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Abstract: In this work, we developed a Selective Dynamic Sampling Approach (SDSA) to deal with
the class imbalance problem. It is based on the idea of using only the most appropriate samples during
the neural network training stage. The “average samples”are the best to train the neural network,
they are neither hard, nor easy to learn, and they could improve the classifier performance. The
experimental results show that the proposed method is a successful method to deal with the two-class
imbalance problem. It is very competitive with respect to well-known over-sampling approaches
and dynamic sampling approaches, even often outperforming the under-sampling and standard
back-propagation methods. SDSA is a very simple method for automatically selecting the most
appropriate samples (average samples) during the training of the back-propagation, and it is very
efficient. In the training stage, SDSA uses significantly fewer samples than the popular over-sampling
approaches and even than the standard back-propagation trained with the original dataset.

Keywords: two-class imbalance problem; average samples; over-sampling; under-sampling;
dynamic sampling

1. Introduction

In recent years, the class imbalance problem has been a hot topic in machine learning and
data-mining [1,2]. It appears when the classifier is trained with a dataset where the number of samples
in one class is lower than the samples in the other class, this and produces an important deterioration
in the classifier performance [3,4].

The common methods handled with the class imbalance problem have been the re-sampling
methods (under-sampling and over-sampling) [2,5,6], mainly due to the independence of the
underlying classifier [7]. One of the most well-known over-sampling methods is the Synthetic
Minority Over-sampling Technique (SMOTE). This generates artificial samples of the minority class
by interpolating existing instances that lie close together [8]. The development of other samplings
has been motivated: borderline-SMOTE, Adaptive Synthetic Sampling (ADASYN), SMOTE editing
nearest neighbor, safe-level-SMOTE, Density-Based Synthetic Minority Over-sampling TEchnique
(DBSMOTE), SMOTE + Tomek’s Links [9], among others (see [1,7,10]).
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An interest has been observed for finding the best samples to build the classifiers. For example,
borderline-SMOTE has been proposed to over-sample only the minority samples near the class
decision borderline [11]. Accordingly, in [12], the safe-level-SMOTE is proposed, to select minority
class instances from the safe level region, and then, these samples are used to generate synthetic
instances. ADASYN has been developed to generate more synthetic data from minority class samples
that are harder to learn than those from minority class samples, which are easy to learn [13]. In a
similar way, SPIDER approaches (framework that integrates a selective data pre-processing with the
Ivotes ensemble method) over-sampling locally only for those minority class samples that are difficult
to learn and includes a removing or relabeling process of noisy samples from the majority class [14,15].
The above discussed approaches have in common that they use the K nearest neighbors rule as the
basis, and they are applied before the classifier training stage.

On the other hand, the under-sampling methods have shown effectiveness to deal with the class
imbalance problem (see [7,8,10,16–19]). One of the most successful under-sampling methods has been
the random under-sampling, which eliminates random samples from the original dataset (usually
from the majority class) to decrease the class imbalance, however, this method loses effectiveness when
removing significant samples [7]. Other important under-sampling methods including a heuristic
mechanism are: the neighborhood cleaning rule, from Wilson editing [20], one-sided selection [21],
Tomek links [22] and the Condensed Nearest Neighbor rule (CNN) [23]. Basically, the aim of the
cleaning mechanism is: (i) to eliminate samples with a high likelihood of being noise or atypical
samples or (ii) to eliminate redundant samples in CNN methods. In the same way as the above
approaches, we apply these methods before the training process. They employ the K nearest neighbors
rule (except the Tomek links methods) as the basis.

Another important alternative to face the class imbalance has been the Cost Sensitive (CS)
approach, which has become one of the most relevant topics in machine learning research in recent
years [24]. They consider the costs associated with misclassifying samples, i.e., CS methods use
different cost matrices describing the costs for misclassifying any particular data sample [10]. The
over- and under-sampling could be a special case of the CS techniques [25]. Anther CS method is
threshold-moving, which moves the output threshold toward inexpensive classes, such that samples
with higher costs become hard to misclassify. It is applied in the test phase and does not affect the
training phase [24].

Ensemble learning is an effective method that has increasingly been adopted to combine multiple
classifiers and class imbalance approaches to improve the classification performance [2,4,5]. In order
to combine the multiple classifiers, it is common to use the hard and soft ensemble. The former uses
binary votes, while the latter uses real-valued votes [26].

Recently, dynamic sampling methods have become an interesting way to deal with the class
imbalance problem. They are attractive, because they automatically find the proper sampling
amount for each class in the training stage (different from conventional strategies as over- and/or
under-sampling techniques). In addition, some dynamic sampling methods also identify the “best
samples” for classifier training. For example, Lin et al. [27] propose a dynamic sampling method with
the ability to identify samples with a high probability to be misclassified. The idea is that the classifier
trained with these samples may produce better classification results. Other methods that can be
considered as dynamic sampling are: (i) the snowball method (proposed in [28] and used as a dynamic
training method in [29,30]); (ii) the genetic dynamic training technique [31,32]; in it, the authors employ
a genetic algorithm to find the best over-sampling ratio; (iii) the mean square error (MSE) dynamic
over-sampling method [19], which is based on the MSE back-propagation for automatically identifying
the over-sampling rate. Chawla et al. [33] present a WRAPPER paradigm (for which the search is
guided by the classification goodness measure as score) to discover the amount of the under-sampling
and over-sampling rate for a dataset. Debowski et al. [34] show a very similar work.
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The dynamic sampling approaches are a special case of the sampling techniques. The main
difference of these methods with respect to the conventional sampling strategies is in the time when
they sample the data or when they select the examples to be sampled (see [19,27,28,31,32]).

