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Abstract: Combination antiviral drug therapy improves the survival rates of patients chronically
infected with hepatitis B virus by controlling viral replication and enhancing immune responses.
Some of these drugs have side effects that make them unsuitable for long-term administration.
To address the trade-off between the positive and negative effects of the combination therapy,
we investigated an optimal control problem for a delay differential equation model of immune
responses to hepatitis virus B infection. Our optimal control problem investigates the interplay
between virological and immunomodulatory effects of therapy, the control of viremia and the
administration of the minimal dosage over a short period of time. Our numerical results show that
the high drug levels that induce immune modulation rather than suppression of virological factors
are essential for the clearance of hepatitis B virus.

Keywords: optimal control; hepatitis B; delay differential equations (DDE); immune response;
drug therapy

1. Introduction

Hepatitis B virus (HBV) is the leading viral cause of liver disease, affecting 250–350 million
people worldwide. Chronic HBV leads to the development of liver cirrhosis and liver cancer [1].
Despite the availability of effective HBV vaccination [2], the prevalence of chronic HBV has only
marginally declined [3,4]. The natural course of chronic HBV includes an immune-tolerant phase,
hepatitis B e-antigen positive immuno-active and -inactive phases and a hepatitis B e-antigen negative
immuno-active phase [5]. Understanding the virological and immunological characteristics of each of
these stages can provide a useful framework for the management of chronic HBV [6,7].

Currently, seven drugs have been approved for treating chronic HBV disease: standard and
PEGylated interferon (IFN-α) and five nucleo(t)side analogs (NAs) [8]. These medications suppress
HBV replication and liver inflammation, but do not lead to cure. The interferon-α treatments modulate
immune responses that may lower viral levels. It is given for a finite time (usually 12 months) due to
its toxic side effects [8,9]. The nucleo(t)side analogues are administrated for many years and sometimes
for life and are responsible for viral suppression. However, life-long therapy is difficult due to costs,
side effects, compliance and, most importantly, the development of antiviral drug resistance [10].
Combination therapy has not shown an increased effect on treatment response (but has reduced the
rate of drug resistance) [11]. This has made it difficult to establish a universal guideline for treatment
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start, duration, which type or combinations of drugs to use [7] and how to define the success of therapy
(virologically, serologically and/or immunologically) [7,12].

To provide insight into the optimal combination therapy and, in particular, into the
immune-mediated effects of interferon-α, we design an optimal control study for a mathematical
model of hepatitis B infection. Mathematical models have been used to address transition from acute
to chronic HBV infections [13–16] and to study the effects of drug therapy [17–19]. Optimal control
theory was developed by Pontryagin et al. for obtaining necessary conditions to characterize optimal
controls for systems of ordinary differential equations (ODEs) [20]. Optimal control models have been
used previously to design treatment strategies for disease models described by systems of ordinary
differential equations with no delays [21–25] and systems of delay differential equations (DDEs) [26].
Kharatishvili [27] developed the extension of the Pontryagin’s maximum principle for systems of DDEs
with constant time delays. For approximation and numerical methods for such problems, see [28,29].

In this paper, we modify an in-host DDE model of immune responses to hepatitis B infection
introduced in [14] by adding the effects of combination drug therapy. In particular, we consider the
drug effects in blocking viral production, reducing viral infection, enhancing the killing of infected
cells by immune responses and removing immune cell exhaustion. We will use this as a starting
model for designing an optimal control problem that advises what is the best combination therapy
to ensure viral clearance, immune activation and the least amount of liver damage. Time-varying
rates for therapies will be the controls in the system. Optimal control has been applied to the study of
hepatitis B therapy using ODE [30,31] and DDE [32] models that did not consider an immune system
component and using an ODE model that considers the enhancement of immune responses following
administration of traditional Chinese medicine [33].

Here, we introduce the DDE system with constant time delay from [14], derive its corresponding
control formulation and use it to determine the temporal, quantitative and qualitative effects of the
drugs that lead to hepatitis B virus control, balancing the goals of reducing viral load and minimizing
the negative side effects of therapy. Our results indicate that early drug therapy that mainly modulates
and restores the immune responses against the virus is mandatory for the success of the therapy.

2. Mathematical Model and Analysis

2.1. Model of Hepatitis B Virus (HBV) Drug Therapy

To understand the various modes of action of antiviral therapy, we modify the model of
acute infection published in [14] by considering the combined effects of NAs and interferon-α
drugs. As in [14], we consider five state variables, corresponding to uninfected hepatocytes (T),
productively-infected hepatocytes (I), free virus (V), immune effector cells (E) and a population of
refractory hepatocytes (R).

All hepatocyte populations, uninfected, infected and refractory to reinfection, are maintained
by homeostasis described by a logistic equation, with carrying capacity K and maximal per capita
growth rate r. Virus infects target cells at rate β. Infected cells are killed by the immune responses at
rate µ. As in [14], we assume that infected cells can be lost due to the non-cytolytic response at rate
ρ, dependent on the effector cell population E [34], and move into a refractory class R. Refractory
cells will still be assayed as infected, since surface antigens persist for some time [35]. We assume that
they have lost their viral replicates and do not produce virus, which also makes them poor targets
for cytotoxic T lymphocyte (CTL) responses. Therefore, the refractory population will be killed at
a smaller rate, ν < µ. The refractory state is not permanent, and the R population may eventually
become susceptible to reinfection. We model this by allowing R cells to move into the uninfected
population at rate q. Free virus is produced at rate π and cleared at rate c.

