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Abstract: Toxicity testing in populations probes for responses in demographic variables to
anthropogenic or natural chemical changes in the environment. Importantly, these tests
are primarily performed on species in isolation of adjacent tropic levels in their ecosystem.
The development and validation of coupled species models may aid in predicting adverse outcomes
at the ecosystems level. Here, we aim to validate a model for the population dynamics of
the green algae Raphidocelis subcapitata, a planktonic species that is often used as a primary
food source in toxicity experiments for the fresh water crustacean Daphnia magna. We collected
longitudinal data from three replicate population experiments of R. subcapitata. We used this data
with statistical model comparison tests and uncertainty quantification techniques to compare the
performance of four models: the Logistic model, the Bernoulli model, the Gompertz model, and a
discretization of the Logistic model. Overall, our results suggest that the logistic model is the most
accurate continuous model for R. subcapitata population growth. We then implement the numerical
discretization showing how the continuous logistic model for algae can be coupled to a previously
validated discrete-time population model for D. magna.

Keywords: algae growth models; uncertainty quantification; asymptotic theory; bootstrapping;
model comparison tests; Raphidocelis subcapitata; Daphnia magna

1. Introduction

Studies of the population dynamics of phytoplankton and their zooplankton predators in lentic
habitats have found a variety of patterns. Plankton communities have been observed to either
oscillate in low or high amplitude cycles or to remain relatively stable throughout the year [1].
The same lake may exhibit stability on a given year but switch to oscillation during the following
year, and vice versa. A variety of explanations have been proposed for this behavior in the field,
including predator-prey interactions, temperature fluctuations, and external influences on nutrient
content [2–4]. Fewer studies have attempted to answer the question of what drives these population
dynamics in the laboratory setting. Of the predator-prey models that have been proposed for
plankton communities, most do not consider certain elements of zooplankton biology such as
density-dependent mortality or age-specific fecundity. These traits are crucial for describing the
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population growth of zooplankton such as Daphnia magna [5] and may be an important factor when
modeling population dynamics that are observed in lakes and other ecosystems.

The aim of the present study is to validate and parametrize continuous models for the growth
of green algae (Raphidocelis subcapitata) in the absence of predation by zooplankton. The broader
goal is to couple a validated green algae model with a validated discrete-time population model for
Daphnia magna [5], and ultimately with an analogous continuous-time model, in order to investigate
the possibility of oscillations in the laboratory setting similar to those found in lentic environments.
In our previous study of D. magna population dynamics [5], we carried out laboratory experiments
in which green algae were fed to D. magna populations on a daily basis, and populations were reared
in media optimized for daphnia survival, but not necessarily ideal for algae growth. In particular,
it was not known whether green algae could proliferate in daphnia media to an extent that would
affect daphnia population dynamics. Thus, it is of central importance to quantitate the rate at which
green algae grow in daphnia media and whether this growth has the potential to significantly alter the
fecundity and survival of daphnia. In theory, such changes would thereby affect the quantification
of population level risk assessments involving experimental exposure of daphnia populations to
environmental perturbations, e.g., toxins or temperature change.

We tested several commonly used growth models for organisms with a limiting nutrient: the
Gompertz, the Logistic (continuous and discretized), and the Bernoulli population models. We note
that the Bernoulli model is a generalization of the continuous Logistic model, which allows for
nested model comparison. Each model has been used to describe populations across many scenarios
associated with saturated growth processes in biology. We collected experimental data from three
replicates of green algae grown in isolation of predation. We describe goodness of fit of several
mathematical models for green algae growth in the context of asymptotic theory and bootstrapping
techniques. We provide estimated parameter values and computed confidence intervals for the
model predictions. Finally, we implement a numerical scheme that can be used to approximate the
concentration of green algae on a daily time scale in order to combine the continuous green algae
model that we had the most confidence in with a discrete time population model for Daphnia magna.
We performed simulations of an unvalidated coupled green algae and daphnia model in order to
explore the possible effects of green algae growth on daphnia population dynamics.