In this paper, a Selective Dynamic Sampling Approach (SDSA) to deal with the two-class
imbalance problem is presented. This method is useful to find automatically the appropriate sampling
amount for each class through the selection of the “best samples” to train the multilayer perceptron
with the back-propagation algorithm [35]. The proposed method was tested over thirty five real
datasets and compared to some state-of-the-art class imbalance approaches.

2. Selective Dynamic Sampling Approach

Researchers in the class imbalance problem have shown their interest in finding the best samples
to build the classifiers, for example eliminating those samples with a high probability to be noise
or overlapped samples [18,36–40], or focusing on those close to the borderline decision [11,13,41]
(the latter has been less explored).

In accordance with the above discussion, three categories of samples can be basically identified in
the class imbalance literature:

• Noise and rare or outlier samples. The first ones are instances with error in their labels [7] or
erroneous values in the features that describe them, and the last ones are the minority and rare
samples located inside the majority class [42].

• Border or overlapped samples are those samples located where the decision boundary regions
intersect [18,38].

• Safe samples are those with a high probability of being correctly labeled by the classifier, and they
are surrounded by samples of the same class [42].

Nevertheless, those samples situated close to the borderline decision and far from the safe samples
might be of interest; in other words, those that are neither hard nor easy to learn. These samples are
called “average samples” [35].

In this section, a Selective Dynamic Sampling Approach (SDSA) to train the multilayer perceptron
is presented. The aim of this proposal is to deal with the two-class imbalance problem, i.e., this
method only works with two-class imbalanced datasets. This SDSA is based on a modification of the
“stochastic” back-propagation algorithm and derived from the idea of using average samples to train
Arificial Neural Networks (ANN), in order to try to improve the classifier performance. The proposed
method consists of two steps, and it is described below:

1. Before training: The training dataset is balanced 100% through an effective over-sampling
technique. In this work, we use the SMOTE [8] (SDSAS) and random over-sampling (SDSAO) [16].

2. During training: The proposed method selects the average samples to update the neural network
weights. From the balanced training dataset, it chooses average samples to use in the neural
network training. With the aim to identify the average samples, we propose the next function:

γ(∆q) = exp(−||∆
q − µ||2
2σ2 ) (1)

Variable ∆q is the normalized difference amongst the real neural network outputs for a sample q,

∆q =
zq

0√
(zq

0 − zq
1)

2
−

zq
1√

(zq
0 − zq

1)
2

(2)

where zq
0 and zq

1 are respectively the real neural network outputs corresponding to a q sample.
The ANN only has two neural network outputs (zq

0 and zq
1), because it has been designed to work

with datasets of two classes [43].
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The Selective Dynamic Sampling Approach (SDSA) is detailed in Algorithm 1, where t(q)j and z(q)j
are the desired and real neural network outputs for a sample q, respectively.

Algorithm 1 The Selective Dynamic Sampling Approach (SDSA) based on the stochastic
back-propagation multilayer perceptron.

Input: X (input dataset), N (number of features in X), K (number of classes in X), Q
(number of samples in X), M (number of middle neurodes), J (number output neurodes),
I number of iterations and learning rate η.
Output: the weights w = (w11, w21, ..., wNM) u = (u11, u21, ..., wMJ).
INIT( ):

1: Read MLP file (X, N, M, J, Q, I and η);
2: Generate initial weights randomly between −0.5 and 0.5;

LEARNING( ):
3: while i < I or E > 0.001 do
4: xq ← randomly chose a sample from X
5: FORWARD(xq);

6: ∆q = (zq
0/

√
(zq

0 − zq
1)

2)− (zq
1/

√
(zq

0 − zq
1)

2);

7: γ(∆q) = exp(−||∆q − µ||2/2σ2);
8: if Random( ) <= γ(∆q) then
9: UPDATE(xq);

10: end if
11: i ++;
12: end while

FORWARD(xq):
13: for m = 0 to m < M do
14: for n = 0 to n < N do
15: ym ← ym + xq

n ∗ wnm;
16: end for
17: ym = net(ym);
18: end for
19: for j = 0 to j < J do
20: for m = 0 to m < M do
21: zj ← zj + umj ∗ ym;
22: end for
23: zj ← net(zj);
24: end for

UPDATE(xq):
25: for m = 1 to M do
26: for j = 1 to J do

27: ur+1
mj ← ur

mj + η{(t(q)j − z(q)j )[z(q)j (1− z(q)j )]y(q)m };
28: end for
29: for n = 1 to N do
30: wr+1

nm ← wr
nm + η{∑j=1,J(t

(q)
j − z(q)j )[z(q)j (1− z(q)j )]u(r)

mj }xn[y
(q)
m (1− y(q)m )][x(q)n ];

31: end for
32: end for

2.1. Selecting µ Values

The appropriate selection of the variable µ is critical to select the average samples or other kind of
samples (border or safe samples [42]). Variable µ is computed under the following consideration: the
target ANN outputs (tj) are usually codified in zero and one values [43]. For example, for a two-class
problem (Class A and Class B), the desired ANN outputs are codified as (1, 0) and (0, 1) for Classes A
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and B, respectively. These values are the target ANN outputs (tj), i.e., the desired final values emitted
by the ANN after training. In accordance with this understanding, the expected µ values are:

• µ ≈ 1.0 for safe samples. It is expected that ANN classifies with a high accuracy level, i.e., it is
expected that the real ANN outputs for all neurons (zj) will be values close to (1, 0) and (0, 1) for
Classes A and B, respectively. Whether we apply Equation (2), the expected value is 1.0, at which
the γ function has its maximum value.

• µ ≈ 0.0 for border samples. It is expected that the classifier misclassifies. The expected ANN
outputs for all neurons are values close to (0.5, 0.5), then the ∆ is approximately 0.0, at which the γ

function has its maximum value for these samples.
• µ ≈ 0.5 for average samples. It is expected that ANN classifies correctly, but with less accuracy.