In the absence of infection, we assume the immune effector cells E are at equilibrium value s/d,
where s corresponds to a source of effector cells specific for HBV and 1/d is their average life-span.
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Upon encountering antigen (on the surface of infected liver cells), these cells expand at rate α, with
a constant time delay τ accounting for the lag between antigen encounter and effector cell expansion.

We model drug therapy as interference with virus production and infection and as immune
modulation, as follows. The contributions of interferon-α are complex, with both direct antiviral and
immunomodulatory effects. Here, we consider three effects of IFN-α: enhancement of effector cell
killing rates, reduction of viral production rate and the delay of effector cell programmed death [36,37].
We model this by changing rates µ, π and d to µ1 = µ(1 + a1ε), π0

1 = π(1− a2ε) and d1 = d(1− a3ε),
respectively. In each case, 0 ≤ ε ≤ 1 represents the efficacy of IFN-α, and ai ≥ 0 are scalar parameters
representing the strength of the corresponding effect of interferon. a1 can be any nonnegative number,
while a2 and a3 are between 0 and 1.

The nucleos(t)ide analogues, on the other hand, interfere with both the ability of virus to infect
a cell and with the generation of HBV DNA by an infected cell [38]. We model this by assuming that
the infectivity rate in the presence of NAs becomes β1 = β(1− b1η), and the viral production rate
becomes π1 = π(1− f a2ε− (1− f )b2η). Here, 0 ≤ η ≤ 1 represents NAs’ efficacy; bi ≥ 0 are scalar
parameters representing the relative strength of the corresponding effect of NAs; and f and 1− f
represent the relative contribution of interferon-α and NAs, respectively, to reducing viral production,
for 0 ≤ f ≤ 1.

For t > td, where td represents the time of therapy onset, the dynamics of these populations is
governed by the following differential equations

dT
dt

= rT
(

1− T + I + R
K

)
− (1− b1η)βTV + qR

dI
dt

= rI
(

1− T + I + R
K

)
+ (1− b1η)βTV − ((1 + a1ε)µ + ρ)IE

dV
dt

= π(1− f a2ε− (1− f )b2η)I − cV

dE
dt

= s + αI(t− τ)E(t− τ)− d(1− a3ε)E

dR
dt

= ρIE + rR
(

1− T + I + R
K

)
− qR− νRE

(1)

As this is a system of delay differential equations with fixed delay τ, the initial conditions for the
system are defined on the interval [td − τ, td] by functions:

T(t) > 0, V(t) ≥ 0, R(t) ≥ 0, I(t) ≥ 0 and E(t) ≥ 0 (2)

In many cases, these will be assumed to be constant and equal to the value of the state variables
at t = td.

2.2. Model Analysis

We will consider that therapy leads to viral removal and only investigate the long-term behavior
of the equilibrium where V = 0. Model (1) has such a disease free steady state, S0 = (K, 0, 0, s/d1, 0).
In the absence of delay (τ = 0), the Jacobian matrix associated with (1) is:

r(1− 2T+I+R
K )− β1V − rT

K −β1T 0 q− rT
K

− rI
K + β1V r(1− T+2I+R

K )− (ρ + µ1)E β1T −ρI − µ1 I − rI
K

0 π1 −c 0 0
0 αE 0 αI − d1 0
− rR

K − rR
K + ρE 0 ρI − νR r(1− T+I+2R

K )− q− νE


We evaluate J(S0) and obtain the Jacobian matrix:
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J(S0) =


−r −r −β1K 0 q− r
0 −(ρ + µ1)s/d1 β1K 0 0
0 π1 −c 0 0
0 αs/d1 0 −d1 0
0 ρs/d1 0 0 −q− νs/d1


and the characteristic equation:

(r + λ)(λ4 + A1λ3 + A2λ2 + A3λ + A4) = 0

where

A1 = c + d1 + q + (ρ + µ1 + η)
s

d1

A2 =
s

d1

(
ν(c + d1) + (µ1 + ρ)(d1 + q + η

s
d1

)

)
+ qd1 + cd1 + qc +

(
c(µ1 + ρ)

s
d1
− π1β1K

)
A3 =

s
d1

(bd1q + cd1ν + ρd1q + νs(ρ + µ1)) + cd1q +
(

d1 + q + ν
s

d1

)(
c(µ1 + ρ)

s
d1
− π1β1K

)
A4 = d1(q + ν

s
d1

)

(
c(µ1 + ρ)

s
d1
− π1β1K

)
(3)

By the Routh–Hurwitz criteria, the characteristic equation has roots with negative real parts if
and only if Ai > 0, A1 A2 − A3 > 0 and A1 A2 A3 − A2

3 − A2
1 A4 > 0. We can show that these conditions

are satisfied when A4 > 0.

Therefore, when τ = 0, S0 is locally asymptotically stable when:

π1β1Kd1

c(µ1 + ρ)s
=

(1− b1η)(1− f a2ε− (1− f )b2η)(1− a3ε)πβKd
(a1εµ + µ + ρ)cs

< 1 (4)

and is unstable otherwise. This condition gives us a minimal drug efficacy for viral clearance in the
absence of delay in immune activation.