2. Data and Methods

2.1. Data

To observe the growth of Raphidocelis subcapitata populations (previously known as
Pseudokirchneriella subcapitata and Selenastrum capricornutum), we seeded three beakers containing
1 L of media reconstituted from deionized water for Daphnia magna culturing (previously described
in [6]) and recorded the population density for eight days. Each population was kept in an
incubator (Thermo Fisher Scientific, Waltham, MA, USA) at 20 ◦C on a 16/8-h light/dark cycle
(6 AM–10 PM light, 10 PM–6 AM dark). Media lost to evaporation was replaced daily with deionized
water in order to retain a 1 L volume and avoid replenishing nutrients. The 1 L algae cultures
were uncovered and inspected for contamination during measurements. We selected a seeding
concentration of 7 × 107 cells based on previous studies of algal growth in order to observe both
the early (growth) and late (saturation) stage dynamics of the population [7–9]. We measured the
density of each population replicate twice using a hemocytometer (Hausser Scientific, Horsham, PA,
USA) at 9 AM, 3 PM, and 9 PM daily in order to obtain sufficient data points for parameter estimation
and uncertainty quantification. The two measurements of density at each time point for each replicate
were averaged to minimize human measurement error. This yielded a total of 23 data points for each
of the three replicates.
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2.2. Asymptotic Theory

The goal of this paper is to determine the most accurate model for algae growth in the absence of
consumption. The uncertainty in parameters for each model can be quantified via asymptotic theory.
In this section we provide the theory behind our asymptotic theory methodology. The estimation of
parameters using asymptotic theory requires mathematical models of the form

dy
dt

= g(t, y(t), q),

y(t0) = y0,
(1)

and the corresponding observation process

f (t, θ) = Cy(t, θ), (2)

where θ = (q, ỹ0) ∈ Rp+ p̃ is the vector of unknown parameters, q is a vector of p model parameters,
ỹ0 is the number p̃ of initial conditions that is unknown, and C maps the model solution y(t, θ) in Rl to
the observed states f (t, θ). We consider the initial condition to be unknown because of measurement
error. In this investigation, the observation operator will always produce a scalar, and thus C maps
Rl to R. In fact, in all our considerations we have p̃ = l = 1, i.e., the models are scalar and C = I.

Due to the discrete nature of our experimental data, the observations for our statistical error
model occur at n = 23 discrete times ti. Thus, the observations will be

f (ti, θ) = Cy(ti, θ), i = 1, . . . , n. (3)

To account for measurement error, we use the statistical model

Yi = f (ti, θ0) + Ei, i = 1, . . . , n (4)

for our observations, where Ei is a zero mean random variable representing identically, independently
distributed (i.i.d.) noise that causes our observed data to deviate from our model solution, and θ0

is the hypothesized “true” or “nominal” parameter vector that generates the observations {Yi}n
i=1.

The existence of this “true” parameter vector θ0 is a standard assumption in frequentist statistical
formulations. The i.i.d. nature of the error in our model implies that E(Ei) = 0 for each i, and that
Ei = 1, . . . , n, are identically distributed with variance σ2

0 .
Since Ei is a random variable, Yi is a random variable with corresponding realizations yi.

Asymptotic theory seeks to estimate θ0 by creating a random variable Θ whose realizations for a
given data set yi will be estimates θ̂ of θ0. These estimates θ̂ will approximate the true parameters θ0,
and are obtained by minimizing the ordinary least squares (OLS) cost functional [10,11]

S(Y; θ) =
n

∑
i=1

[Yi − f (ti, θ)]2, (5)

where Y = (Y1, Y2, . . . , Yn)T . Thus, with Ω being the space of admissible parameters and yi being the
realizations of the random variable Yi,

θ0 ≈ θ̂n
OLS = argmin

θ∈Ω

n

∑
i=1

[yi − f (ti, θ)]2 (6)

provides an estimate for θ0. The process of estimating parameters from data is known as an
inverse problem, and all inverse problems in this experiment are computed using fmincon in
MATLAB (Mathworks, 2015b, Natick, MA, USA, 2015) with function and step tolerances of 10−20

and 1000 iterations.
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Once we have an estimate θ̂n
OLS, we wish to ascertain the statistical properties of the estimator Θ.

Although we do not know the distribution of the estimator Θn
OLS, we can approximate it under

asymptotic theory (as n→ ∞) by the multivariate Gaussian distribution [10–12]

Θn
OLS ∼ N(θ0, Σn

0 ) (7)

where, based on previous assumptions, the covariance matrix Σn
0 is approximated by

Σn
0 ≈ Σ̂n = σ̂2

OLS
[
χnT(θ̂)χn(θ̂)

]−1. (8)

Here χn is the sensitivity matrix

χn
jk(θ) =

∂ f (ti, θ)

∂θk
, i = 1, . . . , n; k = 1, . . . , p, (9)

where θk is the kth component of the vector θ ∈ R1×p. The unbiased estimator for σ2
0 is

σ̂2
OLS =

1
n− p

n

∑
i=1

[yi − f (ti, θ̂n
OLS)]

