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Abstract: Approximately 50 years of inelastic scattering studies of noble gases are reviewed to
illustrate the main advances achieved in the understanding of the THz dynamics of simple systems.
The gradual departure of the spectral shape from the hydrodynamic regime is discussed with
an emphasis on the phenomenology of fast (sub-ps) relaxation processes. This review shows that
relaxation phenomena in noble gases have an essentially collisional origin, which is also revealed by
the parallelism between their characteristic timescale and the interatomic collision time. Additionally,
recent THz spectroscopy results on noble gases at extreme thermodynamic conditions are discussed
to illustrate the need for a revision of our current understanding of the supercritical phase.
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1. Introduction

The study of the collective molecular dynamics of liquids and glassy materials has been a vibrant
field of research since the dawn of modern science. However, in spite of an intensive theoretical,
experimental and computational scrutiny, the dynamic response of these systems still presents
many unsettled aspects, mainly owing to the inherent disorder and complex movements of their
microscopic constituents.

Among various variables unveiling the dynamic behavior of a fluid, the spectrum of density
fluctuations, S(Q,w), is of particular interest, since it is directly accessible by both spectroscopic
techniques and computer simulation methods. In spectroscopy experiments, S(Q,w) is probed by
generating density fluctuations on a target sample through the collision with a beam of particle-waves,
i.e., photons or neutrons. During this collision, an energy fiw and a momentum 7Q (here i = h/2n
with & being the Plank constant) are transferred from the probe particles to the sample and the former
are scattered over the entire solid angle. It was demonstrated that for both neutron [1] and X-ray [2]
probes, the scattering intensity is proportional to the dynamic structure factor, S(Q,w), which provides
a snapshot of the dynamic response of the sample through an average over timescales oc w ™!
distances oc Q1.

Therefore, the (Q,w) region explored in a spectroscopy measurement can be expanded enough
to cover the whole transition of the dynamics from the macroscopic regime to the microscopic
one. The shape of S(Q,w) is exactly predicted within these two limits and essentially unknown
in between, i.e. in the so-called mesoscopic region, corresponding to Q’s and w’s matching the inverse
of intermolecular separations and cage oscillation frequencies, respectively. Investigations of this
region may unravel fundamental aspects of molecular motions and mutual interactions in disordered
systems and can be ideally performed by X-ray (IXS) and neutron (INS) scattering techniques, as well

and
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as by computational methods. Due to the lack of rigorous theoretical predictions, our understanding
of the dynamics of disordered systems at mesoscopic scales is often limited to a phenomenological
analysis of experimental and computational results.

1.1. The Dynamics of Molecules at Mesoscopic Scales

In the macroscopic limit, a liquid appears as a continuum, whose dynamic response is averaged
over a large amount of intermolecular interactions. For such a system, the hydrodynamic theory
can be consistently used to describe S(Q,w) and ultimately leads to predict a sharp triplet profile [3].
This is composed by the heat diffusion (Rayleigh) central peak, relating to entropy fluctuations, which
diffuse at constant pressure (P), and the two Brillouin acoustic side peaks, connected to P fluctuations,
propagating at constant entropy.

In the opposite regime, customarily referred to as single particle or impulse approximation limit,
the probed dynamic event is essentially the free recoil of the single struck atom after the collision with
the probe and before any successive interaction with first neighboring atoms. In this limiting region,
the dynamic response of the fluid reflects the momentum distribution of the struck atom, which is
Gaussian in shape for both classical and quantum systems.

Several theoretical models have been developed in an attempt to account for the gradual departure
of the spectral shape from the hydrodynamic regime. Perhaps the most successful approach is
based upon the framework of the Zwanzig-Mori [4,5], or memory function, formalisms. Its core
assumption is that the departure from the hydrodynamic regime is gradual enough to be accurately
described by leaving the formal structure of hydrodynamic equations unchanged, yet generalizing
some thermodynamic and transport parameters as local variables of space and time. From a physical
point of view, this local character reflects the non-homogeneous, non-stationary nature of matter at
mesoscopic scales.

A similar approach was successfully proposed by a large number of IXS works on samples of
increasing complexity, including:

(1) noble gases [6,7];

(2) diatomic liquids [8];

(3) liquid metals [9-11];

(4) hydrogen-bonded systems [12-14];
(5) glass formers [15-18].

1.2. The Departure from Hydrodynamic Regime and the Onset of Relaxation Processes

Among various phenomena occurring at the departure from the hydrodynamic regime,
the coupling of density fluctuations with relaxation phenomena is perhaps the most solidly
understood [6,7,12,13,19]. To gain a basic insight on the physics of a relaxation process, one may
start from considering that scattering-generated density waves bring the sample away from its local
equilibrium. In response, energy redistributions take place from the density perturbation toward
internal degrees of freedom, ultimately driving the sample to a new local equilibrium. The timescale
needed by the sample to relax to the equilibrium, T, depends both on the wavelength A = 27t/Q of the
considered density wave and on the sample characteristics. For instance, if A increases so do both the
number of rearranging molecules and the relaxation time.

Furthermore, the timescale of structural relaxations has a temperature (T-)dependence roughly
as steep as the one of viscosity, due to the circumstance that viscous resistance hampers
internal rearrangements.

These last considerations only apply the so-called structural relaxations, involving collective
rearrangements of the structure, which are dominating in highly interconnected many body systems.

Conversely, for monatomic fluids relaxation phenomena mostly have a collisional nature [7,20],
especially when A matches first neighboring molecules’ separations. Collisional relaxations relate
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to energy transfers between density fluctuations and mutual inter-particle collisions. Compared to
structural relaxations, they are faster (usually spanning the 1073 s range) and weakly dependent on
thermodynamic conditions [7,20].

In general, collisional and structural relaxations coexist in a given fluid and their relative relevance
depends on the nature of intermolecular interactions, thermodynamic conditions and probed Q value.

Experimental studies of the Q or T-transition between structural and collisional relaxation
regimes often present major challenges, as the required access to large Q (or T) intervals and the
high statistical accuracy in the spectral shape measurement. Furthermore, advances in the field are
currently held back by instrumental limitations, especially concerning resolution width and spectral
contrast. Nonetheless, important advances in the understanding of these phenomena have been
made and, most importantly, next generation instruments with the required performance will be soon
available for the scientific community.

