classifications of the positive roots of a fifth order algebraic equation.

The local and global stability properties of the boundary equilibrium of Model (4) have been
studied in detail. An interesting phenomenon of backward and forward bifurcations is observed.
That is, there may exist two positive equilibria even if the condition R0 < 1 holds. Hence, sufficient
Condition (10) to ensure the global stability of the boundary equilibrium is reasonable in mathematics.

The local stability of the positive equilibrium of Model (4) is also carried out. From Condition (11),
we have that the positive equilibrium is locally asymptotically stable when the flocculation coefficient
m1 is small enough. Hence, Condition (11) is also reasonable in biology.

Uniform persistence of Model (4) has also been completely studied under the condition R0 > 1.
Uniform persistence has very important significance both in mathematics and biology, and it
characterizes the long-term survival of some microorganisms [45].

Finally, some control strategies are provided by simple theoretical analysis. From Theorem
5, we have that Rhodopseudomonas palustris in the chemostat will tend to extinction if R0 < 1.
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In this case, these control strategies can be applied to remove Cyanobacteria, which are well known to
produce a variety of toxins and have serious harm on human health. From Theorem 7, we have that
Rhodopseudomonas palustris in the chemostat will tend to be positive constant if R0 > 1. In this case,
these control strategies can be widely used for the collection of useful microorganisms.

It is well-known that the existence of time delays is inevitable in biology. For example, in the
cultivation of microorganisms, there are always time delays in the process of transferring nutrients and
the uptake of nutrients. Hence, chemostat models with time delays that account for the time lapsing
between the uptake of nutrients by cells and the incorporation of these nutrients as biomass have been
given much attention [40,55–57]. Based on Model (3), it may have the following more general form
with time delays,

dC(t)
dt

= (C0 − C(t))D− r1C(t)N(t)X(t)
δ1(K1 + C(t))(K2 + N(t))

+ ρ1X(t− σ),

dN(t)
dt

= (N0 − N(t))D− r2C(t)N(t)X(t)
δ2(K1 + C(t))(K2 + N(t))

+ ρ2X(t− σ),

dX(t)
dt

=
re−d1τC(t− τ)N(t− τ)X(t− τ)

(K1 + C(t− τ))(K2 + N(t− τ))
− DX(t)− d1X(t)−m1X(t)P(t),

dP(t)
dt

= (P0 − P(t))D−m2X(t)P(t).

(14)

In Model (14), the constants ρ1 ≥ 0 and ρ2 ≥ 0 are the rate constants at which the carbon
source and nitrogen source are recycled because of the death of Rhodopseudomonas palustris.
The constant σ ≥ 0 is a fixed time during which the carbon source and nitrogen source are released
completely from dead Rhodopseudomonas palustris. The constant τ ≥ 0 denotes the time delay
involved in the conversion of nutrients to Rhodopseudomonas palustris. The factor e−d1τ is the
probability constant at which Rhodopseudomonas palustris remains in the culture vessel during the
conversion process. The theoretical analysis of Model (14) will be studied separately.
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Appendix A

In this section, let us apply the Descartes rule of signs to the classifications of the positive roots of
f (X∗) [47]. Let m represent the number of sign changes of the coefficients a, b, c, d, e, f of f (X∗) and n
represent the number of the positive roots.

Table A1. The number of the positive roots of f (X∗) for R0 < 1 and R0 > 1.

Cases a b c d e f R0 m n

1 − + + + + + R0 < 1 1 1
− + + + + − R0 > 1 2 0, 2

2 − + + + − + R0 < 1 3 1, 3
− + + + − − R0 > 1 2 0, 2

3 − + + − + + R0 < 1 3 1, 3
− + + − + − R0 > 1 4 0, 2, 4

4 − + + − − + R0 < 1 3 1, 3
− + + − − − R0 > 1 2 0, 2

5 − + − + + + R0 < 1 3 1, 3
− + − + + − R0 > 1 4 0, 2, 4
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Table A1. Cont.

Cases a b c d e f R0 m n

6 − + − + − + R0 < 1 5 1, 3, 5
− + − + − − R0 > 1 4 0, 2, 4

7 − + − − + + R0 < 1 3 1, 3
− + − − + − R0 > 1 4 0, 2, 4

8 − + − − − + R0 < 1 3 1, 3
− + − − − − R0 > 1 2 0, 2

9 − − + + + + R0 < 1 1 1
− − + + + − R0 > 1 2 0, 2

10 − − + + − + R0 < 1 3 1, 3
− − + + − − R0 > 1 2 0, 2

11 − − + − + + R0 < 1 3 1, 3
− − + − + − R0 > 1 4 0, 2, 4

12 − − + − − + R0 < 1 3 1, 3
− − + − − − R0 > 1 2 0, 2

13 − − − + + + R0 < 1 1 1
− − − + + − R0 > 1 2 0, 2

14 − − − + − + R0 < 1 3 1, 3
− − − + − − R0 > 1 2 0, 2

15 − − − − + + R0 < 1 1 1
− − − − + − R0 > 1 2 0, 2

16 − − − − − + R0 < 1 1 1
− − − − − − R0 > 1 0 0

Table A2. Parameter values used in the simulations of control strategies shown in Figures 3–6.