2 (10)

where, for our own examples, n = 23 and p = 3 or 4 is the number of model parameters. Both θ̂n
OLS

and σ̂2
OLS are then used in Equation (8) (i.e., θ̂ = θ̂OLS and σ̂2 = σ̂2

OLS).
In our calculations, the sensitivity equations are calculated analytically by solving the differential

equation at θ̂
d
dt

(
∂y
∂θ

)
=

∂g
∂y

∂y
∂θ

+
∂g
∂θ

. (11)

Note that
dy
dt

= g(t, y(t), θ̂) is the differential equation for the green algae model and

f (tj, θ̂) = y(tj, θ̂) is the forward solution of each model. Because we know analytical formulas that

provide solutions for
dy
dt

= g(t, y(t), θ̂), we can solve Equation (11) by setting up a differential
equation in terms of the sensitivity [11].

The χn matrix provides a measure for how sensitive the mathematical model is to each of its
parameters. This can be used to estimate the p× p covariance matrix, Σn

0 ,

Σn
0 ≈ Σ̂n = σ̂2[χnT(θ̂)χn(θ̂)]−1. (12)

In order to determine the confidence we have in the parameter estimates, we also compute the

asymptotic theory based standard error SE(θ̂k) =
√

Σ̂n
kk for the kth parameter.

2.3. Boostrapping

We implemented bootstrapping techniques to complement our asymptotic theory approach with
regards to estimating parameter uncertainty. We again assume that we are have experimental data
for a dynamical system from an underlying observation process in Equation (4) where Ẽi are i.i.d.
with mean zero and constant variance σ2

0 and θ0 is the “true value” hypothesized to exist in statistical
treatments of data [10]. The random variable also has realizations

yi = f (ti, θ0) + ε̃i. (13)

We use the following algorithm [10] to compute the bootstrapping estimate θ̂BOOT of θ0 and its
empirical distribution.
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1. First estimate θ̂0 from the entire sample {yi}n
i=1 using OLS.

2. Using this estimate, define the standardized residuals

r̄i =

√
n

n− p
(
yi − f (ti, θ̂0)

)
(14)

for i = 1, . . . , n, where n is the number of data points, and p are the number of model parameters.
Set m = 0, which will represent the total number of artificial samples we will create.

3. Create a bootstrapping sample of size n using random sampling with replacement from the data
(realizations) {r̄1, . . . , r̄n} to form a bootstrapping sample {r̄m

1 , . . . , r̄m
n }.

4. Create bootstrap sample points
ym

i = f (ti, θ̂0) + rm
i (15)

for i = 1, . . . , n.
5. Obtain a new estimate θ̂m+1 from the bootstrapping sample {ym

i } using OLS.
6. Set m = m + 1 and repeat steps 3–5 until m ≥ 1000 (this can be any large value, but for these

experiments we used M = 1000).

We then calculate mean, standard error, and confidence intervals using the formulas:

θ̂BOOT =
1
M

M

∑
m=1

θ̂m, (16)

Var(θBOOT) =
1

M− 1

M

∑
m=1

(θ̂m − θ̂BOOT)
T(θ̂m − θ̂BOOT), (17)

SEk(θ̂BOOT) =
√

Var(θBOOT)kk, (18)

where θBOOT denotes the bootstrapping estimator. We present the results of these techniques as
standard errors about the mean of the parameter estimates, as well as the parameter distributions
created. This procedure is performed for each replicate in our experiments.

2.4. Model Comparison: Nested Restraint Tests

We used nested model comparison tests to determine the loss in accuracy by constraining certain
models, i.e., holding some parameters constant. In general, we assume that we have an inverse
problem for the model observations f (t, θ) and are given n observations with the cost function
described above in Equation (5). We are interested in using data to question whether the “true”
parameter θ0 can be found in a subset ΩH ⊂ Ω, for which we make the same assumptions as
Banks, Hu, and Thompson [10]. Thus, we want to test the null hypothesis H0:θ0 ∈ ΩH , or that
the constrained model provides an adequate fit to the data. We then define

Θn
H(Y) = argmin

θ∈ΩH

Sn(Y; θ) (19)

and
θ̂n

H(y) = argmin
θ∈ΩH

Sn(y; θ), (20)

where y is a realization of Y. It is important to note that Sn(y; θ̂n
H) ≥ Sn(y; θ̂n). We define the

nonnegative test statistics and their realizations, respectively, by

Tn(Y) = Sn(Y; θ̂n
H)− Sn(Y; θ̂n) (21)

and
T̂n = Tn(y) = Sn(y; θ̂n

H)− Sn(y; θ̂n). (22)
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We refer to [10] for a description of asymptotic convergence as n → ∞, which yields the model
comparison result

Un(Y) =
nTn(Y)

Sn(Y; θn)
(23)

with the corresponding realizations
ûn = Un(y) (24)

which can be compared to a χ2 distribution with r degrees of freedom. In this project we use a χ2(1)
table when comparing the results from the Logistic model to those from the Bernoulli model.