1.3. The Central Role of Noble Gases

Noble gases are ideal samples to investigate relaxation phenomena, due to their extremely simple
microscopic constituents and mutual interactions, which make them ideal prototypes to test theoretical
models. In contrast to molecular fluids, their microscopic components lack internal degrees of freedom
and, contrary to, e.g., metallic liquids, they have simple and short-ranged inter-particle interactions.
For instance, the intrinsic simplicity of these samples is crucial to reliably approximate the interatomic
potential in molecular dynamics (MD) computer simulations [21]. Another advantage of noble gases
is the large compressibility, which is a key factor to achieve substantial variations of density or,
equivalently, of the strength of atomic interactions, even with moderate thermodynamic changes.

The purpose of this review is to provide a short overview of THz spectroscopy studies of S(Q,w) in
noble gases and in particular, to discuss the insight they shed on fast relaxation phenomena. Following
an essentially chronological order, the review covers a period of approximately 50 years, from the
mid-1960s to the present. Beginning from pioneering INS studies mostly seeking for reminiscences
of an hydrodynamic S(Q,w) shape beyond the continuous limit, it discusses the new opportunities
offered by the development of IXS toward the end of the past millennium, while illustrating the insight
they provide onto the viscoelastic character of the THz dynamics of noble gases. The last sections
of this review illustrate recent measurements in the deeply supercritical region calling for a global
reconsideration of our understanding of the phase diagram of a fluid.

2. Measurements of the THz Spectrum of Noble Gases up to the 1990s

2.1. The Spectral Line-Shape in the Continuous Limit

As mentioned in the introductory section, the variable of interest for this review is the spectrum
of density fluctuations, or dynamic structure factor:

S(Q,w) - JV ir f: (3p(F,060*(7,0) Y exp [i(é T wt)] dt )

with (5p(7, t) being the space (7) and time () dependent density fluctuation of the target sample
having volume V.

In the quasi-macroscopic regime, S(Q,w) can be described using the hydrodynamic theory
of continuous media [3]. This approach stems from the formal expression of the conservation
laws of the (density of) mass, momentum and energy of the fluid plus two constitutive laws: the
Navier-Stokes” and heat transport’s equations. As extensively discussed in several monographies [3,22],
the derived spectral shape is dominated by few long-lived collective modes, customarily referred to as
hydrodynamic modes. These modes form a triplet well approximated by the following expression:
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with b = [Apzy/ (1 — Ap) + 2s] Jws and I = (1 — 1) /2.
One readily recognizes the three main components of the spectral shape (from left):

(1) The heat diffusion (Rayleigh) central peak, which relates to entropy fluctuations diffusing at
constant pressure (P).

(2) The two Brillouin acoustic side peaks, connected to P-fluctuations propagating at constant entropy.

(3) An additional contribution (term o b) asymmetric around the Brillouin peaks position having
negative tails. This term distorts the Lorentzian terms 1) and 2) ultimately enabling the
convergence of the spectral moments fjof w"S(Q, w)dw, with n < 2.

The hydrodynamic profile in Equation (2) contains shape parameters whose Q-dependence is
not explicitly considered here. However, at low Qs the latter can be expressed through a polynomial
Q-expansion (see, e.g., Equations (42)—(45) of [23]), which at the lowest order reads:

ws = ¢sQ (3a)
zs = [(v—1)Dr +v.] Q*/2 (3b)
Zp = DTQ2 (3C)

Here ¢s, Dt and vy, are, respectively, the adiabatic sound velocity the thermal diffusivity and the
longitudinal kinematic viscosity.

It should be recognized that Equation (3a—c) are valid only if D7Q? I'Q? << ¢;Q, that is if the
lifetime of hydrodynamic modes is much longer than the acoustic period. Under these conditions, the
hydrodynamic modes are long-lived excitations appearing in the spectrum as well-resolved and sharp
peaks, customarily referred to as Rayleigh-Brillouin triplet. Experimental methods such as Brillouin
light scattering (BLS) provide a measurement of Rayleigh-Brillouin triplet by typically spanning the
1073-1072 nm~! Q-range. An example of the simplified hydrodynamic spectrum is presented in
Figure 1 along with the three separate components discussed above.
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Figure 1. Typical shape of the Rayleigh-Brillouin triplet measured by Brillouin light scattering.
The separate contributions to the total shape are represented by line of different color, as indicated in
the legend.
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The Rayleigh-Brillouin triplet in Equation (2) will be hereafter quoted as either generalized or
simplified hydrodynamic spectrum, respectively with or without the lowest order Q approximation in
Equation (3a—c).

2.2. 1922-1969: From Theoretical Prediction to Actual Measurements

The hydrodynamic shape of the spectrum was theoretically predicted since the seminal work of
Brillouin [24] and the successive theoretical work of Landau and Plazeck during the 1930s [25] (see also
the review by Mountain). However, the first experimental measurements of the Brillouin spectrum
of liquids could only be performed much later [26], mainly owing to the extremely fine resolving
power (AE/E < 10~7) required for similar measurements in typical liquid samples. This performance
imposes severe technical challenges that can only be addressed by complex interferometric techniques.
In regards to noble gases, the first Brillouin study dates back to the measurement on Ar and Ne
along the coexistence line [27] performed with a single-pass Fabry-Perot interferometer. Figure 2
provides an example of the Brillouin spectrum of dense Ar measured in this work. The hydrodynamic
spectrum reconstructed using thermophysical and transport properties of the sample is also reported
for comparison. It clearly appears that the latter profile essentially consists of three extremely narrow
peaks, in full consistency with the simple hydrodynamic condition D7Q? I'Q? << ¢;sQ. Indeed the
width of triplet components measured in [27] was either coincident with the resolution function (for
the Raileigh peak) or only slightly larger (for Brillouin peaks).
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Figure 2. The Rayleigh Brillouin spectrum of Ar measured along the coexistence line by Brillouin light
scattering. The data are redrawn with permission from [27], copyrighted by the American Physical
Society. The hydrodynamic spectrum reconstructed using tabulated thermophysical properties of the
sample and bulk viscosity measurements [28] are reported for comparison as a black line.