When τ > 0, the characteristic equation at state S0 is:

det(B + e−λτC−λI5) = 0 (5)

where:

B =


−r −r −β1K 0 q− r
0 −(ρ + µ1)s/d1 β1K 0 0
0 π1 −c 0 0
0 0 0 −d1 0
0 ρs/d1 0 0 −q− νs/d1


and:

C =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 αs/d1 0 0 0
0 0 0 0 0


We see that the transcendental Equation (5) reduces to polynomial:

(r + λ)(λ4 + A1λ3 + A2λ2 + A3λ + A4) = 0
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as in the τ = 0 case. Therefore, the infection-free equilibrium S0 is locally asymptotically stable for all
τ when (4) holds.

2.3. Numerical Results

We assume that in the absence of drug therapy, the virus will persist, and the patient will
experience chronic infection. We therefore set all parameters values and initial conditions to the values
for the chronically-infected Patient 7 in [14] (see Table 1). The dynamics of the five variables in the
absence of drug therapy, ε = η = 0, throughout acute infection and transition to chronic disease is
presented in Figure 1.

Table 1. Variables, parameters and values used in simulations with mililiter (mL) and day (d).

Variables

T Target cells T0 = 13.6× 106 per mL
I Infected cells I0 = 0 per mL
V Free virus V0 = 0.33 per mL
E Effector cells E0 = 60 per mL
R Refractory cells R0 = 0 per mL

Parameters
r Hepatocyte maximum proliferation rate 1 day−1

β Infectivity rate constant 1.22× 10−10 mL (virion × day)−1

K Hepatocyte carrying capacity 13.6× 106 cells per mL
µ Infected cell killing rate 1.2× 10−4 mL (cell × day)−1

ν Refractory cell killing rate 1.27× 10−5 mL (cell × day)−1

ρ Cure rate 3.38× 10−4 mL (cell × day)−1

α Effector cell expansion rate 2× 10−7 mL (cell × day)−1

τ Delay 33.4 days
π Virus production rate 164 virion (cell × day)−1

c Virus clearance rate 0.67 day−1

s Effector cell production 10 day−1

d Effector cell clearance rate 0.5 day−1

q Waning of refractory cell immunity 2× 10−5 day−1

We next investigate the change in the model dynamics in the presence of treatment. Initially, we set
time-constant drug efficacy, η = 0.5 and ε = 0.9 as in [17]; assume scalars ai and bi to be either 1 or 0,
representing an effect or lack of effect in therapy; and set f = 0.5. We define HBV DNA clearance
as the presence of less than one HBV DNA in the host serum. Since we assume that HBV DNA can
distribute throughout the 3 liters of serum in an average 70-kg person, the viral extinction becomes
V ≤ Vext = 3× 10−4 copies per mL. We notice that the speed of viral extinction is dependent on both
the timing of therapy initiation and on the type of effects considered.

Indeed, when the therapy is started at td = Tpeak = 96 days post-infection (corresponding to the
peak HBV DNA), our model predicts HBV DNA clearance 145 days after the start of therapy when
a1 = a2 = a3 = b1 = b2 = 1 and f = 0.5 (see Figure 2a, dashed line) and 2226 days (6.1 years) after
the start of therapy when a1 = a2 = b1 = b2 = 1, a3 = 0 and f = 0.5 (see Figure 2a, dotted line).
This suggests that the immune modulation effect of interferon is important in clearing the HBV DNA
in a short amount of time.

Similar immune-mediated effects of interferon are observed when drug therapy is started
at the chronic state of Model (1), td = Tss = 20 years post-infection. Indeed, viremia clearance
occurs faster when a1 = a2 = a3 = b1 = b2 = 1 and f = 0.5 (see Figure 3a, dashed line) than
when a1 = a2 = b1 = b2 = 1, a3 = 0 and f = 0.5 (see Figure 3a, dotted lines). However, viral clearance
is delayed by 12 days compared to the case in which therapy is initiated at peak HBV DNA.
The rapidity of clearance during peak therapy is due to the transient effects of immune cells, which are
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activated and expanding at the peak HBV DNA (see Figure 2b, solid lines) and tolerant at the chronic
HBV infection (see Figure 3b, solid lines).

0 100 200 300

Days

100

101

102

103

104

105

106

107

108
H

e
p
a
to

c
y
te

s
 p

e
r 

m
L

T

I

R

0 100 200 300

Days

102

103

104

105

106

107

108

109

1010

H
B

V
 D

N
A

 p
e
r 

m
L

V

HBV DNA per mL

0 100 200 300

Days

100

101

102

103

E
ff
e
c
to

r 
c
e
lls

 p
e
r 

m
L

E

Figure 1. Temporal evolution for the variables in Model (1) without drug therapy, i.e., ε = η = 0,
and the parameters in Table 1. The circles represent patient data.
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Figure 2. (a) Virus V per mL and (b) effector cells E per mL given by Model (1) and the parameters
in Table 1 for: η = ε = 0 (solid lines); η = 0.5, ε = 0.9, a1 = a2 = a3 = b1 = b2 = 1, f = 0.5
(dashed lines); and η = 0.5, ε = 0.9, a1 = a2 = b1 = b2 = 1, a3 = 0, f = 0.5 (dotted lines). Here,
time t = 0 corresponds to both the start of therapy and the peak viral load, i.e., the initial conditions
are T(0) = 1.32× 105 cells per mL, I(0) = 1.23× 105 cells per mL, V(0) = 3× 109 HBV DNA per mL,
E(0) = 20.23 cells per mL and R(0) = 1.23× 106 cells per mL.
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Figure 3. (a) Virus V per mL and (b) Effector cells E per mL given by model (1) and parameters
in Table 1 for η = ε = 0 (solid lines); η = 0.5, ε = 0.9, a1 = a2 = a3 = b1 = b2 = 1, f = 0.5
(dashed lines); and η = 0.5, ε = 0.9, a1 = a2 = b1 = b2 = 1, a3 = 0, f = 0.5 (dotted lines). Here, t = 0
corresponds to both the start of therapy and the steady state of the viral load, i.e., the initial conditions
are T(0) = 3× 105 cells per mL, I(0) = 3.8× 104 cells per mL, V(0) = 9.33× 106 HBV DNA per mL,
E(0) = 20.3 cells per mL and R(0) = 1.33× 107 cells per mL.