2.5. Akaike Information Criterion

In some cases (such as comparison between the Logistic and the Gompertz), the models are not
nested (although they are related through a limiting process–see below) and hence we cannot use
the model comparison tests outlined above. However, we can use an alternative model evaluation
framework and implement the Akaike Information Criterion (AICc) with a small size sample
correction [10] in the context of an ordinary least squares framework

AICc = n[1 + ln(2π)] + n ln
(∑n

i=1(yi − f (ti, θ̂n
OLS))

2

n
)
+ 2(p + 1) +

2p(p + 1)
n− p− 1

(25)

where n is the sample size and p is the number of unknowns (parameters). This will allow us to
suggest which model provides a better fit for the data (models with smaller AICc values provide
better fits). While other goodness of fit tests may be useful for selecting models, we chose to use
AICc, since it is a widely adopted measure of model accuracy (see Sections 4.2, 4.3 of [10]).

3. Models

3.1. Logistic Model

The first model we consider is the widely used logistic model for bounded growth of a
population P(t), given by the differential equation

dP
dt

= RP(t)
(

1− P(t)
K

)
(26)

where R is the intrinsic growth rate, and K is the carrying capacity for the population
under consideration.

3.2. Bernoulli Model

We also analyze the data within the context of a Bernoulli model due to Richards [13], given by
the differential equation

dP
dt

= RP(t)(1− (
P(t)

K
)β). (27)

The Bernoulli model has three model parameters, R, K, and β. The parameter β extends the
logistic model to allow flexibility in the growth dynamics by allowing the inflection point to change
while keeping the carrying capacity approximately the same [13]. Setting β = 1 yields the logistic
model in Equation (26); hence, the logistic model is a special case of the Bernoulli model, thereby
enabling us to use nested model comparison tests described above.
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3.3. Gompertz Growth Model

The next model we consider is the Gompertz growth model, which is widely used for biological
and economic phenomena where population growth is not symmetric about the point of inflection,
i.e., growth rates are time dependent. The differential equation form of this model is

dP
dt

= κP(t)(log(K)− log(P(t))) = κP(t) log(
K

P(t)
), (28)

where K is the carrying capacity and κ scales the time. For both the Logistic and Gompertz models,
we let X0 represent the initial condition, i.e., P(t0) = X0.

The Logistic and Gompertz models, while not nested, are related through a limiting
process. Since

lim
ν→∞

ν(1− (
P(t)

K
)

1
ν )) = − log(

P(t)
K

), (29)

we find that the Gompertz model is the limit as ν→ ∞ of the generalized logistic model for ν > 0

dP
dt

= νκP(t)(1− (
P(t)

K
)

1
ν ). (30)

3.4. Logistic Model: Numerical Discretization

Another model we consider is a discrete numerical approximation of the Logistic model. We note
that the continuous models described above were simulated using the ode45 algorithm in Matlab.
In order to ensure that the logistic model can be coupled to a discrete time model for a D. magna
population in which the population size is updated once per day [5], we investigated the logistic
model using a forward Euler scheme that was discretized on an hour basis. In this paper, we refer
to this discrete Euler-method logistic model as the DEL model. This numerically discretized logistic
model is given by the difference equation

Pt+1 = Pt + RPt

(
1− Pt

K

)
(31)

where Pt is the population at time t hours and Pt+1 is the population at the next time step.
The parameters R and K are analogous to those of the continuous Logistic model and can be
interpreted as the intrinsic population growth rate and carrying capacity, respectively. We refer to
the initial population, Pt=0, as X0 in our results and data fitting procedure.

4. Results

4.1. Data fitting and Model Comparisons

Overall, we found that all models provide a reasonable fit to the data. Figures 1–4 show results
of the least squares estimation for the three different replicates of the Logistic, Bernoulli, DEL, and
Gompertz models. These figures contain 68% and 95% confidence bands around the fits to data.
These were constructed by generating 1000 random parameter sets from a normal distribution
described by the mean and standard error obtained by the asymptotic theory results, computing the
model for each of these parameter sets, and then calculating the respective confidence intervals from
model generated points f (ti, θk), where k = 1, . . . , 1000 [5]. One primary difference between the fits
to data that we found was that each model tends to underestimate the initial data and the Bernoulli
model provided the closest fit (Figure 4). We note that we chose to estimate the initial condition
due to measurement error associated with a low cell density as well as how much influence these
discrepancies in error would affect the outcome of the model.