From the position of the peak in the Rayleigh-Brillouin spectrum, Fleury and Boon derived
a value of sound velocity slightly lower than the one previously measured by ultrasound (US)
absorption techniques at ~1 MHz. Although such an apparent frequency-decrease of sound velocity,
also observed in water [29], initially raised some interest, it lacks a particular physical significance [30]
(see also [22], page 263). Rather, it follows from the circumstance that the sound velocity measured by
BLS (hypersonic velocity) is expectedly lower by few percent than the counterpart measured by US
(ultrasonic velocity), unless competing viscoelastic effects become relevant.

Overall, the shape of the spectrum predicted by the hydrodynamic theory was experimentally
confirmed by Brillouin measurement in [27], even though a slight w-dependence of viscosity was
inferred. At this stage the occurrence of a hydrodynamic triplet at macroscopic scales seemed
well-assessed experimentally, while a remaining question concerned the persistence of a suitably
generalized hydrodynamic profile down to mesoscopic scales. Most experimental studies described in
the following paragraphs attempted to answer to this question.



Appl. Sci. 2016, 6, 64 6 of 31

2.3. 1964-1967: Seeking for a Triplet Shape at Mesoscopic Scales

The use of a bare hydrodynamic description of the spectrum becomes questionable when
approaching the mesoscopic regime, as therein the matter is no longer continuous, nor stationary.
However, there are solid reasons to assume a suitably generalized hydrodynamic theory to hold
validity even in this time-space domain. To illustrate this point, it is useful to recognize that for
a system at densities typical of the liquid phase, the mean free path spans the 1071 m window,
potentially becoming much smaller than the atomic size. Under these conditions, the movements
permitted to the atoms are mainly short, vibration-like, cage oscillations (~10~!% s). Consequently,
even in the (Q ~ nm~!, w ~ THz) mesoscopic range, the response of the system is still “averaged” over
a large number of elementary dynamic interactions, which is a necessary pre-requisite for a suitably
generalized hydrodynamic description. In this perspective, the persistence of spectral features in
the THz spectrum reminiscent of Brillouin hydrodynamic peaks did not appear to be a groundless
expectation. Indeed, several INS experiments performed during the mid-1960s aimed at validating
this hypothesis by examining inelastic peaks in the spectrum of simple fluids. For instance, this is the
case of an INS measurements on dense Ne, Ar and D, [31], which clearly documented the presence
of “extended hydrodynamic” modes in the spectrum. Due to the largely coherent cross section of
these samples, both inelastic and quasi-elastic spectral features appeared in the measured spectrum.
In particular, it was observed that at low Q values the inelastic shift of the side peaks approached
from above the linear hydrodynamic law ¢;Q predicted by Equation (3a). This urged the authors to
interpret these peaks as the finite-Q extensions of the acoustic Brillouin peaks to mesoscopic scales.
Conversely, Kroo et al. [32] reported no direct evidence of inelastic structures, however they inferred
the existence of phonon like excitations indirectly from a comparison between liquid and solid phase
spectra. The discrepancy between the results of Chen and those of Kroo is a likely consequence of the
different incident wavelength used in the two experiments (4.1 A and 5.3 A respectively), which made
the two sets of data hardly comparable.

In a successive INS work, Skold et al. [33] measured the spectrum of Ar in liquid (at T = 94 K and
102 K) and solid (at T = 68 K and 78 K) phases. The authors observed a linear Q-dependence of the
inelastic peak at the lowest Qs, with a slope consistent to the adiabatic sound velocity. Furthermore,
they showed that, at higher Qs, the sound dispersion curve of the liquid sample vaguely resembles
the phonon dispersion curve of the solid, thus suggesting that the local pseudo-periodicity of the
liquid structure gives rise to quasi-periodic zones reminiscent of the Brillouin zones of a crystal. Since
clear signatures of acoustic excitations in the liquid were found in a Q range equivalent to the second
pseudo-Brillouin zone, the authors concluded that at least two somehow “loose” pseudo-Brillouin
zones could be identified in liquid argon. A similar conclusion was reached by an earlier INS
investigation on liquid Pb [34], as well as a computer simulation on Rb [35]. The latter work used
an inter-particle potential model characterized by an oscillatory decay to zero [36] instead of the
Lennard-Jones potential routinely used to simulate noble gases. These differences in the interatomic
interaction explain why in liquid metals inelastic modes are well-resolved up to almost the position of
first diffraction peak (Qy;), whereas in noble gases they become overdamped for Q > Q,,,/2.

2.4. 1971: First Evidences of a Rayleigh-Brillouin triplet beyond the Continuous Limit

The first convincing evidence of the persistence of well-defined inelastic peaks beyond the
hydrodynamic regime was reported in an INS measurement of Bell and collaborators on supercritical
neon [37]. This work spanned unusually low Q values (0.6 nm~! < Q< 1.4nm™1), which substantially
reduced the dynamic gap existing between the quasi-continuous regime probed by BLS (with Q
spanning the 1072 nm~! window) and the range covered by “standard” INS measurements (typically
Q > 2-3nm™!). A best fit of measured line-shape with a simplified hydrodynamic similar to the one
defined by Equations (2) and (3a—c) enabled the authors to conclude that the simple hydrodynamic
theory consistently describes the spectral shapes measured well beyond the continuous approximation.
Figure 3 provides an example of the spectral profiles measured by Bell et al., clearly showing the
persistence of neat side peaks reminiscent of the hydrodynamic acoustic excitations.
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Again, the inelastic shift of side peaks reportedly depends linearly on Q, with a slope consistent
with the known value of adiabatic sound velocity. Interestingly, the linear dispersion seemed to
persist over the whole Q-range explored by Bell et al., even when the side peaks transform to
broad shoulders, for which the simple hydrodynamic approximation (D1Q?, TQ? << ¢;Q) is clearly
unfulfilled. Additionally, the widths of both inelastic (Brillouin) and quasi-elastic (Rayleigh) peaks
were found to depend on Q nearly consistently with the predictions of Equations (3a—c). These aspects
will be discussed in greater detail below.

It is worth acknowledging that comparably well-resolved THz inelastic peaks were previously
observed in a largely quantum system as superfluid He at 1.1 K [38] and in the mentioned work on
liquid metals by Dorner et al. [39].