In addition, the average samples are between safe (µ ≈ 1.0) and border (µ ≈ 0.0) samples.

The recommended µ values to select the average samples are those around 0.5. An independent
validation set to find the most appropriate µ value is proposed to avoid any bias in the testing process.

For this independent validation, a minimal subset from the training data is used. Firstly, the
ten-fold cross-validation for each dataset is applied (Section 5.1); next, only 10% of samples are
randomly taken from each training fold (TF10), then TF10 is split into two disjoints folds of the same
size (TF5

train and TF5
test, respectively). Next, the proposed method (SDSA) is applied over the TF5

train
and TF5

test to find the best µ value. The tested values for µ were 0.25, 0.375, 0.5, 0.625 and 0.75. Finally,
the µ value, for which the best Area Under the Curve (AUC) [44] rank was obtained, is chosen by
SDSA on TF10.

Note that this independent validation does not imply an important computational cost, because it
only uses 10% of the training data to find the most appropriate µ value. This independent validation
unbiased the performance on the testing data process, due to the test data not being used.

3. State-of-the-Art of the Class Imbalance Approaches

In the state-of-the-art class imbalance problem, the over- and under-sampling methods
are very popular and successful approaches to deal with this problem (see [7,8,10,16–19]).
Over-sampling replicates samples in the minority-class, and under-sampling eliminates samples
from the majority-class, biasing the discrimination process to compensate for the class imbalance.

This section describes some well-known sampling approaches that have been effectively applied
to deal with the class imbalance problem. These approaches are used with the aim to compare
the classification performance of the proposed method with respect to the state-of-the-art of class
imbalance approaches.

3.1. Under-Sampling Approaches

TL Tomek links are pairs of samples a and b from different classes, and there does not exist
a sample c, such that d(a, c) < d(a, b) or d(b, c) < d(a, b), where d is the distance between pairs of
samples [22]. Samples in TL are noisy or lie in the decision border. This method removes those majority
class samples belonging to TL [9].

CNN The main goal of the condensed nearest neighbor algorithm is the reduction of the size
of the stored dataset of training samples while trying to maintain (or even improve) generalization
accuracy. In this method, every member of X (the original training dataset) must be closer to a member
of S (the pruned set) of the same class than any other member of S from a different class [23].

CNNTL combines the CNN with TL [9].
NCL The Neighborhood Cleaning Rule uses the Editing Nearest Neighbor (ENN) rule, but only

eliminates the majority class samples. ENN uses the k− NN (k > 1) classifier to estimate the class
label of every sample in the dataset and discards those samples whose class labels disagree with the
class associated with the majority of the k neighbors [20].

OSS The One-Sided Selection method performs TL, then CNN on the training dataset [21].
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RUS The Random Under-Sampling randomly eliminates samples from the majority class and
biases the discrimination process to compensate for the class imbalance.

3.2. Over-Sampling Approaches

ADASYN is an extension of SMOTE, creating more samples in the vicinity of the boundary
among the two classes than in the interior of the minority class [13].

ADOMS The Adjusting the Direction Of the synthetic Minority clasS method, setting the direction
of the synthetic minority class samples, this works like SMOTE, but it generates synthetic examples
along the first component of the main axis of the local data distribution [45].

ROS The Random Over-Sampling duplicates samples randomly from the minority class, biasing
the discrimination process to compensate for the class imbalance.

SMOTE [8] generates artificial samples of the minority class by interpolating existing instances
that lie close together. It finds the k intra-class nearest neighbors for each minority sample, and then,
synthetic samples are generated in the direction of some or all of those nearest neighbors.

B-SMOTE Borderline-SMOTE [11] selects samples from the minority class that are on the
borderline (of the minority decision region, in the feature space) and only performs SMOTE on
those samples, instead of over-sampling all or taking a random subset.

SMOTE-ENN This technique consists of applying the SMOTE and then applying the ENN
rule [9].

SMOTE-TL is the combination of SMOTE and TL [9].
SL -SMOTE Safe-Level SMOTE is based on the SMOTE, but it generates synthetic minority class

samples positioned closer to the largest safe level; then, all synthetic samples are only generated in
safe regions [12].

SPIDER-1 is an approach that combines a local over-sampling of those minority class samples
that are difficult to learn with removing or relabeling noisy samples from the majority class [14].

SPIDER-2 The major difference between this method and SPIDER-1 is that it divides into two
stages the pre-processing of the majority and minority class samples, i.e., first pre-processing the
majority class samples and next the minority class samples (considering the changes introduced in the
first stage) [15].

4. Dynamic Sampling Techniques to Train Artificial Neural Networks

Dynamic sampling techniques have become an interesting way to deal with the class imbalance
problem on the Multilayer Perceptron (MLP) trained with stochastic back-propagation [19,27,28,31,32].
Different from conventional strategies as over- and/or under-sampling techniques, the dynamic
sampling finds automatically in the training stage the properly sampling amount for each class for
dealing with the class imbalance problem. In this section, we present some details and the main
features of two dynamic sampling methods.

4.1. Method 1. Dynamic Sampling

The basic idea of the Dynamic Sampling (DyS) method, proposed in [27], is to design a simple
DyS that dynamically selects samples during the training process. In this method, a pre-deletion of
any sample to prevent information loss, to dynamically select the samples (hard to classify) to train the
ANN and to make the best use of the dataset does not exist. According to this main idea, the general
steps in each epoch can be described as follows.

1. Randomly fetch a sample q from the training dataset.
2. Estimate the probability p that the example should be used for the training.

p =

{
1, if δ ≤ 0
exp(−δ · rj/min{ri}), otherwise,

(3)
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where δ = zq
j −maxi 6=c{z

q
i }. zq

i is the i-th real ANN output of the sample q and j is the class label
to which q belongs. rc = Qc/Q is the class ratio; Qc is the number of samples belonging to class c;
and Q is the sample number.