Appl. Sci. 2016, 6, 155 8 of 18

Figure 1. Plots of forward solutions for the Logistic curve for the three replicates of the data. Replicate
one is on top and three is on the bottom. The lighter and darker shades of grey represent the 95%
and 68% confidence bars on the model solution, respectively. The algae population is represented as
cells× 107/L. Data points are shown as “*”.
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Figure 2. Plots of forward solutions for the discrete Euler-method logistic (DEL) please confirm.
model for the three replicates of the data from left to right. Replicate one is on top and three is on
the bottom. The lighter and darker shades of grey represent the 95% and 68% confidence bars on the
model solution, respectively. The algae population is represented as cells × 107/L. Data points are
shown as “*”.
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Figure 3. Plots of forward solutions for the Gompertz curve for the three replicates of the data.
Replicate one is on top and three is on the bottom. The lighter and darker shades of grey represent the
95% and 68% confidence bars on the model solution, respectively. The algae population is represented
as cells× 107/L. Data points are shown as “*”.
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Figure 4. Plots of forward solutions for the Bernoulli curve for the three replicates of the data.
Replicate one is on top and three is on the bottom.The lighter and darker shades of grey represent the
95% and 68% confidence bars on the model solution, respectively. The algae population is represented
as cells× 107/L. Data points are shown as “*”.

The results in Table 1 show the small sample corrected Akaike Information Criterion (AICc)
scores based on Equation (25) for each replicate and each model. These results suggest that the
discrete and continuous logistic population models are better able to describe the green algae
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growth data than either the Gompertz or Bernoulli models, although the differences in AICc values
were small between all models. The results of the model comparison test performed between the
continuous Logistic model and the Bernoulli model are given in Table 2. In addition to fixing β to 1
to reduce the Bernoulli model to the Logistic model, we also fixed the initial condition X0 at the seed
value to enunciate the model improvement with an unalterable initial condition. Of all comparisons,
only the Logistic model with X0 fixed on replicates 2 and 3 yielded a significant result at the α = 0.9
confidence level (or χ2(1).9 = 2.706). This indicates that, in general, the OLS cost associated with
the Bernoulli model was significantly improved by fixing β and reducing it to the Logistic model.
However, restricting the Logistic model further by fixing X0 does not significantly affect the cost of
the Bernoulli model. The Logistic model also has benefits with regards to identifiability, which will
be seen in subsequent passages of this document.

Table 1. Corrected Akaike Information Criterion scores for each model and replicate.

Replicate Gompertz Logistic Bernoulli Discrete Euler-Method Logistic (DEL)

1 −69.4203 −71.5919 −69.2189 −72.6155
2 −84.2435 −89.0016 −89.3905 −90.4114
3 −71.3972 −74.2560 −72.4414 −75.3515

Table 2. Model comparison ûn scores for the continuous Logistic model compared to Bernoulli model
for each replicate. We also chose to fix the initial condition X0 at the seed population value to enunciate
model improvement if X0 was unalterable. Note that values less than 2.706 indicate the restricted
model is better.

Bernoulli Restricted to: Bernoulli Restricted to:

Replicate Logistic Logistic with X0 fixed

1 0.5935 0.7233
2 2.4718 3.6216
3 1.1733 3.4118

4.2. Uncertainty Analysis

We compared results of parameter estimation and multiple uncertainty quantification techniques
(asymptotic theory and bootstrapping) for the Logistic, Gompertz, and Bernoulli growth models, as
well as the numerically discretized version of the Logistic model (DEL model), since each of them
provided reasonable fits to the data. We first note that the usual assumption of i.i.d. residuals
required for uncertainty analysis held for all models investigated (Supplementary Figures S1–S4).
Although methods involving autocorrelation on residuals may be used to investigate the i.i.d.
assumption, we investigated this assumption by visually inspecting residual plots, since there were
not enough data to perform autocorrelation tests. Visual inspection of residual plots is a commonly
used procedure when not enough longitudinal data are available (see [10], Section 3.6). We also note
that the normality assumption for the parameter distributions in asymptotic theory was confirmed by
our bootstrapping results in all but the Bernoulli model (Supplementary Figures S5–S17). We divide
our analysis of the results from uncertainty quantification among the sets of parameters with similar
interpretations for each model. For example, each model has an initial condition, a growth rate, and
a parameter governing the saturation of growth due to population density.

