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Abstract: Quorum sensing is a bacterial cell-to-cell communication mechanism and is based on
gene regulatory networks, which control and regulate the production of signaling molecules in
the environment. In the past years, mathematical modeling of quorum sensing has provided an
understanding of key components of such networks, including several feedback loops involved.
This paper presents a simple system of delay differential equations (DDEs) for quorum sensing of
Pseudomonas putida with one positive feedback plus one (delayed) negative feedback mechanism.
Results are shown concerning fundamental properties of solutions, such as existence, uniqueness,
and non-negativity; the last feature is crucial for mathematical models in biology and is often
violated when working with DDEs. The qualitative behavior of solutions is investigated, especially
the stationary states and their stability. It is shown that for a certain choice of parameter values, the
system presents stability switches with respect to the delay. On the other hand, when the delay is
set to zero, a Hopf bifurcation might occur with respect to one of the negative feedback parameters.
Model parameters are fitted to experimental data, indicating that the delay system is sufficient to
explain and predict the biological observations.
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1. Background

More than twenty years ago it was first discovered that even primitive single-celled organisms
such as bacteria are able to communicate with each other and coordinate their behavior [1,2]. Bacterial
communication is based on the exchange of signaling molecules, or autoinducers, which are produced
and released in the surrounding space. At the same time, bacteria are able to measure the autoinducer
concentration in the environment, and according to this, they can coordinate and even switch their
behavior, adapting to environmental changes. The term “quorum sensing” was coined to summarize
the cell-to-cell communication mechanism thanks to which single bacteria cells are able to measure
(“sense”) the whole population density [3]. Quorum sensing was first observed for the species
Vibrio fischeri [2], which uses such a mechanism to regulate its bioluminescence. Nowadays, it is
known that many bacterial species are able to use similar regulation systems, controlling biofilm
formation, swarming motility, and the production of antibiotics or virulence factors [4–6].

The basis for cell-to-cell communication is a gene regulatory network that not only controls
certain target genes, but often also their own production, resulting in a positive feedback loop.
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Gram-positive bacteria use so-called two-component systems (see e.g., [7]), whereas Gram-negative
bacteria produce autoinducers directly in the cells, release them to and take them up from the
extracellular space without any further modification or transformation.

In the following, we focus on the architecture of a quorum sensing system in Gram-negative
bacteria, which mainly communicate via N-Acyl homoserine lactones (AHLs) [3,8], typically
produced by a synthase. AHL molecules bind to receptors, which control the transcription of target
genes. The receptor–AHL complex usually induces the expression of AHL synthases in a positive
feedback loop.

We restrict our considerations to the bacteria species Pseudomonas putida, a root colonizing, plant
growth-promoting organism [9]. Nevertheless, these basic principles may be easily transferred to
related bacterial species.

Mathematical modeling of quorum sensing systems has developed in the last decade. Basic
principles for a mathematical approach can be found, for example, in [10], where quasi-steady state
assumptions for mRNA and corresponding protein in Pseudomonas aeruginosa were introduced, or
in [11], which focuses on the basic feedback system of Vibrio fischeri and the resulting bistability.
Alternative approaches for Gram-negative bacteria can be found in [12] (focussing on population
dynamics) and [13] (including a further feedback loop). Classical mathematical models for
Gram-positive bacteria were introduced, for example, for Staphylococcus aureus in [7,14,15].

Several model approaches have also been proposed for Pseudomonas putida, in closed systems
(batch) as well as in continuous cultures (chemostat) [16–18]. The goal of this manuscript is to
review such models, investigating mathematical properties and principles underlying the equations.
The interesting component of quorum sensing models of Pseudomonas putida is that beside a positive
feedback for the autoinducer one also finds a negative feedback via an autoinducer-degrading
enzyme, a Lactonase. This is initialized with a certain time lag, leading to a system of delay
differential equations (DDEs).

The paper is organized as follows. In Section 2 we provide a short overview of previous
modeling approaches for quorum sensing of Pseudomonas putida. Starting from ordinary differential
equations (ODEs) for the regulatory network in one single cell, in a second step we extend to quorum
sensing in populations, including signal exchange among cells and Lactonase activity. The latter
component introduces delays into the system. The delay represents the activation time of the
Lactonase-dependent negative feedback. Bacteria population might be considered in batch as well
as in continuous cultures. It is our purpose to investigate the long term behavior of the presented
dynamical systems, and this can be achieved via a reduced model of two delay equations. We explain
in great detail how to obtain the two-equation system, maintaining key properties of the gene
regulatory network.

In Section 3 we present results concerning the existence and uniqueness of solutions to the
reduced model. Moreover, we show that non-negative initial data yield non-negative solutions,
a fundamental property of models in biology that is often violated when working with delay
differential equations (cf. [19]). We compute stationary states of the dynamical system and investigate
local stability properties. To this purpose, we compare the DDE system (with a constant delay, τ > 0)
to the associated ODE system (τ = 0), studying delay-induced stability switches. In the last part of
Section 3, model parameters are fitted to experimental data from [18], indicating that in the long run
the reduced model is sufficient to explain and predict the general behavior of the system.