3. Generate a uniform random real number µ between zero and one.
4. If µ < p, then use the sample q to update the weights by the back-propagation rules.
5. Repeat Steps 1–4 on all samples of the training dataset in each training epoch.

In addition, the authors of the paper [27] use an over-sampling method based on a heuristic
technique to avoid bias for the class imbalance problem. Beginning with the first epoch, the process
consists of the samples of all classes, except the largest classes over-sampled to make the dataset
balanced. As the training process goes on, the over-sampling ratio (ρ) is attenuated in each epoch (ep)
by a heuristic technique (Equation (4)). It is calculated as:

ρ = (rmax/rj)/ln(ep) (4)

where ep (> 2) and max represent the largest majority class.

4.2. Method 2. Dynamic Over-Sampling

In [19], a Dynamic Over-Sampling (DOS) technique to deal with the class imbalance problem
was proposed. The main idea of DOS is to balance the MSE on the training stage (when a multi-class
imbalanced dataset is used) through an over-sampling technique. Basically, the DOS method consists
of two steps:

1. Before training: The training dataset is balanced at 100% through an effective over-sampling
technique. In this work, SMOTE [8] is utilized.

2. During training: The MSE by class Ej is used to determine the number of samples by class (or
class ratio) in order to forward it to the ANN. The equation employed to obtain the class ratio is
defined as:

ratioj =
Emax

Ej
×

Qj

Qmax
; for j = 1, 2, ..., J (5)

where J is the number of classes in the dataset and max identifies the largest majority class.
Equation (5) allows balancing the MSE by class, reducing the impact of the class imbalance
problem on the ANN.

The DOS method only uses the necessary samples for dealing with the class imbalance problem
and, in this way, to avoid getting a poor classifications performance as a result of training the ANN
with imbalanced datasets.

5. Experimental Set-Up

In this section, the techniques, datasets and experimental framework used in this paper are to
be described.

5.1. Database Description

Firstly, for the experimental stage, five real-world remote sensing databases are chosen: Cayo,
Feltwell, Satimage, Segment and 92AV3C.The Cayo dataset comes from a particular region in the
Gulf of Mexico [18]. The Feltwell dataset represents an agricultural area near the village of Feltwell
(UK) [46]. The Satimage and Segment datasets are from the UCI (University of California, Irvine)
Machine Learning Database Repository [47]. The 92AV3C dataset [48] corresponds to a hyperspectral
image (145 × 145 pixels, 220 bands, 17 classes) taken over the Northwestern Indiana Indian Pines by
the AVIRIS (Airborne Visible / Infrared Imaging Spectrometer) sensor. In this work, we employed a
reduced version of this dataset with six classes (2, 3, 4, 6, 7 and 8) and thirty eight attributes as in [18].
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The two-class imbalance problem is only studied. We decompose the multi-class problems into
multiple two-class imbalanced problems. This proceeds as follows: one class (cj) is taken from the
original database (DB) to integrate the minority class (c+), and the rest of classes were joined to shape
the majority class (c−). Then, we integrate the two-class database DBj (j = 1, 2, ..., J, and J is the
number of classes in DB). In other words, DBj = c+ ∪ c−. Therefore, for each database, J two-class
imbalanced datasets were obtained. The main characteristics of the new produced benchmarking
datasets are shown in Table 1. This table shows that the datasets used in this work have several class
imbalance levels (see the class imbalance ratio), ranging from a low to a high class imbalance ratio (for
example, see 92A3 and CAY4 datasets). In addition, the ten-fold cross-validation method was applied
on all datasets shown in this table.

Table 1. A brief summary of the main characteristics of the new produced benchmarking dataset.

Dataset # of Features # of Minority Classes Samples # of Majority Class Samples Imbalance Ratio

CAY0 4 838 5181 6.18
CAY1 4 293 5726 19.54
CAY2 4 624 5395 8.65
CAY3 4 322 5697 17.69
CAY4 4 133 5886 44.26
CAY5 4 369 5650 15.31
CAY6 4 324 5695 17.58
CAY7 4 722 5297 7.34
CAY8 4 789 5230 6.63
CAY9 4 833 5186 6.23

CAY10 4 772 5247 6.80
FELT0 15 3531 7413 2.10
FELT1 15 2441 8503 3.48
FELT2 15 896 10,048 11.21
FELT3 15 2295 8649 3.77
FELT4 15 1781 9163 5.14
SAT0 36 1508 4927 3.27
SAT1 36 1533 4902 3.20
SAT2 36 703 5732 8.15
SAT3 36 1358 5077 3.74
SAT4 36 626 5809 9.28
SAT5 36 707 5728 8.10
SEG0 19 330 1140 3.45
SEG1 19 50 1420 28.40
SEG2 19 330 1140 3.45
SEG3 19 330 1140 3.45
SEG4 19 50 1420 28.40
SEG5 19 50 1420 28.40
SEG6 19 330 1140 3.45
92A0 38 190 4872 25.64
92A1 38 117 4945 42.26
92A2 38 1434 3628 2.53
92A3 38 2468 2594 1.05
92A4 38 747 4315 5.78
92A5 38 106 4956 46.75

5.2. Parameter Specification for the Algorithms Employed in the Experimentation

The stochastic back-propagation algorithm was used in this work (the source code of
back-propagation algorithm and the approaches (dynamic sampling methods) and the datasets used in
this work are available at Ref. [49]), and for each training process, the weights were ten times randomly
initialized. The learning rate (η) was set to 0.1, and we established the stopping criterion at 500 epochs
or if the MSE value is lower than 0.001. A single hidden layer was used. The number of neurons in the
hidden layer was set to four for every experiment.
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All sampling methods (except ENN, SPIDER-1 and SPIDER-2, which employ three) use five
nearest neighbors (if applicable) and sampling the training dataset to reach to relative class distribution
balance (if applicable). ADASYN and ADOMS use the Euclidean distance, and the rest of the methods
employ the Heterogeneous Value Difference Metric (HVDM) [50], if applicable. SPIDER-1 applies a
weak amplification pre-processing option, and SPIDER-2 employs relabeling of noisy samples from
the majority class and an amplification option. The sampling methods have been done using the
KEEL [51].