4.2.1. Uncertainty Analysis: Initial Condition

The bootstrapping distribution results of X0 estimation are presented in Supplementary
Figures S5–S8. These appear to be approximately normally distributed, with some exceptions
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occurring where the estimates are close to the zero boundary. Bootstrapping estimates of uncertainty
for X0 are compared to asymptotic theory in Supplementary Tables S1–S4. We observed that the
parameter estimates for X0 for all replicates were lowest in the Gompertz model and highest in
the Bernoulli model. The standard errors also varied between the asymptotic and bootstrapping
techniques depending on the model. For example, the order of magnitude for the standard errors
from bootstrapping was greater than asymptotic theory for the Gompertz model and the DEL model.

4.2.2. Uncertainty Analysis: Growth Rate

Each model that we investigated has a parameter that describes the population growth rate
(Logistic and DEL: R, Gompertz κ, Bernoulli R). Because numerical estimates for the growth rate
parameters will not be equal across models, we analyzed their consistency and uncertainty across
replicate data sets within the same model. The bootstrapping distributions for the growth rates
for each model were normally distributed except for the Bernoulli model, which was skewed to the
right (Supplementary Figures S9–S12). We postulate that one reason for this skewness may be that
the Bernoulli model is over-parameterized. Similarly, the standard errors computed for the growth
rate within each model were of reasonable size and of the same order of magnitude except for the
Bernoulli model (Supplementary Tables S5–S8). The growth rate estimates for the logsitic model
differed between the continuous version and its numerical discretization using the euler method
(DEL model). Specifically, the growth rate estimates for the DEL model were consistently higher.
In addition, the asymptotic standard errors for the DEL model were lower than for the continuous
logistic model.

4.2.3. Uncertainty Analysis: Saturation Parameter

The saturation parameter K has the same interpretation for all models we investigated, it is the
carrying capacity of the green algae population. The estimates for K were remarkably similar across
all models (Supplementary Tables S9–S12). The standard errors were inconsistent between asymptotic
theory and bootstrapping for the Bernoulli and Gompertz models. For example, the asymptotic
standard error for the estimate of K in replicate 1 for the Bernoulli model was 0.1138, whereas the
bootstrapping error was 0.0158 (Supplementary Table S12). These results are important, because the
asymptotic standard error would result in a much wider confidence band around the model fit to
the data, which is indeed the case for replicate 1 of the Bernoulli model (Figure 4, Top). Since the
bootstrapping distributions for K for all of the models are normally distributed, this indicates that the
bootstrapping standard errors are accurate (Supplementary Figures S13–S16).

4.2.4. Uncertainty Analysis: Bernoulli Model Parameter β

The parameter β is unique to the Bernoulli model, and scales the rate at which the green algae
population reaches carrying capacity. In particular, when β = 1, the Bernoulli model reduces to the
logistic model. We found that the estimates for β with asymptotic theory and bootstrapping were >1.
We can not confidently say that these estimates are accurate, since the corresponding standard
errors are unreasonably high for both uncertainty techniques and for all three replicates (Table 3).
Moreover, the bootstrapping distributions for β were not normally distributed and heavily skewed
to the right for all three replicates (Supplementary Figure S17), indicating the possible presence
of correlations with other model parameters. We speculate that the parameters β and K may be
correlated for the Bernoulli model.
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Table 3. β estimate and standard error for the Bernoulli model.

Asymptotic Results: β Replicate Estimate SE

1 2.1646 2.5440
2 3.4574 2.8118
3 2.8188 2.8758

Bootstrapping Results: β Replicate Estimate SE
1 38.31 113.72
2 29.78 92.89
3 43.27 113.81

4.3. Coupling to the Discrete-Time Daphnia magna Population Model

Our uncertainty analysis results indicate that the Logistic model and its numerically discretized
counterpart, the DEL model, are the most accurate models among those we investigated. We forgo
a summary of the evidence for this conclusion until the discussion section. Our ultimate aim of
validating a model for green algae growth was to couple it to a model for D. magna population
dynamics. In this section, we couple two validated models for algae and Daphnia population growth
to create a theoretical, unvalidated model to explore potentially complex predator-prey dynamics.

The D. magna model we use is one that we recently validated with experimental population
data [5]. The validated D. magna model is a specification of the following discrete-time discrete-age
structured population model:

p(t + 1, 1)
p(t + 1, 2)
p(t + 1, 3)

...
p(t + 1, imax)

 =


a(t, 1) a(t, 2) a(t, 3) . . . a(t, imax)

b(t, 1) 0 0 . . . 0
0 b(t, 2) 0 . . . 0
...