Everywhere in this manuscript, if not otherwise specified, we shall denote variables dependent
on time by x or x(t). First derivatives with respect to time are denoted by ẋ, respectively by ẋ(t).
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2. Methods

2.1. Compartmental Models

We present in the following compartmental models for quorum sensing of bacteria in a
continuous culture. One compartment represents either bacterial population density, the nutrient
concentration in the medium, or the concentration of a certain protein/enzyme/signaling substance
in a single cell or in the medium.

2.1.1. Regulatory Pathway in One Cell

Let us start to consider the gene regulatory system for a single Pseudomonas putida cell. We follow
a standard approach for modeling the quorum sensing system in Pseudomonas putida (ppu), analogous
to the lux system in Vibrio fischeri [11], where polymers of the receptor–AHL complex initiate a positive
feedback loop. The autoinducer concentration in Pseudomonas putida is regulated by a (self-induced)
positive feedback as well as by a negative feedback via the AHL-degrading enzyme Lactonase.
Transcriptional activators PpuR bind to AHLs, forming a PpuR-AHL complex which polymerizes.
PpuR-AHL n-mers bind to the AHL-dependent quorum sensing locus (ppu-box) and synthesize PpuI.
This protein is finally responsible for AHL synthesis. We neglect possible feedbacks (cf. [13,20]) on
the transcription of PpuR, as these seem to be of minor influence [16]. Thus, just a constant basic
production of the receptor PpuR is considered, as in [10,11,17]. Further, we assume as in [16–18]
that PpuR-AHL n-mers induce synthesis of Lactonase molecules. A schematic representation of this
regulatory pathway is given in Figure 1.

Figure 1. Model structure for the quorum sensing system in one Pseudomonas putida cell. N-Acyl
homoserine lactone (AHL) concentration is regulated by a (self-induced) positive feedback (+) as
well as by a negative feedback (−) via the AHL-degrading enzyme Lactonase. The transcriptional
activator PpuR binds to AHL forming a PpuR–AHL complex, which polymerizes. PpuR–AHL n-mers
bind to the AHL-dependent quorum sensing locus (ppu-box) and synthesize PpuI. This protein is
finally responsible for AHL synthesis. Similarly, PpuR-AHL n-mers induce synthesis of Lactonase
molecules. Feedbacks on the transcription of PpuR are neglected. Solid arrows represent activations
and inhibitions. Dashed arrows indicate reactions and processes which are partially assumed to be in
quasi-steady state. Dotted arrows represent the possible exchange of substances between intracellular
and extracellular space. The dashed green ellipse refers to the special case in model version (4),
where it is assumed that the total amount of PpuR in one cell (consisting of PpuR and the PpuR-AHL
complex) is constant whereas in the other models, PpuR and the PpuR-AHL complex follow their
own dynamics.
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Everywhere in this work, mRNA equations are assumed to be in quasi-steady state. This
assumption is justified by the evidence that many proteins are more stable than their own mRNA
code (cf. [10] and references thereof). Let us denote the intracellular concentrations of PpuI and
PpuR at time t by I(t) and R(t), respectively. The variables C and Ci indicate the concentration
of the PpuR–AHL complex and of its i-mer in one bacterial cell, respectively. It is assumed that
the formation of complex i-mers takes place via the combination of an (i − 1)-mer with a single
PpuR-AHL complex, cf. [11]. AHL concentration will be denoted by x; in some cases, it might
be convenient to distinguish between intracellular (xint) and extracellular concentration (xext).
The variable y denotes Lactonase concentration.

To begin with, we consider only the positive feedback which regulates AHL. The
Lactonase-degrading activity shall be included in a separate step. The positive feedback loop of the
regulatory pathway on the protein level described in Figure 1 can be written in the form of an ODE
system (cf. [21]):

İ = αI︸︷︷︸
basic

production

+ β I
Cn

Ith + Cn︸ ︷︷ ︸
feedback-regulated

production

− γI I︸︷︷︸
natural
decay

ẋint = α̂I︸︷︷︸
production

− γAxint︸ ︷︷ ︸
natural
decay

−π+
1 xintR︸ ︷︷ ︸

complex
formation

+ π−1 C︸︷︷︸
complex

degradation

+ d(xext − xint)︸ ︷︷ ︸
exchange

with medium

ẋext = d(xint − xext)︸ ︷︷ ︸
exchange

with medium

− γAxext︸ ︷︷ ︸
natural
decay

Ṙ = αR︸︷︷︸
basic

production

−π+
1 xintR︸ ︷︷ ︸

complex
formation

+ π−1 C︸︷︷︸
complex

degradation

− γRR︸︷︷︸
natural
decay

Ċ = π+
1 xintR︸ ︷︷ ︸

complex
formation

− π−1 C︸︷︷︸
complex

degradation

+ 2π−2 C2︸ ︷︷ ︸
dimer

degradation

− 2π+
2 C2︸ ︷︷ ︸

dimer
formation

+
n

∑
j=3

π−j Cj︸ ︷︷ ︸
j-mer

degradation

−
n

∑
j=3

π+
j CCj−1︸ ︷︷ ︸

j-mer
formation

Ċi = π+
i CCi−1︸ ︷︷ ︸

i-mer
formation

− π−i Ci︸ ︷︷ ︸
i-mer

degradation

+ π−i+1Ci+1︸ ︷︷ ︸
(i+1)-mer

degradation

−π+
i+1CCi︸ ︷︷ ︸

(i+1)-mer
formation

for 2 ≤ i ≤ n− 1

Ċn = π+
n CCn−1︸ ︷︷ ︸

n-mer
formation

− π−n Cn︸ ︷︷ ︸
n-mer

degradation

.