In order to identify the most suitable value for the variable µ, an independent validation set to
avoid any bias in the performance on the testing data is considered, meaning that the testing data for
this validation are not used (see Section 2.1). Thereafter, the most appropriate value for the variable µ

obtained for the datasets used in this work (Table 1) is 0.375. The results presented in this paper were
obtained with µ = 0.375. In addition, for this independent validation, only 200 epochs are used in
the neural network training stage and about 8% of the samples of each dataset. This does not imply
an important additional computational effort. The SDSAO and SDSAS methods are the proposed
methods using ROS and SMOTE, respectively (see Section 4).

5.3. Classifier Performance and Significant Statistical Test

The Area Under the receiver operating characteristic Curve (AUC) [44] was used as the criteria of
measure for the classifiers performance. It is one of the most widely-used and accepted techniques for
the evaluation of binary classifiers in class imbalance domains [10].

Additionally, in order to strengthen the results analysis, a non-parametric statistical test is
achieved. The Friedman test is a non-parametric method in which the first step is to rank the algorithms
for each dataset separately; the best performing algorithm should have rank as 1, the second best rank
as 2, etc. In case of ties, average ranks are computed. The Friedman test uses the average rankings to
calculate the Friedman statistic, which can be computed as,

χ2
F =

12N
K(K + 1)

(∑
j

R2
j −

K(K + 1)2

4
) (6)

K denotes the number of methods; N is the number of data sets; and Rj is the average rank of method
j on all datasets.

On the other hand, Iman and Davenport [52] demonstrated that χ2
F has a conservative behavior.

They proposed a better statistic (Equation (7)) distributed according to the F−distribution with K− 1
and (K− 1)(N − 1) degrees of freedom,

FF =
(N − 1)χ2

F
N(K− 1)− χ2

F
(7)

In this work, the Friedman and Iman–Davenport tests are employed with the γ = 0.05 level of
confidence, and KEEL software [51] is utilized.

In addition, when the null-hypothesis was rejected, a post-hoc test is used in order to find
the particular pairwise method comparisons producing statistically-significant differences. The
Holm–Shaffer post-hoc tests are applied in order to report any significant difference between individual
methods. The Holm procedure rejects the hypotheses (Hi) one at a time until no further rejections
can be done [53]. To accomplish this, the Holm method ordains the p-values from the smallest to the
largest, i.e., p1 ≤ p2 ≤ pk−1, corresponding to the hypothesis sequence H1, H2, ..., Hk−1. Then, the
Holm procedure rejects H1 to Hi−1 if i is the smallest integer, such that pi ≤ α/(k− i). This procedure
starts with the most significant p-value. As soon as a certain null-hypothesis cannot be rejected, all
of the remaining hypotheses are retained, as well [54]. The Shaffer method follows a very similar
procedure to that proposed by Holm, but instead of rejecting Hi if pi ≤ α/(k − i), it rejects Hi if
pi ≤ α/ti, where ti is the maximum number of hypotheses that can be true given that any (i − 1)
hypotheses are false [55].
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6. Experimental Results and Discussion

In order to assess the performance of the proposed methods (SDSAO and SDSAS), a set of
experiments has been carried out, over thirty five two-class datasets (Table 1) with ten well-known
over-sampling approaches (ADASYN, ADOMS, B-SMOTE, ROS, SMOTE, SMOTE-ENN, SMOTE-TL,
SPIDER-1, SPIDER-2 and SL-SMOTE), six popular under-sampling methods (TL, CNN, CNNTL, NCL,
OSS and RUS) (for more detail about these re-sampling techniques, see Section 3) and two dynamic
sampling approaches (DyS and DOS).

This section is organized as follows: First, the AUC values are shown, and the Friedman ranks
are used to analyze the classification results (Table 2). Second, a statistical test is presented in order to
strengthen the results discussion (Figure 1). Finally, the relationship between the training dataset size
and the tested methods performance is studied (Figure 2).
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Figure 1. Results of the non-parametric statistical Holm and Shaffer post-hoc test. The fill circles
mean that for these particular pairs of classifiers, the null hypothesis was rejected by both test. The
color of the circles is the darkest at p-values close to zero, i.e., when the statistical difference is the
most significant.

The results presented in Table 2 are the AUC values obtained in the classifying stage, and they
are averaged values between ten folds and ten different initialization weights of the neural network
(see Section 5).

In accordance with the averaged ranks shown in Table 2, all over-sampling methods and dynamic
sampling approaches (SDSAO, SDSAS, DyS and DOS) can improve the standard back-propagation
(BP) performance, and the worst approaches with respect to standard BP are the under-sampling
techniques, except by RUS, NCL and TL, which show a better performance than the standard BP.
This table also shows that only the ROS technique presents a better performance than the proposed
methods. SDSAO and DyS show a slight advantage over SDSAS.

In addition, Table 2 indicates that the class Imbalance Ratio (IR) is not determinant in order to
get high AUC values, for example CAY7, SAT2, SEG1, SEG5 and 92A5 datasets present high values of
AUC no matter their IR; also in these datasets, most over-sampling methods and dynamic sampling
approaches are very competitive.
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Figure 2. Number of samples used in the training process by the studied methods in contrast to
the Area Under the receiver operating characteristic Curve (AUC) average ranks obtained in the
classification test. The x axis represents the average ranks (the best performing method should have
the rank of one or close to this value). We previously used the ten-fold cross-validation method. The
number shown in the y axis corresponds to the average training fold size.