These results are supported by relative sensitivity curves. Briefly, sensitivity functions are
numerical solutions of the following system:

dx
dt

= g(x(t, ξ), z(t, ξ), ξ) (6)

d
dt

∂x
∂ξ

=
∂g
∂x

∂x
∂ξ

+
∂g
∂z

∂z
∂ξ

+
∂g
∂ξ

(7)

where x(t, ξ) = (T(t, ξ), I(t, ξ), V(t, ξ), E(t, ξ), R(t, ξ)), z(t, ξ) = x(t − τ, ξ) ∈ R5, the function g
represents the right-hand side of Model (1) and:

ξ = (r, K, β, q, ρ, π, c, s, α, d, η, ν, µ, ε, a1, a2, a3, b1, b2, f )

The partial derivatives ∂xi/∂ξ j, for i = 1, . . . , 5 and j = 1, . . . , 20, are time functions denoting
the rate of change in a state variable with respect to variations in model parameters (see [39] and
the references therein). The functions ξ j/xi × ∂xi/∂ξ j are the relative sensitivity curves (similar to
relative error), which allow for the comparison between the sensitivity of two variables x1

i and x2
i

with respect to the same parameter ξ j. Here, we are interested in the sensitivity of V(t, ξ) and E(t, ξ)

with respect to model parameters ξ = {a2, a3, b2}. As the numerical solutions displayed in Figure 4
show, the a3 effect is the most important drug effect in both reducing virus load and increasing
immune response.
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Figure 4. Relative sensitivity curves ξ
V

∂V
∂ξ (top row) and ξ

E
∂E
∂ξ (bottom row) for ξ = a3 (left) and ξ = a2

(solid line), ξ = b2 (dashed line) (right). The parameters and initial conditions are as in Figure 3.

Our model suggests that the timing and the type of interferon effects are important in the success
of the treatment. In the next sections, we will consider a time-dependent effect of both interferon and
nucleo(s)tide analogues, and we will formulate an optimal control problem for our model to determine
the connection between successful therapy and the optimal temporal efficacy of the effects considered.

3. Optimal Control Problem

To better understand the interactions between drug therapy and the host immune reaction,
we allow the effects of the two drug types (NAs and IFN-α) to vary with time. We replace the NAs’
efficacy parameter η with u1(t) to represent the time-varying effective drug dosage needed for optimal
therapy. Similarly, u2(t) will replace the parameter ε to represent the time-varying dosage of IFN-α.
As before, a1, a2 and a3 indicate the relative strength of the three effects of IFN-α under consideration;
b1 and b2 represent the relative strengths of the two effects of the NA; and f and 1− f are the relative
contribution of interferon and NAs, respectively, in reducing viral production.

For computational convenience and consistency of notation, we will relabel the state variables as
in Table 2. With these adjustments, our model becomes as follows.

Table 2. Correspondence between labeling of the state variables in Models (1) and (8).

x1(t) = T(t)
x2(t) = I(t) z2(t) = I(t− τ)
x3(t) = V(t)
x4(t) = E(t) z4(t) = E(t− τ)
x5(t) = R(t)
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dx1

dt
= rx1

(
1− x1 + x2 + x5

K

)
− β(1− b1u1)x1x3 + qx5

dx2

dt
= rx2

(
1− x1 + x2 + x5

K

)
+ β(1− b1u1)x1x3 − ((1 + a1u2)µ + ρ)x2x4

dx3

dt
= (1− f a2u2 − (1− f )b2u1)πx2 − cx3

dx4

dt
= s + αz2z4 − d(1− a3u2)x4

dx5

dt
= ρx2x4 + rx5

(
1− x1 + x2 + x5

K

)
− qx5 − νx4x5

(8)

Our goal is to find the regime of drug therapy that minimizes the objective functional:

J(u1, u2) =
∫ T

0

(
c1x3 + c2x2 + c3u1 + c4u2 + ε1u2

1 + ε2u2
2

)
dt + c5x3(T) (9)

subject to the system of delay differential Equation (8) with initial conditions (2). Here, T represents
the duration of therapy. We will study two different scenarios for drug treatment by considering
two different sets of initial conditions. For the case of chronic HBV infection, the initial values of
the state variables xi will be constant and equal to their chronic infection equilibrium values for the
entire interval [td − τ, td]. We will also study the case of drug therapy initiation at the peak of viral
load, during acute infection. In this case, the initial functions for the state variables xi will be set by
their trajectories during acute infection in the absence of treatment. This is described in more detail
in Section 3.3.

Given upper bounds Mi on ui (for i = 1, 2), we seek to find an optimal pair in the control set:

U = {(u1, u2) ∈ L∞(0, T) | 0 ≤ ui ≤ Mi, i = 1, 2}

such that
J(u∗1 , u∗2) = inf

(u1,u2)∈U
J(u1, u2)

The integral portion of the objective functional encapsulates the goal of minimizing total virus
concentration (x3), infected cell concentration (x2) and the amount of drug used (u1 and u2 terms)
over the entire treatment period. The final term c5x3(T) represents the goal of minimizing the final
viral concentrations at time T, which ideally would be below clearance levels. The parameters ci > 0
and ε j > 0 give the relative weight of each of these factors.