(1)

Although this regulatory pathway seems to be well understood, experimental settings cannot
provide information on the dynamics of all components described in system (1). Typically only
data for the time course of AHL (and for the population dynamics of the bacteria, which will be
introduced in the next step) are available. For this reason, one is interested in a model reduction,
decreasing the number of variables and parameters in the system of equations. In a first step, we
assume the formation of complexes and its polymers to take place on a fast time scale. Quasi steady
state assumptions (ε→ 0) yield for the n-mer,

εĊn = π+
n CCn−1 − π−n Cn →︸︷︷︸

ε→0

Cn =

(
π+

n

π−n

)
CCn−1
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Consider now the (n− 1)-mer for ε→ 0 and substitute the last expression. We find

0 = π+
n−1CCn−2 − π−n−1Cn−1 + π−n Cn − π+

n CCn︸ ︷︷ ︸
=0

It follows that

Cn =

(
π+

n π+
n−1

π−n π−n−1

)
C2Cn−2

and, recursively,

Cn =

(
n

∏
j=2

π+
j

π−j

)
Cn

We denote pI := ∏n
j=2

π+
j

π−j
and substitute the result of the quasi-steady state assumption into the

I-equation in (1), obtaining

İ = αI + β I
pICn

Ith + pICn − γI I.

Observe that the Hill coefficient n covers the fact that polymers (n-mers) of the complex
PpuR-AHL are relevant for the positive feedback loop (see also [17]).

To reduce the system further, we also assume that PpuI is in quasi steady state, as in [11,13,17],
for example, resulting in

I =
αI
γI

+
β I
γI

Cn

Ith/pI + Cn

Let Cth := n
√

Ith/pI , then the modified equation for xint reads

ẋint = αA + βA
Cn

Cn
th + Cn − γAxint − π+

1 xintR + π−1 C + d(xext − xint),

where αA := α̂αI/γI and βA := α̂β I/γI
Diffusion through the cell membrane plays an important role in regulation processes.

Nevertheless, AHL diffusion into and out of the cytoplasm does not require any transport
mechanisms and the whole diffusion process goes rather fast, compared to the time scale chosen
for the experimental measurements (1 h) [17,22]. This allows us to assume that xint and xext are in
equilibrium. Via steady state assumption, we get

xext =
dxint

d + γA
≈ xint

as d� γA. Taken together, the resulting AHL concentration (now simply denoted by x) follows

ẋ = αA + βA
Cn

Cn
th + Cn − γAx− π+

1 xR + π−i C

and the simplified version of the single cell model (1) reads

ẋ = αA + βA
Cn

Cn
th + Cn − γAx− π+

1 xR + π−i C

Ṙ = αR − π+
1 xR + π−1 C− γRR

Ċ = π+
1 xR− π−1 C

(2)
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2.1.2. Population Dynamics

In the next step, the model is adapted for a bacterial population, including its growth in the
classical experimental situation of a batch culture [17]. We denote the bacteria density in the medium
at time t by N(t). The dynamics of the bacterial population is classically described by logistic growth,

Ṅ = rN
(

1− N
K

)
where r is the bacterial growth rate and K the carrying capacity of the batch culture system.

Alternatively, one can consider the situation in a continuous culture, also called chemostat,
with a continuous inflow of water and nutrient substrate for the bacteria and an outflow for all
extracellular players. In this setting, one introduces a separate variable (S) for the available substrate
concentration, which limits the bacterial growth. Consumption of nutrients is usually assumed
to lead directly to a proportional increase of the biomass (N). The consumption term includes a
saturation with the possibility of a further nonlinearity via the Hill coefficient ns. Standard equations
for nutrient–bacteria dynamics in a chemostat, with dilution rate D > 0, are given by [23]

Ṡ = DS0︸︷︷︸
inflow

− γSN
Sns

Kns
m + Sns︸ ︷︷ ︸

consumption

− DS︸︷︷︸
washout

Ṅ = aN
Sns

Kns
m + Sns︸ ︷︷ ︸

growth

− DN︸︷︷︸
washout

(3)

2.1.3. Lactonase Regulates AHL Degradation

It turned out by experimental observations [16,18] that a further process plays a major role
in the AHL dynamics. In both the batch [16] and the continuous culture experiments [18],
maximum concentrations of detected AHLs were followed by a rapid degradation of AHLs to
Homoserines, indicating the presence of extracellular enzymatic activity. It is reasonable to assume
that the AHL-degrading enzyme is a Lactonase [16], whose production or activation could also be
initiated by polymers of the PpuR–AHL complex. Experiments in [16] suggested that Lactonases
are activated with a certain delay (about 2 h) compared to the up-regulation of AHL production.
From a mathematical point of view, this time lag can be included in the model via a delay differential
equation [17].

2.1.4. Full Model

Let us now see how the regulatory pathway model (1), respectively the simplified system (2), can
be adapted for a bacteria population. It can be convenient to distinguish between intracellular and
extracellular components, and different assumptions are reasonable. For example, whereas in [17]
the PpuR concentration was thought for the whole population, we consider here a system where the
intracellular components (like PpuR) are interpreted per single (typical) cell.