Other datasets support this fact, i.e., IR is not critical in the classification performance, for
example the SEG4 and SEG5 datasets have the same IR, but the classification performance (using the
standard BP) is very different (values of AUC of 0.999 and 0.630, respectively). This confirms was was
presented in other works, in that other features of the data might become a strong problem for the
class imbalance [2]. For example: (i) the class overlapping or noisy data [39,42,56,57]; (ii) the small
disjuncts; (iii) the lack of density and information in the training data [58]; (iv) the significance of the
borderline instances [13,59] and their relationship with noisy samples; and (v) the possible differences
in the data distribution for the training and testing data, also known as the dataset shift [7].

In order to strengthen the result analysis, a non-parametrical statistical and post-hoc tests are
applied (see Section 5.3): Friedman and Iman–Davenport tests report that considering reduction
performance distributed according to chi-square with 20 degrees of freedom, the Friedman statistic is
set at 329.474, and the p-value computed by the Friedman test is 1.690 × 10−10. However, considering
reduction performance distributed according to the F-distribution with 20 and 680 degrees of freedom,
the Iman and Davenport statistic is 30.233, and the p-value computed by their test is 2.588× 10−80.
Then, the null hypothesis is rejected, i.e., the Friedman and Iman–Davenport tests indicate the existence
of significant differences in the results. Due to these results, a post-hoc statistical analysis is required.

Figure 1 shows the results of the non-parametric statistical Holm and Shaffer post-hoc tests.
The rows and columns constitute the studied methods; as a consequence, it represents all C × C
pairwise classifier comparisons. The filled circles mean that for these particular pairwise methods (for
Ci × Cj; i = 1, 2, ..., C and i 6= j), the null hypothesis was reject by the Holm–Shaffer post-hoc tests.
Therefore, the color of circles is the darkest when the p-values are close to zero; this means that the
statistical difference is significant.
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Table 2. Back-propagation classification performance using the Area Under the receiver operating characteristic Curve (AUC) . The results represent the averaged
values between ten folds and the initialization of ten different weights of the neural network. The best values are underlined in order to highlight them. ROS,
Random Over-Sampling; SDSAO, Selective Dynamic Sampling Approach using ROS; DyS, Dynamic Sampling; SDSAS, Selective Dynamic Sampling Approach
applying SMOTE; SMOTE-TL, SMOTE and TL;SMOTE, Synthetic Minority Over-sampling Technique; SL-SMOTE, Safe-Level SMOTE; SMOTE-ENN, SMOTE and
Editing Nearest Neighbor (ENN) rule; ADOMS, Adjusting the Direction Of the synthetic Minority clasS method; B-SMOTE, Borderline-SMOTE; DOS, Dynamic
Over-Sampling; RUS, Random Under-Sampling; ADASYN, Adaptive Synthetic Sampling; SPIDER 1 and 2, frameworks that integrate a selective data pre-processing
with an ensemble method; NCL, Neighborhood Cleaning Rule; TL, Tomek links method; STANDARD, back-propagation without any pre-processing; OSS, One-Sided
Selection method; CNN, Condensed Nearest Neighbor; CNNTL, Condensed Nearest Neighbor with TL (for more details see Sections 3 and 4).

DATA ROS SDSAO DyS SDSAS SMOTE-TL SMOTE SL-SMOTE SMOTE-ENN ADOMS B-SMOTE DOS RUS ADASYN SPIDER-1 SPIDER-2 NCL TL STANDARD OSS CNN CNNTL

CAY0 0.976 0.986 0.985 0.978 0.976 0.976 0.976 0.976 0.977 0.968 0.984 0.970 0.967 0.937 0.938 0.937 0.936 0.933 0.803 0.833 0.795
CAY1 0.969 0.979 0.975 0.968 0.969 0.969 0.970 0.970 0.970 0.966 0.985 0.955 0.965 0.735 0.789 0.745 0.717 0.752 0.931 0.916 0.918
CAY2 0.968 0.959 0.958 0.967 0.969 0.968 0.968 0.969 0.968 0.968 0.952 0.959 0.964 0.952 0.957 0.952 0.952 0.949 0.961 0.960 0.958
CAY3 0.985 0.985 0.983 0.981 0.986 0.985 0.984 0.985 0.984 0.973 0.991 0.950 0.975 0.948 0.949 0.940 0.929 0.941 0.809 0.826 0.839
CAY4 0.974 0.994 0.991 0.971 0.971 0.968 0.971 0.968 0.968 0.964 0.962 0.922 0.967 0.914 0.936 0.888 0.865 0.846 0.946 0.934 0.956
CAY5 0.952 0.922 0.956 0.943 0.952 0.950 0.949 0.951 0.951 0.950 0.908 0.933 0.951 0.781 0.834 0.773 0.769 0.772 0.666 0.618 0.617
CAY6 0.980 0.956 0.956 0.980 0.981 0.981 0.980 0.982 0.980 0.969 0.956 0.960 0.973 0.946 0.946 0.952 0.949 0.830 0.850 0.787 0.875
CAY7 0.991 0.983 0.983 0.990 0.990 0.990 0.991 0.991 0.991 0.983 0.986 0.988 0.967 0.986 0.985 0.984 0.984 0.985 0.776 0.824 0.788
CAY8 0.975 0.937 0.935 0.966 0.976 0.972 0.971 0.972 0.970 0.964 0.923 0.925 0.958 0.933 0.933 0.935 0.934 0.935 0.817 0.826 0.825
CAY9 0.915 0.923 0.920 0.910 0.917 0.916 0.915 0.915 0.916 0.911 0.898 0.896 0.909 0.875 0.868 0.860 0.848 0.834 0.879 0.849 0.872