3.1. Analysis of the Optimal Control Problem

Pontryagin’s key idea was to use adjoint functions to attach the state dynamics to the objective
functional. This converts the problem into minimizing the Hamiltonian and generates the adjoint
differential equations and final-time transversality conditions. In this paper, we use a generalization of
Pontryagin’s maximum principle to systems of delay differential equations (developed by [27]).

Letting f denote the integrand of the objective functional (9) and g1, . . . , g5 be the right-hand sides
of System (8), the Hamiltonian for our optimal control problem is:

H = f + λ1g1 + λ2g2 + λ3g3 + λ4g4 + λ5g5 (10)

where the adjoint functions λi correspond to the states xi, for i ∈ {1, . . . , 5}.
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From the Hamiltonian, we derive the adjoint equations. For i = 1, 3 and 5, we have:

dλi
dt

= −∂H
∂xi

(11)

on [0, T]. For i = 2 and 4, on the interval [0, T − τ] we have

dλ2

dt
= − ∂H

∂x2
− ∂H

∂z2

∣∣∣∣
t+τ

dλ4

dt
= − ∂H

∂x4
− ∂H

∂z4

∣∣∣∣
t+τ

(12)

where zi(t) = xi(t− τ) represent the delayed state variables, while on the interval [T− τ, T], we have:

dλ2

dt
= − ∂H

∂x2
dλ4

dt
= − ∂H

∂x4

(13)

just as in [11].
The equations containing delayed state variables produce adjoint equations with a “forward”

delay, due to the opposite time orientation of the adjoint differential equation. The adjoint equations
are subject to the final condition that λ3(T) = c5, λi(T) = 0 and i ∈ {1, 2, 4, 5}. On the interior of the
control set, minimizing the Hamiltonian gives:

∂H
∂ui

= 0

at (u∗1 , u∗2), and then, the optimal control pair becomes:

u∗1 =
−c3 + βx1x3(−λ1 + λ2)+λ3(1− f )b2πx2

2ε1

u∗2 =
−c4 + λ2a1µx2x4 + λ3 f a2πx2 − λ4da3x4

2ε2

(14)

Using the bounds on the controls, we obtain the following characterization of the optimal control:

u∗1 = min
{

M1, max
{

0,
−c3 + βx1x3(−λ1 + λ2)+λ3(1− f )b2πx2

2ε1

}}
u∗2 = min

{
M2, max

{
−c4 + λ2a1µx2x4 + λ3 f a2πx2 − λ4da3x4

2ε2

}} (15)

3.2. Implementation of the Optimal Control Problem

We wish to find optimal controls numerically by applying a forward-backward iterative
method [25]. Initially, a constant control is assumed, and the state equations are solved in the
forward-time direction from our standard set of initial conditions. Given this solution to the state
equations, the adjoint equations are then solved in the backwards-time direction, beginning with the
final time T and final condition λ3(T) = c5 and λi(T) = 0 for i ∈ {1, 2, 4, 5}. The controls to be used
for the next forward run are then updated using the characterization of the optimal control given
in (15), and the forward-backward solution process is repeated with the updated control functions.
This process is iterated until the controls and the solutions to all of the differential equations converge
to within acceptable numerical tolerances. See [28,29,40] for the background on this procedure and the
approximation of delay equations.

To use the forward-backward sweep, we rewrite the adjoint equations for our system as:
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dλ1

dt
=− λ1

(
r
(

1− 2x1 + x2 + x5

K

)
− (1− b1u1)βx3

)
− λ2

(
− r

K
x2 + (1− b1u1)βx3

)
+ λ5

r
K

x5,

dλ2

dt
=− c2 + λ1

r
K

x1 − λ2

(
r
(

1− x1 + 2x2 + x5

K

)
− (1 + a1u2)µx4 − ρx4

)
− λ3(1− (1− f )b2u1 − f a2u2)π − λ5

(
ρx4 −

r
K

x5

)
− λ4(t + τ)αx4χ[0,T−τ]

dλ3

dt
=− c1 + λ1(1− b1u1)βx1 − λ2(1− b1u1)βx1 + λ3c

dλ4

dt
=− λ2 (−(1 + a1u2)µx2 − ρx2) + λ4d(1− a3u2)− λ5(ρx2 − νx5)− λ4(t + τ)αx2χ[0,T−τ]

dλ5

dt
=− λ1

(
− r

K
x1 + q

)
+ λ2

r
K

x2 − λ5

(
r
(

1− x1 + x2 + 2x5

K

)
− q− νx4

)

(16)

Notice that in the time interval [T− τ, T], the advance terms (those with argument t + τ, found in
the second and fourth equations) drop out, so we have five ordinary differential equations. On the
interval [0, T − τ], we once again have advance equations, but the solutions to the ODEs on [T − τ, T]
provide the required initial data to solve these equations. Thus, the adjoint equations are advance
differential equations on [0, T− τ] and ordinary differential equations on [T− τ, T], subject to the final
condition λ3(T) = c5 and λi(T) = 0 for i ∈ {1, 2, 4, 5}.