2.5. 1973-1975: First Signatures of A Viscoelastic Behavior in Real and Simulated Noble Gases

A successive experiment performed on neon by Bell et al. [37] covered Q values largely exceeding
the simple hydrodynamic limit (2.7 nm~! < Q < 15nm™!), strongly overlapping the range covered
by more “standard” INS measurements. Not surprisingly, the modeling of the line-shape at these
higher Qs was less straightforward, requiring a generalization of transport variables, as prescribed
by the “molecular hydrodynamic” approach. Specifically, the used line-shape model consisted in
a generalization of the simple Brillouin triplet defined by Equations (2) and (3a—c) in which allowance
was made for a Q and/or w-dependence for some thermodynamic and transport parameters appearing
in the hydrodynamic equations.

In particular, it was observed that the finite Q generalization of both Dt and y had the form of
a sharp, nearly Lorentzian, decay, indicating a decreasing weight of thermal fluctuations at mesoscopic
distances. Furthermore, the longitudinal viscosity needed to be generalized as a frequency dependent
variable as a typical manifestation of viscoelasticity. Although viscoelastic effects on the line-shape
will be discussed in greater detail in a successive section, it's worth emphasizing here that the core
feature of viscoelastic fluids is their sharply frequency dependent dynamic response, resembling either
the one of a liquid or the one of a solid at low or high frequency, respectively. The crossover between
the liquid-like (or viscous) and solid-like (or elastic) regimes is marked by the relaxation frequency
1/7. In a scattering experiment the viscous-to-elastic transition can be observed when the applied
perturbation (e.g., a scattering generated acoustic waves) attains a frequency (csQ) much larger than
1/7. In practice, this can be obtained by increasing Q and/or T (by lowering T).

T
-0.4 -0.2 0.0 0.2 0.4

n o (meV)

Figure 3. Spectral lineshapes of neon measured by inelastic neutron scattering INS in neon at the
low exchanged momenta indicated in the plot, the red line through data roughly connects the tops of
inelastic peaks. Data are redrawn with permission from [40].
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On this ground, it is reasonable to expect that even a simple fluid at some Q, T values can
exhibit solid-like properties, such as, for instance, the ability of supporting transverse acoustic
waves. This possibility could only be tested using computer MD simulation, which can determine
the correlation function between transverse components of atomic velocities, or its Fourier transform,
customarily referred to as the transverse current spectrum. The transverse plane is defined as

orthogonal to the momentum exchanged in the scattering event, ﬁa. Indeed, the first indication
of a high Q transverse acoustic propagation in a monatomic system was inferred from the presence of
a clear inelastic peak in the transverse current spectrum of a Lennard-Jones model representing Ar [41].
In this work, viscoelastic effects on the spectrum of density fluctuations were described assuming
a Gaussian time decay of memory function. A successive MD simulation performed on a Lennard-Jones
model of Ar at the triple point [42] used instead a “more standard” exponential ansatz for the memory
function within the assumptions of either a single or a double timescale. It was observed that the two
alternative hypotheses did not yield appreciably different best-fit results. Furthermore, this study
confirmed the previous observation of a Q-decay of “the thermal” parameters Dt and < and indicated
a relaxation time T ranging in the 10~! ps interval with smooth variations.

2.6. 1978-1987: The Failure of the Three Modes Description High Q in Liquid Noble Gases and the Test of
Kinetic and Mode Coupling Theories

Successive INS works on Ne [43] and Ar [43—47] proposed a line-shape modeling consisting on the
sum of generalized Lorentzian terms. Different versions of such a sum were used by superimposing
the convergence of spectral moments of increasing order. Overall, it was observed that a spectral shape
similar to the one in Equation (2) provides an accurate description of the spectrum of both liquid and
supercritical noble gases. However, the use of such a model led to somehow controversial results for
liquid sample at high Qs, as the presence of a propagation gap, that is a Q-region where w; = 0.

A similar gap was also reported by INS measurements in molten salts [48] and liquid He [49,50]
and its presence was also predicted by the kinetic theory [51]. Its physical origin was connected to the
prevalence of dissipative forces over elastic ones, which prevent the sound from propagating at some
Qs. In this regard, it is interesting that the gap seemingly disappeared upon increasing the density and
approaching solidification [45].

An example of the pressure dependence of this effect is proposed by Figure 4. There, the various
dispersion curves are divided for the corresponding sound velocity, thus expectedly joining the same
hydrodynamic linear law, upon approaching the Q = 0 limit. From the plot it can be readily noticed
that the Q-window for which w; = 0 reduces upon increasing the pressure. Although the presence of
a region of forbidden sound propagation raised some initial interest among researchers, its physical
significance seemed also controversial. In this regard, it should be acknowledged that the observed
gap is centered on the position of the first diffraction peak, where the so-called de Gennes narrowing
occurs [52], and the spectral shape is reduced to a narrow featureless peak. For this reason, the use of
a “three pole” line-shape modeling may give questionable results in this Q-window, also considering
that inelastic features in the spectrum become dramatically overdamped [53,54], and their real position
somehow ill-determined.

Apart from those based on Equation (2), no other line-shape modeling used in the literature
ever indicate the occurrence of such a gap and, furthermore, its presence leads to a clear physical
inconsistency. In fact from a simple finite Q extension of the compressibility theorem ([55], see also
Equation (13a)) one has ws > 1/kpT/S(Q), from which it can be deduced that a vanishing w; implies
a diverging 5(Q), which clearly has no physical foundation for a disordered system.

Aside from these high Qs flaws, the “three pole” profile in Equation (2) has, in principle, a solid
physical ground. In fact, from one side, it can be derived using a macroscopic description of density
fluctuations as the hydrodynamic theory; on the other, it is consistent with the result of a truly
microscopic approach as the kinetic theory [56,57]. This can be demonstrated by developing the S(Q,w)
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as a sum of generalized Lorentzian terms [58], upon retaining only the three dominant ones and
superimposing on them the fulfilment of the first three sum rules.
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Figure 4. The sound dispersion curves measured in Ar at increasing pressure [47] and normalized to
the respective sound velocities, as derived from thermodynamic data [59]. The arrow indicates the
presence of a propagation gap, i.e., of a Q region where the sound frequency vanishes. The solid line
represents the hydrodynamic limiting dispersion expectedly joined by all curves in the Q = 0 limit.
The dashed curves are the low Q prediction of the Mode Coupling Theory as derived for the curves of
corresponding color.