In [18], to keep the model simple and at the same time to cover some details in the dynamics,
equations for the concentrations of AHL (x) and Lactonase (y) in the medium, as well as one equation
for the intracellular concentration of PpuR–AHL (C) were added to (3). At the same time, the total
amount of PpuR (either free or in the PpuR–AHL complex) in one cell was assumed to be constant.

This does not correspond exactly to reality, but covers the idea that a cell typically maintains
the number of receptors within a certain range. This simplification is justified by the still realistic
resulting AHL-dynamics (see [18] for details).
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The result is the following system of equations:

Ṡ(t) = DS0 − γSN(t)
S(t)ns

Kns
m + S(t)ns

− DS(t)

Ṅ(t) = aN(t)
S(t)ns

Kns
m + S(t)ns

− DN(t)

ẋ(t) =
(

αA + βA
C(t)n

Cn
th + C(t)n

)
N(t)︸ ︷︷ ︸

total
AHL production

− γAx(t)︸ ︷︷ ︸
natural
decay

−π+
1 (Rconst − C(t))x(t)︸ ︷︷ ︸

complex
formation

+ π−1 C(t)︸ ︷︷ ︸
complex

degradation

− Dx(t)︸ ︷︷ ︸
washout

− δx(t)y(t)︸ ︷︷ ︸
Lactonase-regulated

degradation

Ċ(t) = π+
1 (Rconst − C(t))x(t)− π−1 C(t)

ẏ(t) = αL
C(t− τ)m

Cm
th2 + C(t− τ)m N(t)︸ ︷︷ ︸

total
Lactonase production

− γLy(t)︸ ︷︷ ︸
natural
decay

− Dy(t)︸ ︷︷ ︸
washout

(4)

where m, Cth2 are the Hill coefficient and the threshold for Lactonase activation, respectively, and δ

is the Lactonase-dependent degradation rate of AHLs. Observe that there is no outflow term in the
complex equation, as PpuR–AHL is considered to be intracellular.

The model (4) can be extended by adding one equation for PpuR dynamics in one cell, as in [17]
or in system (1). Then the system reads

Ṡ(t) = DS0 − γSN(t)
S(t)ns

Kns
m + S(t)ns

− DS(t)

Ṅ(t) = aN(t)
S(t)ns

Kns
m + S(t)ns

− DN(t)

ẋ(t) =
(

αA + βA
C(t)n

Cn
th + C(t)n

)
N(t)− γAx(t)− π+

1 R(t)x(t) + π−1 C(t)− Dx(t)− δx(t)y(t)

Ċ(t) = π+
1 R(t)x(t)− π−1 C(t)

Ṙ(t) = αR + π−1 C(t)− π+
1 R(t)x(t)− γRR(t)

ẏ(t) = αL
C(t− τ)m

Cm
th2 + C(t− τ)m N(t)− γLy(t)− Dy(t)

(5)

2.1.5. Reduced Model

When being interested in the long term behavior of regulatory systems in the chemostat,
one can assume that substrate concentration and bacterial density have approximately assumed a
stationary state (N∗, S∗). We consider the system (5) for large values of t and impose quasi-steady
state conditions for PpuR and complex. In other words, we assume that when bacteria stay at
their saturation level, the dynamics of R and C is slow compared to those of AHL and Lactonase.
The equilibrium conditions are given by

R∗ =
αR
γR

, C∗ =
π+

1 αR

π−1 γR︸ ︷︷ ︸
=:γ̃

x = γ̃x (6)
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Define the parameters

α = αAN∗, β = βAN∗, xth = Cth/γ̃, ω = γL + D
γ = γA + D, ρ = αLN∗, yth = Cth2/γ̃

(7)

Substituting the equilibrium conditions (6) into (5), we obtain the system

ẋ(t) = α− γx(t)− δx(t)y(t) + β
x(t)n

xn
th + x(t)n

ẏ(t) = ρ
x(t− τ)m

ym
th + x(t− τ)m −ωy(t)

(8)

Observe that all parameter values are non-negative. Their meaning is summarized in Table 1.

2.2. Experimental Data

We report experimental data as published in the previous publication [18]. Pseudomonas putida
IsoF was cultivated and grown in a continuous culture with a working volume of 2 L, under controlled
conditions at 30 ◦C, enabling the reproducible establishment of defined environmental conditions.

AHL molecules and their degradation products were identified and quantified via two different
methods. The first one is the so-called ultra-high-performance liquid chromatography (UHPLC),
a technique used to separate different components in a mixture. The second method, the
enzyme-linked immunosorbent assay (ELISA), allows the rapid detection and quantification of AHLs
and Homoserines directly in biological samples with the help of antibodies.

2.3. Parameter Estimation

In [18], the model (4) was fitted to a first set of experimental data using a mean square error
algorithm and the simplex search algorithm in MATLAB R© (Version 2013b, The Mathworks, Natick,
MA, USA, 2013). Obtained parameter values were used to validate further data sets with minor
adaptations for some initial values, which increased the quality of the fit.

Starting from these estimated parameter values, we fit the reduced system (8) to the
same experimental data published in [18]. The fit was performed using curve fitting tools in
MATLAB R© and Wolfram Mathematica R© (Version 10, Wolfram Research, Champaign, IL, USA, 2014).
The reduced model (8) is obtained assuming the cell population to be in equilibrium; that is, it holds
only for times t > tec, where tec is the time at which the cell population has reached its saturation level.