For our numerical simulations, we used the built-in MATLAB numerical delay differential
equation solver, dde23. This tool is not capable of solving advance equations directly, so we made
a change of variables to convert the advance differential equations to a system of delay differential
equations. Specifically, we define a new reversed-time variable σ = T − t and new adjoint variables
Li(σ) = λi(T − σ) = λi(t). In terms of these new variables, adjoint equations for Li(σ) are ordinary
differential equations on [0, τ] and delay differential equations on [τ, T], subject to the initial condition
L3(0) = c5 and Li(0) = 0 for i ∈ {1, 2, 4, 5}. The new system was solved numerically using dde23 as
part of the implementation of the forward-backward method to find the optimal control.

3.3. Numerical Results with Optimal Controls

For optimal therapy during chronic HBV infection, we assume that at the time of treatment initiation,
the patient has reached chronic steady state values x̄1 = 3× 105 cells per mL, x̄2 = 3.8× 104 cells
per mL, x̄3 = 9.33× 106 HBV DNA per mL, x̄4 = 20.3 cells per mL and x̄5 = 1.33× 107 cells per mL.
The terms in the objective functional (9) have different scales. In order to weigh each term equally,
we choose parameters ci, such that cixi (for i = 1, 2) and ciui (for i = 3, 4) are one at the start of the
optimal control. When the optimal control is started at the viral steady state, we normalize variables
x1 and x2 by c1 = 1

x̄3
and c2 = 1

x̄2
= π

cx̄3
. As a result, the factors c1x1 and c2x2 are one at the beginning

of treatment and between zero and one from there on. Since we assume 0 ≤ u1(t), u2(t) ≤ 0.9 for all t,
their corresponding weights are c3 = c4 = 1. Lastly, we choose the effects for the convex terms to be
ε1 = ε2 = 0.1. The treatment will be given for T1 = 400 days, which is sufficient for virus clearance
and is still within the timeline of the HBV therapy guidelines [7].

The ideal clinical outcome of HBV drug therapy is to achieve viral suppression, such that
x3 ≤ Vext = 3× 10−4 HBV DNA per mL, corresponding to one HBV DNA in the body (as in
Section 2.3). To account for this final condition, we set c5 = 3× 103 so that the final time condition is
normalized to one. Under these assumptions, we run the optimal control problem over T1 = 400 days
with the aim of finding the best temporal drug usage at each time point that ensures viral clearance
while minimizing the drug levels.

We will be considering several scenarios by varying the levels of control effects, described by
constants ai and bi. Our simulations show that for high virus levels (above extinction), the optimal
control will always be the maximal drug dosage for the scenario considered. For example, for a case
with any ai > 0 and b1 = b2 = 0, the optimal control is u1(t) = 0 and u2(t) = 0.9 for all time points.
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Similarly, if ai > 0 and bj > 0, then the optimal control is u1(t) = u2(t) = 0.9 for all time points.
Therefore, for the first 325 days, we assume the maximal drug dosage for a given scenario and only
run the optimal control with variable u1(t) and u2(t) for the final 75 of the 400 days of treatment.

Initially, we include all effects of nucleos(t)ide analogues u1 and interferon u2, i.e., a1 = a2 = a3 =

b1 = b2 = 1 and f = 0.5. For this choice of parameters, optimal control requires: (i) maximal NA drug
dosage u1 = 0.9 for 0 ≤ t ≤ 347 days and zero drug dosage for t ≥ 347 days; and (ii) maximal u2 = 0.9
interferon dosage for 0 ≤ t ≤ 366.5 days, zero dosage for 366.5 ≤ t ≤ 399 days and maximal dosage
after that (see Figure 5a, top row). Under these drug regimes, HBV DNA is cleared 331 days after the
start of treatment (see Figure 5b, top row).
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Figure 5. (a) Optimal evolution for controls u1 (dashed lines) and u2 (solid lines) as given by (15);
(b) virus V per mL (solid lines) and infected cells I per mL (dashed lines) over time; (c) effector
cells E per mL over time when drugs are introduced at equilibrium virus concentration and:
a1 = a2 = a3 = b1 = b2 = 1, f = 0.5 (top row); a1 = a2 = a3 = 1, b1 = b2 = 0, f = 1 (second row);
a1 = a2 = 0, a3 = b1 = b2 = 1, f = 0 (third row); a1 = a2 = a3 = 0, b1 = b2 = 1, f = 0 (bottom row).

We next assume monotherapy with interferon-α. We set b1 = b2 = 0, a1 = a2 = a3 = 1 and
change the anti-viral production effect to f = 1. The optimal control problem predicts that the
virus is cleared 338 days after the start of therapy, seven days later than under combination therapy
(see Figure 5b, second row). Another downside of this monotherapy is the need for interferon dosage
to be maximal (u2 = 0.9) for 0 ≤ t ≤ 377 and for t ≥ 396.5 in order to compensate for the lack of NAs
(see Figure 5a, second row).

In combination therapy, when u2 neither increases CTLkilling abilities nor reduces virus
production, i.e., a1 = a2 = 0, and all other effects are maximal a3 = b1 = b2 = 1, f = 0
(so that NAs have maximal effect in blocking viral production), the HBV DNA will clear 341 days
after the start of treatment (see Figure 5b, third row). The controls are: (i) u1 = 0.9 for 0 ≤ t ≤ 358
and t ≥ 396, and zero otherwise; and (ii) u2 = 0.9 for 0 ≤ t ≤ 369.5, and zero otherwise (see Figure 5a,
third row).
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Lastly, we consider monotherapy with NAs alone. We set a1 = a2 = a3 = 0, b1 = b2 = 1 and
f = 0. The optimal control model does not result in viral clearance even when u1 = 0.9 throughout the
duration of the treatment (see Figure 5a,b, bottom row).