It is worth noting that the kinetic approach provides, in principle, a microscopically rigorous
theory of density fluctuation. This stems from the assumption that the dynamic variables of the
system depend on both atomic velocities and spatial coordinates, as required for a reliable account of
microscopic interactions. Unfortunately, the predictions performed using the kinetic theory usually
give poor results at high density due to the increasing weight of correlated collisions. The INS
measurements of Postol and Pelizzari on supercritical Ar [60] proposed an experimental test of the
kinetic theory predictions based on the generalized Enskog approach. As a result, no quantitative
agreement was demonstrated between theoretical and experimental results, although at the low density
(10.5 atoms/nm?) and high temperature (295 K) probed in the experiment it was reasonable to assume
the kinetic theory description to hold validity.

A successive work on liquid Ar at different pressures by de Schepper et al., whose results are
reported in Figure 4, attempted a general test of the mentioned Lorentzian sum development of
5(Q,w) [47]. The effect of spectral rule fulfillment was therein analyzed by comparing the results
obtained by imposing the fulfillment of sum rules of increasing order (< 2). Furthermore, in such
a work the authors attempted to describe the measured dispersion curves in terms of the predictions
of the mode-coupling theory (MCT) (see e.g. [61]). The non-analytic dispersion relations predicted
by the MCT, having the form of truncated Q-expansions with fractional exponents, were compared
with experimental dispersions. The accuracy of the MCT prediction can be judged by comparing the
dashed curves in Figure 4 with the low Q portion of the dispersion curves. The comparison clearly
demonstrates that at the lowest Qs the sound dispersion curve is well described by the MCT for all
explored pressures, although for Q >4 nm~! this theory does not provide a consistent account of the
observed behavior of quasi-elastic and inelastic linewidths of the spectrum.
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2.7.1990: “Extended Hydrodynamics Modes” up to Q ~ 1 nm~!

After the first low Q measurement on Ne by Bell et al., a second INS experiment was performed
by Bafile et al. [62] on supercritical Ar at extremely low Qs (0.35 nm™! < Q < 1.25 nm™}).
This measurement further extended the probed dynamic region to lower Qs, thus reducing the
gap with light scattering measurements. Figure 5 displays two typical spectral shapes measured in
this INS work, which clearly confirm the persistence of extended Brillouin peaks at mesoscopic scales.
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Figure 5. Two representative INS spectral lineshapes of Ar measured by Bafile et al. [62] at low
exchanged momenta.

Most importantly, in this measurement the superior accuracy in the count statistics coupled
with the unprecedented dense Q-grid, enabled a very detailed analysis of the Q-dependence of
line-shape parameters of Equation (2). Best fit values of such parameters are reported in Figure 6 and
therein compared with either the simple hydrodynamic prediction (Equation (3a—c)) or a higher-order
polynomial expansion (see, e.g., Equations (42)—(45) of [23]). In the same Figure, the result previously
obtained by Bell and collaborator on neon is also reported for comparison along with the corresponding
simple hydrodynamic prediction of Equation (3a—c).

All hydrodynamic curves included in the figure were obtained using thermodynamic and
transport parameters reported in the original works.

Overall, data in Figure 6 confirm that the Q-dependence of line-shape parameters is roughly
consistent with the low Q approximation in Equation (3a—c). This clearly indicates that “extended
hydrodynamic” modes survive well above the hydrodynamic limit, up to Q values exceeding the light
scattering domain by nearly two orders of magnitude.

2.8. 1998: First IXS Measurements of the THz Spectrum of Noble Gases

The only THz spectroscopic technique available until the mid-90s was INS, a method intrinsically
hampered by kinematic constraints (see, e.g., [63] pp. 63—-101) limiting the accessible portion of dynamic
plane (Q,w). These limitations are particularly penalizing at low Qs, where the collective nature of
structural rearrangements become dominating, as well as at large w values, where instead short-time,
collisional events have a visible influence on density fluctuations.

These problems were successfully overcome after the development of the first high resolution
IXS, a spectroscopic technique virtually free from kinematic limitations [2,64].
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Figure 6. Relevant shape parameters of the S(Q,w) of supercritical Ne and Ar as measured, at the
indicated thermodynamic conditions, in [40,62], respectively. The reported solid and dashed lines are

the hydrodynamic predictions referring to symbols of corresponding color as derived from the lowest
Q expansion in Equation (3a—c).

The first IXS measurement on a dense noble gas was performed on deeply supercritical neon
(T =295K, n = 29.1 atoms/nm?) and discussed in combination of a MD simulation on a Lennard-Jones
model representative of the same sample [65]. In Figure 7, two representative IXS spectra (upper panels)
and corresponding MD simulations (lower panels) are compared (middle panels) after the former
have been multiplied with the detailed balance factor and convoluted with the instrumental energy
resolution function. The good agreement between measured and computed line-shapes suggests that
the Lennard-Jones model provides a consistent description of the spectrum. Furthermore, it is apparent
that even at Q values extending well above 1 nm ™!, the inelastic peaks are visible in the MD simulated
line-shapes and, in spite of some resolution limitations, in the experimental spectra as well.
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Figure 7. Upper panels: low Q inelastic X-ray scattering IXS spectra measured on deeply supercritical
neon (T =295 K, n = 29.1 atoms/nm?). The raw data (open circles) are compared with corresponding
resolution functions (dashed lines). Lower panels: corresponding MD spectra computed on a Lennard
Jones model representative of the same sample (blue lines). Middle panels: Comparison between
IXS spectra (open circles) and the corresponding molecular dynamics (MD) ones convoluted with the
resolution functions (red lines). Data are redrawn with permission from [65], which is copyrighted bt
the American Physical Society.