3. Results

In this section we present analytical results concerning qualitative properties of the solution of
the reduced model (8), as well as numerical simulations and data fit.

3.1. Existence of Solutions

Theorem 1. Let the system (8) hold for t ≥ t0, and let initial data x(t) = x0(t), y(t) = y0(t) be given for
t ∈ [t0 − τ, t0], τ > 0, with x0, y0 Lipschitz continuous. Then there is a unique solution to (8) in [t0, ∞).
Moreover, if x0, y0 are non-negative, the solution is also non-negative.

Proof. The proof follows from basic principles of DDE theory, cf. [19,24,25]. We provide here a sketch
of the proof steps. For simplicity, we shall denote the right-hand side of the system (8) by f (u, v),
where u = (x(t), y(t)) and v = (x(t− τ), y(t− τ)).

Local existence. For the construction of a local (maximal) solution on an interval [t0, t0 + ∆), ∆ > 0,
it is sufficient to guarantee Lipschitz continuity of the initial data, as well as of f with respect to both
arguments, cf. [25] (Thm. 2.2.1). It is easy to verify that the right-hand side of (8) is continuously



Appl. Sci. 2016, 6, 149 9 of 17

differentiable with respect to the delayed, as well as to the non-delayed argument, and that the
partial derivatives are bounded (computation not shown).

Non-negativity. Preservation of positivity is due to the fact that the delay only appears in the
positive feedback term. Indeed, if for some t̄ > t0, x(t̄) = 0 then ẋ(t̄) = α > 0, and x(t) remains
non-negative. With this result it follows that also y stays non-negative. If for some t̄ > t0, y(t̄) = 0,
then ẏ(t̄) = ρ

x(t̄−τ)m

ym
th+x(t̄−τ)m ≥ 0.

Global existence. We show that the maximal solution is bounded. This follows with estimates
on the right-hand side. Observe that

ẏ(t) = ρ
x(t− τ)m

ym
th + x(t− τ)m −ωy(t)

≤ ρ−ωy(t)

hence for all t ≥ t0 we have 0 ≤ y(t) ≤ ŷ, where ŷ :=
(
y0(t0)− ρ

ω

)
e−ωt + ρ

ω .
Similarly,

ẋ(t) = α− γx(t)− δx(t)y(t) + β
x(t)n

xn
th + x(t)n

≤ (α + β)− (γ + δy(t))x(t)

≤ (α + β)− γx(t)

Thus for all t ≥ t0 we have 0 ≤ x(t) ≤ x̂, with x̂ :=
(

x0(t0)− α+β
γ

)
e−γt + α+β

γ . The maximal
solution is bounded, hence it exists on [t0, ∞), cf. [25] (Thm. 2.2.2).

3.2. Fixed Points

Fixed points of (8) are given by the solutions of0 = α− γx̄− δx̄ȳ + β x̄n

xn
th+x̄n

0 = ρ x̄m

ym
th+x̄m −ωȳ.

So we have
ȳ =

ρ

ω

x̄m

ym
th + x̄m

where x̄ is given by the solutions of

α− γx̄− δρ

ω

x̄m+1

ym
th + x̄m + β

x̄n

xn
th + x̄n = 0 (9)

Recall that for the biological motivation of the model, we are only interested in non-negative x̄.
In the following, for simplicity of notation, we shall omit the bars from x̄.

In the general case n 6= m and xth 6= yth, solutions of (9) are the zeros of the polynomial

a0xn+m+1 + a1xn+m + a2xn+1 + a3xm+1 + a4xn + a5xm + a6x + a7 = 0
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where

a0 = −(γω + ρδ) < 0, a1 = ω(α + β) > 0,

a2 = −γym
thω < 0, a3 = −xn

th(γω + ρδ) < 0,

a4 = ym
thω(α + β) > 0, a5 = αωxn

th > 0,

a6 = −ωγxn
thym

th < 0, a7 = αωxn
thym

th < 0.

Let us consider a special case which is relevant for our application, and assume n = m = 2 and
xth = yth. Then, fixed points (x̄, ȳ) satisfy

ȳ =
ρ

ω

x̄2

x2
th + x̄2

(10)

with x̄ given by the solutions of a cubic equation

(δρ + ωγ)x̄3 −ω(β + α)x̄2 −ωγx2
th x̄− αωx2

th = 0 (11)

which has either three real zeros, or one real and two complex solutions. Thus, we might have up to
three biologically-relevant fixed points.

3.3. The case τ = 0

Consider the ODE system obtained from (8) by setting τ = 0:

ẋ(t) = α− γx(t)− δx(t)y(t) + β
x(t)n

xn
th + x(t)n

ẏ(t) = ρ
x(t)m

ym
th + x(t)m −ωy(t),

(12)

It is important to know the dynamics of (12), because for small delays (τ > 0), the DDE system (8)
will very likely behave as the ODE system (12), cf. [24].

Observe that the ODE system (12) and the DDE system (8) have exactly the same equilibrium
points. In general, a DDE system and the associated ODE system have the same number of fixed
points, but if the delay appears in the coefficients, the fixed points of the DDE system could be shifted
with respect to those of the ODE system.

The presence of a negative feedback in (12) leads to the hypothesis that oscillatory solutions
might show up. We investigate local properties of the steady states, looking for Hopf-bifurcations.
For linear (local) stability analysis, we compute the Jacobian matrix of system (12),

J =

−γ− δȳ + β
nxn

th x̄n−1

(xn
th+x̄n)2 −δx̄

ρ
mym

th x̄m−1

(ym
th+x̄m)2 −ω

 .