. . . . . .
...

0 0 0 . . . b(t, imax − 1)




p(t, 1)
p(t, 2)
p(t, 3)

...
p(t, imax)

 . (32)

The population is divided into one-day age classes up to some maximum age imax and the
number of daphnids of age i at a time t is p(t, i). The average fecundity of each age class i is given
by a(t, i) and the survival rate for daphnids of age i is given by b(t, i). The validated functional
forms are a(t, i) = α(i)(1− q)M(t−τ) and b(t, i) is defined piecewise as µ(1− c)M(t) if i ≤ 4 and µ

if i ≥ 5. A summary of the parameters and variables in the model are listed in Table 4 (see [5] for
further details).

We coupled the D. magna population model to the DEL green algae model by assuming that
D. magna consumes green algae and that the density-dependent survival and fecundity rates of
D. magna are influenced directly by the algae concentration. We modeled the algae population with
predation as

Pt+1 = Pt + RPt

(
1− Pt

K

)
− δMtPt (33)

where δ is a predation coefficient, and Mt is the total Daphnia biomass at time t. We chose this
functional form based on the assumption that Daphnia consume aglae at a rate proportional to the
density of aglae and the total biomass of the Daphnia population, as adult daphnids consume food at
a higher rate than younger ones. We used a 24 h time discretization to model algae growth for our
simulation study and transformed parameters accordingly, setting δ = 0.001, K = 0.4559, R = 1.34,
and the initial algae population P0 = 0.0633. We modeled the algal influence on Daphnia fecundity
and survivorship by setting a(t, i) = α(i)(1− q)1/Pt−τ and b(t, i) = µ(1− c)1/Pt if i ≤ 4. In this model,
we changed the functional form of the Daphnia model based on the assumption that the negative
density-dependent fecundity and survivorship effects that daphnids experience are driven by a lack
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of food in the form of algae, represented as 1
Pt

and its time-delayed analogue 1
Pt−τ

. The Daphnia matrix
model is otherwise unchanged.

Table 4. Summary of Daphnia magna and algae model parameters and variables.

Parameter/Variable Description Units

p(t, i) Number of daphnids of age i # of daphnids
N(t) Total population size at time t := ∑imax

i=1 p(t, i) # of daphnids
q Density-dependent fecundity constant dimensionless

α(i) Density-independent fecundity rates # neonates·daphnid−1·day−1

µ Density-independent survival rate day−1

τ Delay for density-dependent fecundity days
c Density-dependent survival constant dimensionless

M(t) Total biomass at time t := ∑imax
i=1 p(t, i) kZ0eri

k+Z0(eri−1) mm
k Average maximum daphnid size (major axis) mm
r Average daphnid growth rate mm/hour

Z0 Average neonate size (major axis) mm
R Intrinsic growth rate of algae cells ·107·L−1·day−1

K Algal population carrying capacity cells ·107·L−1

δ Density dependent predation constant mm−1·cells·10−7

We found that a coupled model could result in both steady state dynamics as well as oscillatory
behavior for different choices of parameter values in the Daphnia model (Figure 5). The deterministic
simulations in Figure 5 left show steady state behavior with small deviations relative to the
population size. The seemingly random perturbations are due to the age-dependency of the
density-indpendent fecundity rate α(i). We found that lowering the density-dependent survival
competition parameter c yielded sustained oscillations, and increasing it led to both populations
reaching a steady state. Other parameter combinations may also yield similar dynamics, but detailing
those values is not the aim of the present study.

Figure 5. Simulations of the coupled daphnia and green algae dynamics model resulting in steady
state behavior (Left, c = 0.01) and sustained oscillations (Right, c = 0.04).

5. Discussion

Our results highlight the importance of performing uncertainty quantification in validated
biological models, even in the simple case of saturating growth dynamics encountered for green
algae. For example, the ordinary least squares regression seemed to indicate that each of the
models we investigated provide reasonable fits to the algae growth data. In addition, parameter
estimates were consistent between replicate data sets for each model. From this information alone,
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one might conclude that the Bernoulli model was the best performing model, since it best fit the
initial data X0 (Figure 4). However, a deeper investigation with uncertainty analysis allowed us to
generate confidence bands around the fits to the data, showing that the Bernoulli model was the
model for which we could have the least confidence. This result was corroborated by a thorough
examination of the standard errors for each of the parameters with similar interpretations across all
models. For example, the growth rates for the Bernoulli model had unreasonably high standard
errors, while the uncertainty in the corresponding growth rates for the other models were relatively
low. Our results also indicated that the Gompertz model had inconsistent standard errors between
asymptotic theory and bootstrapping for the initial condition and saturation parameter, emphasizing
the importance of using multiple uncertainty quantification techniques to ascertain the best validated
model. We observed that the logistic and DEL models have different confidence regions for the model
solution in Figures 1 and 2. We attribute the change in computed confidence regions to the differences
in numerical discretization, the time step for the DEL model was equal to one hour while the logistic
model had a coarser mesh.