At this stage, a pending question relates to the Q-threshold, Qj,, defining the limit of validity
for the “extended hydrodynamic” regime. Based on the fit of MD spectra reported in Figure 8 and
discussed in Refs. [65-67], one could conclude that, at least for dense supercritical neon, Qj, is as high
as 7.5 nm~!. According to the plot, the transport parameters derived from best-fit results through
Equation (3a—c) are essentially consistent with the macroscopic, or hydrodynamic, limit at least for
Q lower than the values included in the shadowed area. Thanks to the high statistical accuracy
of Q-dependent data in Figure 8, one may infer that the simple hydrodynamic approximation is
not accurate for the thermal diffusivity. In fact, low-Q values of Dt seem slightly lower than the
macroscopic value.
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Figure 8. The relevant transport parameters deduced from the fits of of IXS spectra of deeply
supercritical neon [67] and those of MD spectra from a Lennard Jones model representative of the same
sample [65]. The shadowed area roughly locates the transition from the extended hydrodynamics and
the mesoscopic regime. Horizontal dashed lines represent the macroscopic (hydrodynamic) values
deduced from thermodynamic [59] and US spectroscopy data [28].

2.9. The Onset of a Positive Sound Dispersion in Liquid Noble Gases

In the various works on noble gases reported in literature, it was observed that transport
parameters drastically change upon relatively moderate P and T variations. This may not be surprising,
given that the large compressibility of these systems leads to substantial variations of inter-particle
distances and, consequently, of interaction strengths.

For instance, clear transformations were observed in the Q-dependence of the acoustic frequency
and damping when measured either in the liquid or in the supercritical phase. In particular, it was
generally found that, in liquid Ne and Ar [43,44,58,68] w;s systematically exceeds the hydrodynamic
prediction at low/intermediate Qs. A similar effect was also observed in liquid He [48,69,70], although
the quantum character of this sample makes this finding less straightforward to interpret. Furthermore,
in liquid phase samples an “anomalous” Q-dependence was also reported for the sound absorption
coefficient, as derived from the width of inelastic peaks, z;. Conversely, all these dispersive effects
seem to disappear at extreme supercritical conditions [40,62,65,66].

These trends are clearly exemplified by Figure 9, which compares spectral parameters obtained
in supercritical [65] and liquid [71] neon. Overall, data reported therein indicate that, while in liquid
Ne the sound frequency (ws) and absorption (zs) at low Qs are, respectively, higher and lower than
predicted by Equations (3a—c), no substantial discrepancy is instead observed in supercritical Ne. In
Figure 9 it can be also noticed that for the latter sample the agreement with the simple hydrodynamic

prediction is excellent up to Q ~ 7.5 nm 1.
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Figure 9. Left column: shift (panel a) and half width (panel c) of the inelastic peak in the spectrum
of supercritical Ne at T = 294 K and 7 = 29 atoms/nm? as derived from a best fit line-shape with
Equation (2). Red and black dots are IXS and MD data from [65] and [67] respectively. Data from [65]
are redrawn with permission from the original publication, under the copyright of the American
Physical Society. The solid lines represent the corresponding simplified hydrodynamic prediction in
Equation (3a—c) In which literature values of thermodynamic properties [72] and bulk viscosity [28]
coefficients were inserted. Right column: the corresponding quantities are reported for liquid neon
at T =35 K and 7 = 36.65 atoms/nm?. These data are adapted with permission from [71] , which is
copyrighted by the American Physical Society.

As mentioned, “anomalous” dispersive effects observed for the liquid sample can be ascribed to
the onset of a viscoelastic response induced by the coupling with a relaxation process.

To illustrate this point, it is useful to recognize that, in a spectroscopy experiment, the
scattering-excited acoustic waves cause a time-dependent perturbation of the local equilibrium of the
target sample. As a response, decay channels redistribute the energy carried by the acoustic wave
toward some internal degrees of freedom of the fluid. These energy rearrangements ultimately drive
the sample to relax in a new local equilibrium within a timescale T.

Two limiting scenarios can thus occur: (1) the time-dependent acoustic perturbation has period,
27/ ws, much longer than any internal degrees of freedom of the system. Under these conditions, the
latter relaxes to equilibrium “instantaneously” (i.e., within a timescale T << 1/w;s) and the acoustic
propagation essentially takes place over successive equilibrium states (viscous limit); (2) Conversely, if
the acoustic wave has an extremely short period, it “perceives” internal rearrangements as frozen-like
(T>>1/ws) and does not couple with them. Consequently, the acoustic propagation is elastic, i.e., it
occurs with virtually no energy loss (elastic limit).

Therefore, when a relaxation is active, the response of a system to the acoustic propagation
depends on how the acoustic frequency, ws, compares to the relaxation time. When ws increases
from the viscous (wsT << 1) to the elastic limit (wst >> 1), the viscoelastic transition manifests itself
through a systematic decrease of acoustic dissipation and a corresponding increase of sound velocity.
Since in scattering experiments wj is typically varied by changing Q (through the dispersion relation
ws = ws(Q)), in these measurements viscoelastic behavior is reflected by a Q-increase of ws and
a Q-decrease of zg.
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This explains why in panels 9b and 9d these shape parameters are, at the lowest Qs, respectively
larger and lower than their hydrodynamic predictions.

Once the phenomenological signature of a viscoelastic behavior is experimentally assessed, a more
quantitative understanding of this phenomenon could only come from the modeling of measured
line-shape with a viscoelastic model. The next section is devoted to the derivation of such a model
within the framework of the memory function formalism.

3. A Model for the Measured Spectral Shape
3.1. The Memory Function Formalism

Let A(t) = [A1(t).rerene. Ay (t)] be a vector whose components are stochastic variables describing
the properties of a system of N interacting particles (with N > v). It can be shown that under very

general conditions, the equation of motion of A(f) has the following form:

d%” —iQ-A(t) —f K(t)- At — T)dT + (1) )
0

In the formula above the following quantities have been introduced:

— — — — -1
e  The antisymmetric matrix iQ) = <A(0), iLA(0)> : <A(0), A(0)> is the proper frequency of the

system, which describes the oscillatory behavior of A(f). This matrix depends on equilibrium
(static) properties of the system. Here the symbol (.......) indicates a statistical (thermal) average.

e The variable f(t) = ¢i1=P L1 — ﬁ)LZ(O) is the random fluctuating force. Noticeably, the

~

presence of the (1 — P) term implies that <Z(O), f (t)> = 0, namely that the fluctuating force is

orthogonal (statistically uncorrelated) to Z(O)
— — -1

e Thematrix K(t) = f, f(t) )-( A(0), A(O)> is memory matrix, or memory functionif v =1,

as in the cases of interest here. It is worth noticing that the integrand in Equation (4) includes all

—

A(t) values between 0 and ¢, “weighted” by the memory, which thus defines the ability of the
system to keep memory of the past.