In the special case n = m = 2 and xth = yth, we have

J =

−γ− δȳ + β
2x2

th x̄
(x2

th+x̄2)2 −δx̄

ρ
2x2

th x̄
(x2

th+x̄2)2 −ω

 (13)
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The trace and the determinant of (13) at a stationary point at (x̄, ȳ), with ȳ in (10), are given by

Tr(J) =
2βx2

th x̄
(x2

th + x̄2)2
− γ− δ

ρ

ω

x̄2

x2
th + x̄2

−ω

det(J) = −ω

(
2βx2

th x̄
(x2

th + x̄2)2
− γ− δ

ρ

ω

x̄2

x2
th + x̄2

)
+ δx̄

2ρx2
th x̄

(x2
th + x̄2)2

.

If there was only one stationary point and this one is a repellor, one can use the fact that all
solutions are bounded and stay positive, then the Poincare–Bendixson theorem yields the existence
of periodic solutions. For a Hopf-bifurcation, necessary conditions are Tr(J) = 0 and ∆(J) = Tr(J)2−
4 det(J) < 0. We choose δ, the Lactonase activity, as bifurcation parameter. From the trace condition,
we get

δ
[ ρ

ω
x̄2(x2

th + x̄2)
]
− 2βx2

th x̄ + γ(x2
th + x̄2)2 + ω(x2

th + x̄2)2 = 0.

We solve for δ and obtain

δ = δ(x̄) =
2βx2

th x̄− (γ + ω)(x2
th + x̄2)2

ρ
ω x̄2(x2

th + x̄2)

=
−ω(γ + ω)(x2

th + x̄2)

ρx̄2 +
2βx2

thω

ρx̄(x2
th + x̄2)

. (14)

Note that, in turn, x̄ also depends on δ, cf. Equation (11). Neglecting this for a minute, we observe
that lim

x̄→∞
δ(x̄) = −(γ + ω)ω

ρ < 0, whereas lim
x̄→0

δ(x̄) → +∞. Due to the intermediate value theorem,

there exists a x̃ > 0, such that δ(x̄) > 0 for x̄ > x̃. It is possible to choose x̃ as the smallest positive
solution of (γ + ω)(x2

th + x̄2)2 > 2βx2
th x̄. If a x̄ = x̄(δ) > 0 satisfies this condition, then Tr(J) = 0

at (x̄, ȳ).
In the next step, we check the discriminant condition (∆(J) < 0), or equivalently, det(J) > 0, as

for the Hopf-bifurcation we need simultaneously Tr(J) = 0.

det(J) = −ω(Tr(J) + ω) + δ
2ρx2

th x̄2

(x2
th + x̄2)2

= −ω2 + δ
2ρx2

th x̄2

(x2
th + x̄2)2

= ...

= ω2

[
−3x2

th − x̄2

x2
th + x̄2

]
+ ω

2x̄2

(x2
th + x̄2)3

[
2βx̄x2

th − γ(x2
th + x̄2)2

]
.

We solve det(J) = 0 in dependence of the Lactonase decay rate ω > 0, and find the roots ω1 = 0
(which does not provide further information), and

ω2 =

2x2
th

(x2
th+x̄2)2

[
2βx̄x2

th − γ(x2
th + x̄2)2]

3x2
th + x̄2

.

Hence det(J) > 0 when ω2 > 0. We need to distinguish between two cases. If x̄ > xth, i.e.,
a stationary state with high AHL concentration and activated bacteria, then we get

2βx̄x2
th − γ(x2

th + x̄2)2 > 2βx3
th − γ(2x̄2)2 = 2βx3

th − 4γx̄4.

Thus, if 2βx3
th − 4γx̄4 > 0, then ω2 > 0. Analogously, we get ω2 > 0 if 2βx̄3 − 4γx4

th > 0,
in case of x̄ < xth, i.e., with bacteria in a non-activated quorum sensing state. All in all, if the
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model parameters and the resulting stationary point satisfy the last condition yielding ω2 > 0, and
simultaneously δ > 0 according to (14), then a Hopf-bifurcation takes place.

3.4. The Case τ > 0

We are interested in stability switches due to the presence of a delay τ > 0 in (8). Consider the
case n = m = 2 and xth = yth, and let (x̄, ȳ) be one equilibrium point of (8). The linearized system
about (x̄, ȳ) is given by

Ż(t) = AZ(t) + BZ(t− τ), (15)

with

Z(t) =

(
z1(t)
z2(t)

)
, A =

(
a b
0 d

)
, B =

(
0 0
c 0

)
,

and
a = − γ− δȳ + 2βx2

th
x̄(

x2
th + x̄2

) ,

b = − δx̄ ≤ 0,

c = 2ρx2
th

x̄(
x2

th + x̄2
) ≥ 0

d = −ω < 0.

(16)

The characteristic equation corresponding to (15) is given by

det
(

λI− A− Be−λτ
)
= 0,

or equivalently,
λ2 − λ(a + d) + ad− bce−λτ = 0. (17)

Characteristic equations of this and more general type have been studied in [24]. In the
following, we report results from [24], adapting them to our specific example. We apply standard
methods for the analysis of characteristic equations and switches with respect to increasing delays,
hence we consider purely imaginary roots, λ = iϕ, ϕ > 0. Separating real and imaginary parts in (17)
we obtain

ϕ2 − ad = −bc cos(ϕt)

ϕ(a + d) = bc sin(ϕt).