For the first three cases, we find that an increase in the effector cells’ lifespan is needed for viral
suppression. Indeed, when a3 = 1 and u2 > 0, the increase of CTL lifespan to 1/d(1− a3u2) leads
to elevated CTL concentrations (see Figure 5c, top three rows) and subsequent HBV DNA removal
(see Figure 5b, top three rows). By contrast, when a3 = 0, HBV DNA does not reach extinction during
the T1 = 400 days of therapy (see Figure 5b, bottom row) due to low HBV-tolerant CTL concentrations,
E = s/d1 = s/d, which do not expand in the presence of HBV (see Figure 5c, bottom row).

For optimal therapy during acute HBV infection, to further determine the relationship between
CTL activation and the possible success of short-term anti-HBV therapy, we run the optimal control
problem during acute HBV disease, where CTL activation has been reported [41]. We start by running
the DDE system mainly to the peak virus concentration occurring at time Tpeak, record the values of
all variables for the times −τ + Tpeak ≤ t ≤ Tpeak and start the optimal control problem at td = Tpeak.
The treatment will be given for T2 = 95 days and, as before, we include the following weights
c1 = 1

x3(Tpeak)
, c2 = π

cx3(Tpeak)
, c3 = c4 = 1, ε1 = ε2 = 0.1 and c5 = 3× 103, so that all factors are

normalized to one.
As in the chronic HBV case, we consider four scenarios. If we include all effects of nucleos(t)ide

analogues u1 and all effects of interferon u2, i.e., a1 = a2 = b1 = b2 = 1, f = 0.5 and a3 = 0.9,
we predict that HBV DNA is cleared 90 days after the start of treatment when interferon dosage
is maximal at each time step and NAs are zero for 0 ≤ t ≤ 90 days and maximal from t ≥ 90
(see Figure 6a,b, top row). This result implies that NAs do not have a role in viral clearance. This is
corroborated by the optimal control solution for interferon monotherapy. Indeed, when we set
a1 = a2 = 1, a3 = 0.9, b1 = b2 = 0 and f = 1, virus is cleared even faster, 87 days after the
start of therapy (see Figure 6b, second row) when u2 dosage is maximal u2 = 0.9 at each time
step (see Figure 6a, second row). This is due to the higher efficacy of interferon-α at blocking viral
production assumed in this scenario. The results in both of these cases are due to fast expansion and
transient maintenance of CTLs to high levels of 2500 cells per mL (see Figure 6c, top two rows).

To further determine which of the interferon effects are the most influential, we remove the first
two interferon effects a1 = a2 = 0, keep a3 = 0.9, b1 = b2 = 1 and set f = 0. Under these conditions,
virus is cleared 91 days after the start of therapy, one and four days later than the previous two cases
(see Figure 6b, third row) when: (i) NA dosage (u1) is zero for 0 ≤ t ≤ 87 and maximal (u1 = 0.9)
afterwards; and (ii) interferon dosage is maximal (u2 = 0.9) for 0 ≤ t ≤ 91 and zero afterwards (see
Figure 6a, third row). This result implies, again, that interferon is needed for virus clearance.

Lastly, when we consider monotherapy with NAs, i.e., b1 = b2 = 1, a1 = a2 = a3 = 0 and f = 0,
the HBV DNA will not clear (see Figure 6b, bottom row) in spite of CTL levels being higher than the
base of E = s/d1 = s/d (see Figure 6c, bottom row). Interestingly, our numerical results show that the
optimal NA dosage for the first 42 days is zero (see Figure 6a, bottom row).

Our study has used a delay of τ = 33.4 days, since that represented the delay in the CTL activation
in the only patient that developed chronic disease in [14]. To check whether the size of the delay affects
the results, we have investigated the optimal control problem for a shorter delay of τ = 15.2 days,
which is the smallest delay among the patients in [14]. We found that the length of the delay does
not influence the results when the therapy is started at the viral steady state (not shown). When the
therapy is started at the peak viral load, we find, not surprisingly, that a shorter time lag speeds viral
decay and CTL expansion (see Figure 7b,c). Moreover, the optimal control problem for the shorter
delay of τ = 15.2 days suggests no therapy (u1 = u2 = 0) for the first three days post-peak, maximal
interferon therapy for 3 ≤ t ≤ 75 and t ≥ 90 and no interferon u2 = 0 otherwise. The role of NAs is
transient, with maximal dosages u1 = 0.9 for 20 ≤ t ≤ 27, 38 ≤ t ≤ 51 and t > 90 days and u1 = 0
elsewhere (see Figure 7a, bottom row).
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Figure 6. (a) Optimal evolution for controls u1 (dashed lines) and u2 (solid lines) as given by (15);
(b) virus V per mL (solid lines) and infected cells I per mL (dashed lines) over time; (c) effector cells E
per mL over time when drugs are introduced at peak virus concentration and: a1 = a2 = b1 = b2 = 1,
a3 = 0.9, f = 0.5 (top row); a1 = a2 = 1, a3 = 0.9, b1 = b2 = 0, f = 1 (second row); a1 = a2 = 0,
a3 = 0.9, b1 = b2 = 1, f = 0 (third row); a1 = a2 = a3 = 0, b1 = b2 = 1, f = 0 (bottom row).
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Figure 7. (a) Optimal evolution for controls u1 (dashed lines) and u2 (solid lines) as given by (15);
(b) virus V per mL (solid lines) and infected cells I per mL (dashed lines) over time; (c) effector cells E
per mL over time when drugs are introduced at peak virus concentration for: a1 = a2 = a3 = b1 = b2 = 1,
f = 0.5 and τ = 33.4 (top row); τ = 15.2 (bottom row).
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Together, these results suggest that the immunomodulatory effects of interferon are needed for
HBV DNA control and that immune modulation rather than suppression of virological factors is
essential for inducing HBV clearance.