- —

The equation of motion for the correlation matrix C(t) = <A(t)A (0)> can be readily derived from
Equation (4) through a scalar product, while using the orthogonality between Z(O) and f (). Explicitly:

t
d%t) _i0-C(t) —JO K(7)- C(t — T)dt 5)
Equations (4) and (5) are referred to as memory equation or generalized Langevin equation either
for dynamic variables or for their correlations, respectively.
When dealing with a single dynamic variable, time reversal requirements impose () = 0. Using
a procedure described in various monographies [22,63], the Langevin equation can be solved following
an iterative approach, which eventually leads to the following recursive formula:

é(s) _ K3 O) -1
co) RO ! ©
s K0
S+..

customarily referred to as the continued fraction expansion. Here K;(t) is the i-th (iteration) order
memory function associated to the variable of interest,
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C(s) = Jdte*ZtC ()
0

while is the Laplace transform of the correlation function. The t = 0 values of the i-th order memory
function K;(t) can be determined by superimposing the sum rule fulfillment, which for the few lowest
orders yields:

Ki(0) = (w?) (7a)

Ki(0) _{w) (w?)
K20) = ~2k,0) = (>~ (at 70)

Ka(0) = 20 _ L [<°"6> - <<w4>)2] 70)

C2K(0) Mg [ (w2 \{w?)

n
Here (w") = in[d df,ft)]tzo J[c)]! = jo(;o W"C(w)dw - [C(0)]™ !is the n-order spectral moment

of the correlation function C(w).

Among all possible fluctuating variables, we are here interested in density fluctuations since
the Fourier-Laplace transform of their correlation function, S(Q,w) is directly measured by both IXS
and INS. S(Q,w) can be derived as the Fourier anti-transform of the intermediate scattering function

F(Qt)= [, <(5p(7, t)op* (7, O)> exp <15 . 7) d 7. The latter can be expressed through the continued

fractions expansion of Equation (4), whose 2-nd order truncation yields:

FQ5) l” () r

s+mp(Q,s)

Where m (Q,s) is the second order memory function for density fluctuations while S(Q) = F(Q,0) is
the static structure factor. The S(Q,w) can be derived from Equation (7) as follows:

SQuw) 1, [FQs=iw)] 1, [ (w?) -
s At [5@)] = Re l““ o T (0 = iw)]

The last term of the above formula can be calculated explicitly to eventually obtain:

S(Q/ (‘J) _ l <w2> TYZL/(Q,LU) (8)
S(Q) T [w? —<w2>—me”(Q,w)]2 + w?[my(Q,w)]?

where m;/(Q, w) and my” (Q, w) are, respectively, real and imaginary parts of the Fourier transform
of my(Q,t). At this stage, the problem of choosing the most appropriate model is shifted from S(Q,w)
to mp(Q,t), or mp(Q,w). In many literature works on liquid systems attempting a memory function
based modeling of the spectrum (see e.g. [13,73]), it can be shown that a sensible ansatz for the time
dependent memory function is given by:

mp(Q, ) = AZTexp (—t/t7) + Aiexp (—t/Ta) +20,0(t) 9)

The three terms in the right hand side of Equation (9) are (from left):

(1) The thermal contribution. The first term describes diffusive thermal motions triggered by
spontaneous temperature gradients. Its timescale and amplitude are 77 = (yDrQ?)~ ! and
AzT = (v —1)(crQ)? respectively, with D, cr, v and being the generalized diffusivity, the
isothermal velocity and the constant pressure to constant volume specific heats ratio.
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(2) The viscous relaxation contribution. The second term accounts for relaxation processes affecting
the viscosity and having a timescale 7, and amplitude A2 = (c, — 7c2)Q?, where ¢y is the
generalized infinite frequency or “elastic” sound velocity of the sample.

(3) The instantaneous contribution. The last term accounts for the coupling of density fluctuations
with the ultra-fast vibrational dynamics here accounted by a 6(t) profile. It was often found that
the amplitude 2T, has a quadratic Q-dependence and is essentially insensitive to thermodynamic
changes [20].

It is immediate to recognize that real and imaginary parts of Fourier transform of the memory
function in Equation (9) read as:

T
1+ ((UTT)

T,
+ A2 i

/ A2
mL(Q/w) - AT 1x1 N ((UT,X)

+ T, (10a)

2 2

(wrr)? > (ww)?

wm’? (Q,w) = A?
Q) T (wm)? 1+ ()

(10b)

respectively. These two equations can be inserted in Equation (8) to obtain a model for the classical
part of the line-shape.

It should be emphasized that at mesoscopic scales all transport and thermodynamic coefficients
introduced above and in the following, unless otherwise specified, are Q-dependent generalizations of
their macroscopic counterparts, although such a dependence in not made explicit in the notation.

The model used for the memory function often results from suitable approximation of Equation (9)
as appropriate to the sample, thermodynamic conditions and dynamic range probed. For simplest
systems as noble gases, the single exponential decay or viscoelastic model has shown to provide
a reasonable approximation [42].

Regardless on the approximation adopted, the exponential ansatz for the viscoelastic term, lends
itself two at least these two fundamental objections:

(1) Inprinciple, structural relaxation phenomena in highly viscous systems can be better described
by assuming a stretched exponential rather than a simple exponential time-decay of the memory
function [17,74,75]. However, the use of this model would introduce an unwanted additional
parameter (the stretching coefficient) and, perhaps more importantly, its Fourier transform
cannot be cast on an analytical form. Fortunately, for simplest systems as noble gases, of
interest in this paper, it is reasonable to assume that the simple exponential decay is a rather
accurate approximation.