Now we square left- and right-hand sides and sum up the two equations, obtaining

ϕ4 + ϕ2(a2 + d2) + a2d2 = b2c2. (18)

Its roots are

ϕ2
± =

1
2

(
−(a2 + d2)±

√
(a2 − d2)2 + 4b2c2

)
.

It can be seen from (18) that the parabola in ϕ2 is open upwards and it has:

• no positive intercept with the horizontal axis, if a2d2 − b2c2 > 0, i.e., if |ad| > −bc;
• one positive intercept (ϕ+) with the horizontal axis, if |ad| < −bc.

In the first case, there is no stability switch with respect to τ; that is, the stability of the
equilibrium point (x̄, ȳ) remains the same for any τ ≥ 0, and it is sufficient to study the ODE case (12).
In the case |ad| < −bc, there is one root (ϕ+) with positive imaginary part, hence one stability switch.
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In order to find out in which direction the stability switch occurs, we study the sign of the real part
<λ(τ) in λ = iϕ+, for τ > 0. From (17) we have{

2λ− (a + d) + τbce−λτ
} dλ(τ)

dτ
= λbce−λτ .

It follows

sign
{

d<λ(τ)

dτ

}
λ=iϕ+

= sign

{
<
(

dλ

dτ

)−1
}

λ=iϕ+

= sign
{
<
(

2λ− (a + d)
λ(λ2 − (a + d)λ + ad)

)}
λ=iϕ+

= sign

{
2(ϕ2

+ − ad) + (a + d)2

(ϕ2
+(a + d)2 + (ad− ϕ2

+)
2

}
= sign

{
2(ϕ2

+ − ad) + (a + d)2
}

= sign
{

2ϕ2
+ + a2 + d2

}
= +1.

Roots cross the imaginary axis from the left to the right, indicating stability loss. If the solution
(x̄, ȳ) is asymptotically stable for τ = 0, then it is uniformly asymptotically stable for all τ < τc and
unstable for τ > τc, where

τc =
θc

ϕ+
, (19)

with θc implicitly defined by

arctan(θc) =
(a + d)ϕ+

ad− ϕ2
+

. (20)

All in all, we have shown the following result.

Theorem 2. Let (x̄, ȳ) be one equilibrium point of (8), with τ > 0, n = m = 2 and xth = yth. Assume that
|ad| < bc, with a, b, c, d given in (16). Then, the equilibrium point is uniformly asymptotically stable for all
0 < τ < τc and unstable for τ > τc, with τc defined by (19)–(20).

3.5. Numerical Simulations and Data Fitting

We consider experimental data published in [18] and perform numerical simulations in
MATLAB R© and Wolfram Mathematica R©. The reduced model (8) is obtained assuming the cell
population to be in equilibrium, that is, for times t > tec, where tec is the time at which bacteria have
reached the saturation level. In Figure 2, we read from experimental data that the cell population
reaches the equilibrium after ca. 20 h from the beginning of the experiment. Hence, we take tec = 20
as the starting time point for numerical simulations of the reduced system (8), and define initial data
on the time interval [tec − τ, tec].

For simplicity, we assume that initial data are constant functions on the definition interval,
see also [17,18]. We fix the value of the delay, τ = 2 h, as in [18]. Then we take x(t) = x̂19, for
t ∈ [18, 20], x̂19 being the mean value of ELISA and UHPLC measurements at 19 h from the beginning
of the experiment. Initial data for the Lactonase are estimated from simulations of the full model (4)
in [18]. To date, there is no experimental data available for Lactonase concentration, thus parameters
associated with Lactonase production (ρ), decay (ω), and activity (δ) can be only estimated from AHL
experimental data. This means in turn that there are several plausible solutions for the estimation of
ρ, ω, and δ. We choose to maintain parameter values as estimated in [18].
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It can be seen from the model reduction assumptions, as well as from the simplified
parameters (7) that we lack information on the receptor production (αR) and decay (γR); indeed, there
is no equation for PpuR in (4). These parameters play a role for the critical threshold value, xth, in the
complex-regulated processes. We fit xth and y(t) = y0, t ∈ [18, 20], fixing all other parameter values
as in [18]. The results are summed up in Table 1, with parameter values as provided by the fitting
procedure, without rounding. In Figure 3 we show a comparison between the numerical solution of
model (4), that of the simplified model (8) and experimental data for AHL time series.

With the estimated parameter values in Table 1, we consider the analytical results in Section 3.2
and Section 3.4. The system has three equilibrium points x̄1, x̄2, x̄3, but we only consider the stability
properties of the largest one (x3, y3) = (1.593× 10−7, 4.809× 104), which corresponds to high AHL
level and to an activated state of the bacteria population. Parameter values satisfy a2d2 > b2c2, thus
there is no stability switch with respect to τ, and the system behaves as in the case τ = 0. We go back
to Section 3.3 and consider the Jacobian matrix (13), obtaining tr(J) = −7.4243 and det(J) = 0.7685.
Hence, with the estimated parameter values, the system (8) has a locally asymptotically stable
equilibrium (x3, y3) in which bacteria are activated.