CAY10 0.967 0.979 0.965 0.968 0.963 0.968 0.968 0.969 0.968 0.965 0.973 0.885 0.970 0.883 0.902 0.860 0.877 0.922 0.833 0.786 0.808
FELT0 0.979 0.982 0.980 0.979 0.978 0.978 0.977 0.977 0.978 0.971 0.977 0.977 0.951 0.976 0.976 0.977 0.976 0.977 0.952 0.955 0.937
FELT1 0.976 0.966 0.98 0.975 0.976 0.973 0.975 0.976 0.976 0.968 0.971 0.970 0.958 0.964 0.964 0.965 0.964 0.965 0.947 0.946 0.945
FELT2 0.976 0.947 0.960 0.976 0.974 0.975 0.976 0.974 0.975 0.959 0.969 0.959 0.963 0.914 0.921 0.918 0.901 0.890 0.952 0.948 0.948
FELT3 0.977 0.984 0.987 0.978 0.977 0.978 0.977 0.977 0.978 0.968 0.987 0.971 0.956 0.974 0.975 0.969 0.971 0.970 0.964 0.966 0.962
FELT4 0.983 0.992 0.976 0.985 0.983 0.983 0.984 0.983 0.983 0.977 0.988 0.981 0.964 0.968 0.972 0.972 0.968 0.968 0.968 0.969 0.961
SAT0 0.920 0.910 0.916 0.917 0.915 0.915 0.916 0.914 0.916 0.918 1.000 0.913 0.907 0.909 0.912 0.909 0.894 0.881 0.899 0.881 0.865
SAT1 0.985 0.988 0.988 0.984 0.986 0.983 0.986 0.984 0.985 0.983 0.996 0.983 0.976 0.983 0.983 0.982 0.982 0.981 0.982 0.981 0.976
SAT2 0.981 0.989 0.983 0.980 0.982 0.980 0.981 0.983 0.980 0.977 0.961 0.980 0.969 0.977 0.980 0.977 0.976 0.976 0.971 0.966 0.964
SAT3 0.961 0.965 0.958 0.960 0.958 0.962 0.962 0.961 0.963 0.960 0.911 0.957 0.955 0.957 0.958 0.950 0.955 0.943 0.954 0.956 0.945
SAT4 0.857 0.867 0.803 0.863 0.866 0.849 0.858 0.858 0.858 0.844 1.000 0.844 0.854 0.746 0.779 0.792 0.757 0.581 0.769 0.711 0.776
SAT5 0.944 0.945 0.928 0.925 0.944 0.944 0.944 0.942 0.941 0.920 1.000 0.917 0.913 0.847 0.823 0.855 0.853 0.842 0.927 0.921 0.927
SEG0 0.998 0.965 0.970 0.995 0.993 0.994 0.996 0.992 0.988 0.997 0.895 0.995 0.993 0.993 0.992 0.994 0.993 0.994 0.994 0.993 0.994
SEG1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.988 1.000 0.991 0.999 1.000 1.000 1.000 0.999 0.999 1.000 0.925 0.909 0.914
SEG2 0.978 0.979 0.996 0.979 0.975 0.977 0.979 0.974 0.977 0.981 0.983 0.978 0.965 0.982 0.983 0.981 0.980 0.977 0.965 0.964 0.963
SEG3 0.973 0.967 0.976 0.963 0.971 0.973 0.972 0.970 0.911 0.971 0.952 0.961 0.961 0.969 0.966 0.970 0.974 0.957 0.961 0.960 0.957
SEG4 0.872 0.836 0.907 0.926 0.927 0.906 0.852 0.926 0.514 0.863 0.850 0.886 0.903 0.787 0.811 0.650 0.656 0.630 0.793 0.741 0.840
SEG5 0.999 1.000 1.000 0.999 0.994 0.993 0.981 0.992 0.980 0.998 0.957 0.975 0.990 0.995 0.998 0.994 0.990 0.999 0.918 0.996 0.994
SEG6 0.995 1.000 1.000 0.995 0.995 0.995 0.995 0.995 0.994 0.995 0.970 0.995 0.987 0.995 0.995 0.995 0.995 0.995 0.912 0.922 0.887
92A0 0.937 0.963 0.940 0.945 0.947 0.942 0.921 0.937 0.943 0.927 0.862 0.928 0.939 0.926 0.918 0.921 0.926 0.845 0.924 0.894 0.922
92A1 0.881 0.902 0.942 0.910 0.910 0.896 0.825 0.910 0.918 0.867 0.948 0.908 0.899 0.854 0.865 0.682 0.658 0.704 0.777 0.787 0.868
92A2 0.853 0.861 0.858 0.861 0.834 0.848 0.845 0.844 0.856 0.839 0.833 0.850 0.842 0.851 0.828 0.843 0.843 0.838 0.829 0.846 0.786
92A3 0.880 0.869 0.858 0.874 0.840 0.879 0.880 0.852 0.882 0.881 0.867 0.879 0.877 0.860 0.802 0.817 0.849 0.876 0.774 0.829 0.683
92A4 0.987 0.997 0.997 0.981 0.975 0.980 0.977 0.974 0.982 0.986 0.983 0.974 0.973 0.977 0.974 0.975 0.976 0.968 0.977 0.975 0.975
92A5 0.995 1.000 1.000 0.993 0.987 0.978 0.965 0.985 0.989 0.990 1.000 0.974 0.977 0.988 0.987 0.968 0.955 0.971 0.946 0.902 0.912

Ranks 5.500 6.129 6.171 6.471 7.000 7.143 7.443 7.643 7.857 9.600 9.871 11.700 12.971 13.586 13.771 14.800 15.586 16.029 16.871 17.229 17.629
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In accordance with Table 2 and Figure 1, most methods of over-sampling present a better
classification performance than the standard BP with statistical significance. The under-sampling
methods do not present a statistical difference with respect to standard BP performance, and all
dynamic sampling approaches improve the standard BP performance with statistical differences.