We collected replicate data and our results had strong agreement across the three replicates.
Although methodology exists to fit all three data sets simultaneously to the same model, we chose
to fit them separately to test whether the model validation results were consistent across several
repeated experiments. We noticed a slight trend in the residuals resulting from fits of the model
to data for each replicate: the fit sometimes either over- or under-estimates the data in groups
of threes (Supplementary Figures S1–S4). We surmise that this phenomenon may be explained
by human measurement error; some people tend to over or under count the algae when using a
hemocytometer. Since all models were confounded with this possibility for human error, we can
assume that human error did not influence the analysis by favoring one model over any other.
In future work, more accurate and consistent cell counts may be performed with a flow cytometer.
Alternatively, a spectrophotometer may be used to approximate algae concentrations.

Overall, we suggest that the population growth of Raphidocelis subcapitata is most accurately
modeled using the Logistic equation among the simple growth models we investigated. It is
important to note that our findings are limited to controlled laboratory settings with unchanging
temperature, constant photoperiod, and no change in nutrient availability. For example, we did not
consider the possible influence of photoperiod (light/dark) conditions on algae growth. We also
did not consider the affect of limiting nutrients such as carbon, nitrogen, phosphorous, or sulfur.
The models we investigated here represent our first approximation of algae growth and seemed
to fit the data well even without considering how light affects algae growth and that the affect of
limiting nutrients could be described by saturating algae growth. The simplifying assumption we
made that growth parameters are independent of light conditions may be investigated in future
work to yield a closer fit to the data. Our work here serves the purpose of coupling our green
algae model with one of zooplankton (D. magna) population growth in a laboratory setting, e.g., for
toxicity testing, but should not be directly extrapolated to populations in lakes. In order to develop an
accurate model of community fluctuations in the field, we will need to consider predation by various
zooplankton and microbes, competition with other algae, nutrient fluctuation, abiotic drivers, and
habitat heterogeneity. This study is, however, a useful step toward developing a more comprehensive
model. In particular, our results showing that a coupling a validated green algae model with a
validated daphnia model are important because it exemplifies the possibility of using a mathematical
model to recapitulate the oscillatory dynamics seen in nature. In contrast, the previously validated
daphnia model that did not include algae dynamics was not able to produce oscillations and only
resulted in steady state behavior [5], a result that did not account for the broader range of plankton
dynamics seen in natural systems [1]. We note that our ultimate goal is to validate a coupled
continuous time daphnia/algae model since continuous time models, such as the Sinko-Streifer
model, are described by partial differential equations (PDEs) with a continuously structured variable
and can be more amenable to the estimation of age-dependent parameters than a discretely structured
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model [14–17]. In this work, we investigated the dynamics of a coupled algae/daphnia discrete-time
model as a coarse approximation to understand the qualitative impact of including a dynamic food
source on daphnia populations. Our finding that increasing the density-dependent survival constant
(c) in a coupled predator-prey model yields oscillatory dynamics compliments previous work that
has predicted limit cycles based on increased mortality [18]. In an ecological setting, changes
in the parameter c could reflect differing nutrient (algae) requirements on the density-dependent
survival of daphnia due to differences in species size (e.g., Daphnia pulex vs. Daphnia magna) or
other increased sources of density-dependent mortality such as predation on daphnia. Changes in
c may also be induced toxicologically. For example, endocrine toxins are known to alter the molt
cycle of adult daphnids through incomplete ecdysis [19], which may have an indirect affect on
density-dependent survival by lowering competition for algae. Together, these results suggest that a
structural change in the validated daphnia model, i.e., including predation, and not just a change in
parameter values is required to reproduce population oscillations observed in laboratory and natural
settings. This finding is important in the context of our previous and current ongoing efforts, since
oscillations were not observed in our previous daphnia population experiments [5]. Although the
experiments performed in this work did not involve toxins, the species investigated are commonly
used in toxicity assessments. Thus, our results can be used to provide a baseline to compare effects in
a toxicity setting in future work.

Supplementary Materials: The following are available online at www.mdpi.com/2076-3417/6/5/155/s1.
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