Table 1. Variables and parameters in model (8), with values used for data fit in Figure 3.

Symbol Description Value (Unit) Comments/Source

N∗ Cell density at equilibrium 4.5929× 1011 (cells/lit) [18]
α Basic AHL production rate 1.0564× 10−7 (mol/(lit2· h)) = αA ∗ Nequi, [18]
γ AHL decay rate (includes washout) 0.105 (1/h) = γA + D, [18]
δ Lactonase-dependent degradation rate 1.5000× 10−4 (lit/(mol · h)) [18]
β Feedback-regulated AHL production rate 1.0564× 10−6 (mol/(lit2· h)) = βA ∗ Nequi, [18]
n Hill coefficient for x 2.3 (dimensionless) [18]

xth Critical threshold for positive-feedback in x 3.597× 10−13 (mol/lit) estimated
ω Lactonase decay rate (includes washout) 0.105 (1/h) = γe + D, [18]
ρ Lactonase production rate 5.0521× 103 (mol/(lit2· h)) = αe ∗ Nequi, [18]
τ Delay in the release of y 2 (h) [18]
m Hill coefficient for x 2.5 (dimensionless) [18]
yth Critical threshold for positive-feedback in y 3.597× 10−13 (mol/lit) estimated

x0(t) AHL concentration (initial data) t ∈ [18, 20] 5.4044× 10−7 (mol/lit) mean of exp. data
y0(t) Lactonase (initial data) t ∈ [18, 20] 5.2× 103 (mol/lit) estimated
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Figure 2. Experimental data and numerical solution of the mathematical model (4). Picture adapted
from [18]. Copyright 2014, Springer-Verlag Berlin Heidelberg. The cell population reaches its
equilibrium after approximatively 20 h from the beginning of the experiment.
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Figure 3. Comparison between the numerical solution of the dynamical systems and experimental
data. Red curve: solution of the reduced system (8); Blue curve: solution of the full model (4)
in [18]. Initial data for the reduced system are x(t) = x0(t), y(t) = y0(t), t ∈ [18, 20], where
y0(t) ≡ 5.2× 10−13 was fitted and x0(t) ≡ 5.4044 × 10−7 is the mean value of ELISA and UHPLC
measurements at 19 h from the beginning of the experiment. When the cell population has reached
its stationary level, the reduced model provides a good approximation of the dynamics. Parameter
values used for the reduced model are given in Table 1.

4. Discussion

In this paper we have introduced a system of two delay differential Equation (8) for quorum
sensing of Pseudomonas putida in a continuous culture. Motivated by experimental data, a more
detailed mathematical model (4) was previously proposed in [18]. Though the system (4) describes
the regulatory network in greater detail, in the long run, bacteria reach a saturation level and the
model can be reduced to two governing Equation (8), as we have shown in Section 2.1.

Surprisingly, even a simple model such as (8) can be used to explain experimental data (Figure 3),
maintaining parameter values from a previous fit [18] for almost all model parameters. However, one
should take into account that this is valid only from the moment the bacteria population has reached
its saturation level. If one is interested in understanding quorum sensing in the initial phases (lag and
exponential phase) of bacterial population, then it is convenient to use a more detailed model, such
as (4) or (5).

The advantage of system (8) is that it can be investigated thoroughly thanks to well-established
methods. We have shown existence and uniqueness of solutions and, more importantly, we could
guarantee preservation of positivity. This property is often violated in systems of delay differential
equations. We have studied linearized stability of non-negative equilibria and proved that the delay
system (8) might show stability switches as the delay increases. On the other side, the Lactonase
activity (δ) can induce Hopf-bifurcation in the associated ODE system (12).

For simplicity of computation in the analysis of the system, we have considered only the case of
small Hill coefficients (n = m = 2), which corresponds to a maximum of three biologically-relevant
stationary states. This assumption is, however, not as restrictive as it seems. Three stationary states,
with an intermediate unstable one, are the basis for the bistability situation already discovered in
analogous regulatory networks [11,17]. Moreover, similar small values for the Hill coefficients were
found to fit experimental data (Table 1) and correspond well to the biological assumption of a dimer
being relevant for the positive feedback in the quorum sensing system of Pseudomonas putida [16].
With the fitted parameter values, we do not find delay-induced stability switches. This is not a hint
of the delay being not relevant. Though a positive time lag might not change the main qualitative
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behavior of the system, the DDE model still describes the experimentally-determined data and their
time course quantitatively better than the associated ODE system, in particular when the bacteria
population is in the lag or exponential phase. Stability switches and periodic oscillatory behavior
might appear for a different choice of the parameters in system (8). As the main focus of this work
was to provide a description for a real biological process, we decided to omit further numerical
investigation on the qualitative behavior of (8).

Delay equations have been previously used in mathematical models of continuous cultures.
Commonly, a time lag was included to describe the time necessary for the bacteria to convert
nutrients in new biomass [26,27]. Being interested in the long term dynamics with bacteria being
at an equilibrium, we have chosen not to consider such reproduction lags in our model. In our case,
the time lag arises from the dynamics of the regulatory network, in particular from the initialization
processes of the AHL-degrading enzyme.

Taken together, the presented simplified delay equation system is a good compromise between
refined modeling for a well-known gene regulatory network with several players, and a system of
equations which still allows explicit analysis of the basic qualitative behavior as well as parameter
determination from few experimental data.
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