4. Discussion

The management of chronic hepatitis B is based on guidelines regarding screening, diagnosis,
duration of treatment, adherence and monitoring of immune and virological markers [12].
Combined antiviral therapy improves the survival rates of patients chronically infected with hepatitis B
virus [42]. While the first goal of therapy is to reduce HBV replication, the ultimate goal is the removal
of hepatitis B surface and e-antigens and of covalently-closed circular DNA (cccDNA). The removal
of the hepatitis B e-antigen is associated with immunological factors, such as removal of the tolerant
status of the hepatitis B-specific T cells [36]. Such effects have been demonstrated by interferon therapy,
which leads to improved immune function, sustained response rates with combination therapy and
improved overall prognosis [37]. These drugs have limitations, such as side effects, the use of injection
and poor response in patients with compromised liver function. That makes them unsuitable for
long-term administration [43].

To address the positive effects of interferon therapy and to account for its limitations due to
adverse effects and limited time usage, we developed a control problem that accounts for: (i) three
interferon functions: increased CTL life-span, reduced viremia and increased CTL killing of infected
hepatocytes; (ii) two nucleos(t)ide analogue effects: blocking of viral infection and of viral production;
(iii) hepatitis B DNA decay below the limits of detection; and (iv) minimal dosage administration over
a short time period.

The presence of significant side effects and the need for lengthy treatment make the question
of the optimal therapy strategy relevant for the case of chronic hepatitis B. Little work has been
previously done on the optimal control of HBV treatment, and the existing models do not include
immune system involvement [30]. Ciupe et al. demonstrated that consideration of delayed cytotoxic
and non-cytotoxic immune reactions and the presence of cells refractory to infection was necessary
to properly understand the dynamics of HBV acute infection and progression to chronic disease [14].
In this study, we derived an optimality system associated with this model, and we constructed the
corresponding adjoint equations, which differed from the construction of adjoint equations for systems
of ODE [44]. In particular, we found that for a delay τ and a control period [0, T], the adjoint equations
are ODEs on [T− τ, T] and advance differential equations on [0, T− τ], meaning that there are terms
with time argument t+ τ. After deriving the proper form of the adjoint equations, we have investigated
the optimal control system numerically using a forward-backward sweep method, as in [25].

The control problem indicates the need for high immunomodulatory effects of IFN-α until HBV
DNA is cleared. Most importantly, the immunomodulatory effects that increase the survival of effector
cells are essential for timely reduction in viremia, which is needed to limit the IFN-α-induced side
effects [43]. We predict that starting interferon therapy at the peak viral load, rather than at viral
equilibrium, shortens the time to HBV DNA removal. This is due to enhancement of an already
activated T cell response. Most interestingly, monotherapy with interferon-α is sufficient for virus
control, while the effects of nucleos(t)ide analogues emerge only at the end stages of combination
therapy. This result suggests that sequential single therapy (interferon followed by nucleos(t)ide
analogues) may be the optimal course of action for both viral suppression and the limitation of
drug effects.

Our results imply that an increase in T cell response (in acute infections) and reversal of T cell
inactivation (in chronic infections) are essential for fast control of viremia. However, experimental
studies have shown that only a small percentage of patients on INF-α therapy experience loss of
surface-antigen, e-antigen loss and reduction in virus replication [45]. Moreover, interferon-α is
responsible for only partial reversal of T cell inactivation in chronic hepatitis B infections [37] and is
not induced naturally during acute hepatitis B infections [46]. However, interferon-α therapy induces
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cccDNA degradation in cell culture [47] and enhances the innate immune response mediated by
natural killer (NK) cells in e-antigen negative patients [45]. Our optimal control study predicts that
enhanced cccDNA degradation, which can be incorporated in our model as an effect on the term ρ, has
limited effect on the timing of HBV DNA removal (not shown). The NK activation would increase
infected cell removal in a complementary fashion to the CTL effect we consider now. Similar to our
current results, increased survival of NK cells would be needed for fast HBV DNA removal.

Our study has considered a linear combination effect of interferon and nucleos(t)ide analogues
on the blocking of viral production f a2u2 + (1− f )b2u1 with f = 0.5. To determine the effect of f
on the results, we investigated two control therapies, (i) strong interferon influence on blocking viral
production f = 0.9 and (ii) strong NA influence on blocking viral production f = 0.1, and found that
the size of f has little influence one the timing of viral clearance for both peak and equilibrium therapy
(not shown).

One limitation in our research comes from ignoring the consequences that prolonged treatment
exerts on the evolution of the viral population. Studies have shown that life-long therapy and lack
of compliance leads to the development of antiviral drug resistance [10], even though combination
therapy helps reduce drug resistance [11]. Our model has not considered the emergence of HBV
variants or mutation in the presence of combination therapy. Further work is needed to address the
optimal therapy in the presence of these events.

In conclusion, we have designed an optimal control study that shows that a successful short-term
anti-HBV therapy requires the modulation of strong innate and/or adaptive immune responses, rather
than induction of anti-virological effects. Such therapy needs to be active and elevated for the entire
period of viremia.
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