ADASYIN, SPIDER-1 and SPIDER-2 (over-sampling methods) and RUS, NCL and TL
(under-sampling methods) show the trend of improving the classification results, but they do not
significantly improve the standard BP performance. Then, the OSS, CNN and CNNTL classify worse
than standard BP; this notwithstanding, these approaches do not show a statistical difference with it.

SDSAO, SDSAS and DyS are statistically better than ADASYIN, SPIDER-1 and SPIDER-2
(over-sampling methods) and also than all under-sampling approaches studied in this work. With a
statistical difference, the DOS performance is better than CNN, CNNTL, OSS and TL.

Table 2 shows that the trend is that ROS presents a better performance than the proposed method
(SDSAO and SDSAS), and that DyS shows a slight advantage over SDSAS; however, in accordance
with the Holm–Shaffer post-hoc tests, statistical difference in the classification performance does not
exist among these methods (see Figure 1).

In general terms, most over-sampling methods and dynamic sampling approaches are successful
methods to deal with the class imbalance problem, but with respect to the training dataset size, SDSAS,
SDSAO and DyS use significantly fewer samples than the over-sampling approaches. They employed
about 78% less samples than most over-sampling methods; in addition, SDSAS, SDSAO and DyS still
use fewer samples than the standard BP trained with the original training dataset. They use about
60% less samples; these facts stand out in Figure 2. However, the DyS method applies the ROS in each
epoch or iteration (see Section 4), whereas SDSA only applies the ROS or SMOTE one time before
ANN training (see Section 2).

Figure 2 shows that the under-sampling methods employ significantly fewer samples than the rest
of the techniques (except dynamic sampling approaches with respect to RUS, NCL and TL); however,
their classification performance in most of the cases is worse than the standard BP (without statistical
significant) or is not better (with statistical significant) than the standard BP.

On the other hand, the worst methods studied in this paper (in agreement with Table 2) are
those based on the CNN technique (OSS, CNN and CNNTL), i.e., those that use a k− NN rule as the
basis and achieving an important size reduction of the training dataset. In contrast, NCL, which is of
the k− NN family, also improves the classification performance of the back-propagation; however,
the dataset size reduction reached for this method is not of CNN’s magnitude; in addition, it only
eliminates majority samples. The use of TL (TL and SMOTE-TL) seems to increase the classification
performance, but it does not eliminate too many samples (see Figure 2), except by CNNTL, which we
consider to cancel the positive effect of TL by the important training dataset reduction. SMOTE-ENN
does not seem to improve the classification performance of SMOTE in spite of including a cleaning
step that removes both majority and minority samples. The methods that have achieved the enhancing
of the classifier performance are those that only eliminate samples from the majority class.

Furthermore, analyzing only the selective samples methods (SL-SMOTE, B-SMOTE, ADASYN,
SPIDER-1 and SPIDER-2), those are the ones in which the more appropriate samples are selected to
be over-sampled. It is considered that in the result presented in Figure 2, SL-SMOTE and B-SMOTE
obtain the best results, whereas the advantages of ADASYN, SPIDER-1 and SPIDER-2 are not clear
(RUS often outperforms these approaches, but without statistical significance; Figure 1). SL-SMOTE,
B-SMOTE and the proposed method do not show statistical significance in their classification results,
but the number of samples used by SDSA in the training stage is fewer than employed for SL-SMOTE
and B-SMOTE (see Figure 2).

Focusing on the dynamic sampling approaches’ analysis, SDSAO presents a slight advantage in
performance than DyS and SDSAS, whereas DOS does not seem to be an attractive method. However,
the aim of DOS is to identify a suitable over-sampling rate, whilst reducing the processing time and
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storage requirements, as well as keeping or increasing the ANN performance, to obtain a trade-off
between classification performance and computational cost.

SDSA and DyS improve the classification performance, including a selective process, but while
DyS tries to reduce the oversampling ratio during the training (i.e., it applies the ROS method in each
epoch with different class imbalance ratios; see Section 4), the SDSA only tries to use the “best samples”
to train the ANN.

Dynamic sampling approaches are a very attractive way to deal with a class imbalance problem.
They face two important topics: (i) improving the classification performance; and (ii) reducing the
classifier computational cost.

7. Conclusions and Future Work

We propose a new Selective Dynamic Sampling Approach (SDSA) to deal with the class imbalance
problem. It is attractive because it automatically selects the best samples to train the multilayer
perceptron neural network with the stochastic back-propagation. The SDSA identifies the most
appropriate samples (“average samples”) to train the neural network. The average samples are the
most adequate samples to train the neural network; they are neither hard nor easy to learn. These are
between the safe and border areas in the training space. SDSA employs a Gaussian function to give
priority to the average samples during the neural network training stage.

The experimental results in this paper point out that SDSA is a successful method to deal with
the class imbalance problem, and its performance is statistically equivalent to other well-known
over-sampling and dynamic sampling approaches. It is statistically better than the under-sampling
methods compared to this work and also than the standard back-propagation. In addition, in the
neural network training stage, SDSA uses significantly fewer samples than the over-sampling methods,
even than the standard back-propagation trained with the original dataset.

Future work will extend this study. The interest is: to explore the effectiveness of the SDSA in
multi-class and high imbalanced problems and to find a mechanism to automatically identify the most
suitable µ value for each dataset. The appropriate selection of µ value might significantly improve
the proposed method. In addition, it is important to explore the possibility to use the SDSA to obtain
optimal subsets to train other classifiers like support vector machines or to compare its effectiveness
with the other kinds of class imbalance approaches using other learning models.
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