Description Parameter Value

the growth rate of Rhodopseudomonas palustris r 5.8
the quantity of decreasing of carbon source r1 6

the quantity of decreasing of nitrogen source r2 10
the flocculation effect m1 1
the flocculation ratio m2 1

Michaelis–Menten constant of carbon K1 1
Michaelis–Menten constant of nitrogen K2 0.6

Appendix B

In Section 3, we have discussed the phenomena of backward and forward bifurcations by
numerical simulations. In this section, the center manifold theory is used on Model (4) to obtain
the rigorous result (see, for example, [40,47,48]).

Let C = x1, N = x2, X = x3, P = x4, so that Model (4) can be re-written in the following form:

dx1(t)
dt

= 1− x1 −
r1x1x2x3

(K1 + x1)(K2 + x2)
= g1,

dx2(t)
dt

= 1− x2 −
r2x1x2x3

(K1 + x1)(K2 + x2)
= g2,

dx3(t)
dt

=
rx1x2x3

(K1 + x1)(K2 + x2)
− x3 −m1x3x4 = g3,

dx4(t)
dt

= 1− x4 −m2x3x4 = g4.

(B1)
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The Jacobian matrix of Model (15) at E0(1, 1, 0, 1) is given by:

J(E0) =



−1 0
−r1

(K1 + 1)(K2 + 1)
0

0 −1
−r2

(K1 + 1)(K2 + 1)
0

0 0
r

(K1 + 1)(K2 + 1)
− 1−m1 0

0 0 −m2 −1


.

Suppose r is chosen as a bifurcation parameter. Solving R0 = 1 gives:

r = r∗ = (K1 + 1)(K2 + 1)(m1 + 1).

Eigenvectors of J(E0)|r=r∗

It can be shown that the Jacobian matrix of Model (15) at r = r∗ has a right eigenvector
(corresponding to the zero eigenvalue) given by ω = (ω1, ω2, ω3, ω4)

T , where:

ω1 =
−r1

(K1 + 1)(K2 + 1)
ω3, ω2 =

−r2

(K1 + 1)(K2 + 1)
ω3, ω3 = ω3 > 0, ω4 = −m2ω3.

Further, the Jacobian matrix of Model (15) at r = r∗ has a left eigenvector (associated with the
zero eigenvalue) given by v = (v1, v2, v3, v4)

T , where:

v1 = 0, v2 = 0, v3 = v3 > 0, v4 = 0.

Computations of â and b̂
For Model (15), the associated non-zero partial derivatives of g = (g1, g2, g3, g4)

T (at E0) are
given by:

∂2g3

∂x1∂x3
=

rK1

(K1 + 1)2(K2 + 1)
,

∂2g3

∂x2∂x3
=

rK2

(K1 + 1)(K2 + 1)2 ,

∂2g3

∂x3∂x4
=−m1,

∂2g3

∂x3∂r∗
=

1
(K1 + 1)(K2 + 1)

.

It follows from the above expressions that:

â =v3

4

∑
i=1,j=1

ωiωj∂
2g3

∂xi∂xj

=2v3

(
ω1ω3

rK1

(K1 + 1)2(K2 + 1)
+ ω2ω3

rK2

(K1 + 1)(K2 + 1)2 −ω3ω4m1

)
=2v3ω2

3

(
m1m2 −

rr1K1

(K1 + 1)3(K2 + 1)2 −
rr2K2

(K1 + 1)2(K2 + 1)3

)
,

from which it can be shown that â > 0 if:

m1m2 >
rr1K1

(K1 + 1)3(K2 + 1)2 +
rr2K2

(K1 + 1)2(K2 + 1)3 .

For the sign of b̂, it can be shown that the associated non-vanishing partial derivatives of g are:

b̂ =v3

4

∑
i=1

ωi∂
2g3

∂xi∂r∗
=

2v3ω3

(K1 + 1)(K2 + 1)
> 0.

Thus, we have established Theorem 4 in view of [48]. The proof is completed.
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