(2) A second remark concerns the possible presence in the spectrum of a second inelastic excitation
as observed in systems as diverse as liquid water [73,76-78], tetrahedrally arranged glasses [79],
glass formers [80] liquid metals [81-85], complex biophysical samples [86-88] and mixtures [89].
The presence of this low frequency mode in the S(Q,w) is customarily ascribed to the onset of shear
mode propagation, although this assignment could seem suspicious as S(Q,w) couples primarily
with longitudinal movements only. In a liquid, the onset of shear waves in the spectrum of density
fluctuations can only occur via the so-called longitudinal-transverse coupling [73,76,90], that is a
mixing between acoustic modes having orthogonal polarization. The presence of this mode-mixing
is not properly accounted for by any known analytic model for the memory function. However,
such a coupling has never been observed in noble gases, likely due to the highly isotropic character
of their interatomic interaction, and will not be discussed in the remainder of this paper.

3.2. The Departure from the Hydrodynamic Shape of the Spectrum

In the hydrodynamic regime, density fluctuations are probed for long time lapses (t >> T) over
which the viscous relaxation is perceived as a very rapid decay, well approximated by a Markovian
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term (oc 5(1)) in the time-dependence of memory function. Overall, it can be shown that the following
memory function:

M ya(Q,1) = (v = 1) (erQ)exp (—7DrQ) +20,.Q%(1) an

is fully consistent with the Rayleigh-Brillouin triplet expressed by Equation (2) under the
approximation defined by Equation (3a—)

As mentioned, at mesoscopic scales all parameter entering in Equation (11) should be generalized
as Q dependent variables. Due to the lack of firm theories describing analytically the departure of the
spectrum from the simple hydrodynamic regime, this Q-dependence is usually determined empirically
through the best-fit modeling of spectra measured at different Qs.

Albeit phenomenological in character, this approach has proven to be successful in shedding
a deep light on the fast dynamics of various disordered systems, including noble gases. In particular, it
has elucidated many phenomenological aspects associated to the coupling of density fluctuations with
THz relaxation processes.

3.3. The Simple Viscoelastic Model

The simplest method to account for THz viscoelastic effects on the spectrum of density fluctuation
is to assume a single exponential decay of the memory function:

mp (Q,t) = Apexp (—t/7) (12)

where the amplitude of the memory function is fixed by the superimposition of sum rules to the
spectrum, which eventually leads to:

2 <(,U2> _ kBT

“o = 70y T Ms(Q) o (132)
4
Wl = EZZ; (13b)
4 2
Ay = (c%o _ cg) Q? = 2525 _ g(‘(’(;) (13¢)

here <w0> = 5(Q), while kg and M are the Boltzmann constant and atomic mass, respectively;

Equations (12) and (13a—c) define the so called Debye [91] or simple viscoelastic model [92].
Clearly, this model can hold validity only if: (1) thermal relaxations have a negligible weight on the
time decay of memory function, i.e., if y ~ 1 and (2) the contribution from fast relaxation (term oc 5(¢)
in Equation (9)) phenomena is also negligible.

Conceptually, the simple viscoelastic description stems from the idea that, upon crossing the
viscoelastic transition, the sound velocity cs, changes from ¢y = wp/Q =+/B/p with B being the bulk
modulus—as appropriate for a liquid—to ¢ = we/Q =+/M/p with M = B + 4/3G and G being,
respectively, the elastic and the shear modulus—as appropriate for solids. The superimposition of
sum rules links the finite Q generalization of B and M to the second and fourth normalized moments,
respectively. In a way the viscoelastic model through the sum rules’ fulfillment interpolates between the
low Q, viscous, response and the high Q elastic one. Specifically, one side, Equation (13a) extends to
intermediate Qs the macroscopic compressibility result [55] cr = 1/KgT/MS (0) on the other side, the
high Q link between M and normalized fourth moment, [1] is here extended down to the same Qs values.

4. 2001-2007: The Memory Function-Based Modeling of IXS Spectra of Noble Gases

The success of the memory function based modeling of experimental spectra was ultimately
enabled by the dramatic improvement of the incident flux and, consequently, of the count statistics
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prompted by the development of IXS. Furthermore, these high fluxes coupled with the reduced beam
cross section enabled spectroscopy measurements on substantially smaller samples, thus opening the
access to extreme thermodynamic conditions.

The first IXS work investigating viscoelastic effects on liquid and supercritical neon [6] took
advantage of these opportunities there by exploring an unprecedented broad thermodynamic range.
Measurements were performed on dense neon from liquid to supercritical conditions following both
an isochoric (1 = 29 atoms/nm?) and an isothermal (T = 32 K) path. The sound dispersion curves of
neon determined in such a work are reported in Figure 10. Best fit values of wy = cpQ and we = cnQ
derived from the best fit modeling of the line-shape are compared with the acoustic frequency evaluated
from the position of the maxima of current spectra Cr(Q,w), (};. The current spectrum is defined as the
Fourier transform of the correlation function between longitudinal components of atomic velocities.
The position of its maxima is often identified as the dominant acoustic frequency, this identification
being rigorous in the hydrodynamic limit only. Within the viscoelastic approach, (); is assumed to
undergo a transition between the viscous and the elastic limit respectively represented by wg and we.

Figure 10 displays the values of ()}, wy and wq of liquid (upper panel) and supercritical (bottom
panel) neon reported in Ref. [6] and compares them with the hydrodynamic straight line c;Q.

From the inspection of the two plots the following trends are readily noticed:

(1)  the liquid phase datum bears evidence for the more-than-linear behavior of (); (purple dots)
for Q < 10nm™!, i.e., the systematic bending of () upwards the hydrodynamic linear law and
toward wy (the mentioned PSD effect) . Conversely, the liquid phase point is characterized by
a sizable PSD.

(2)  Athigher Qs one can observe the “backward transition” of (); from wq to wy, which is actually
joined for Q larger than the position of the first di Qus (22 nm™1).

(3)  Again, viscoelastic effects disappear in deeply supercritical conditions (lower panel) since wy,
(); and w merge into each other (at least at the lowest Qs), thus suggesting that the viscous
relaxation term in Equation (9) has a vanishing strength.
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Figure 10. The acoustic frequency (), derived from the maxima of current spectra (magenta dots) are
reported against the zero (black dots) and infinite frequency (blue dots) limiting dispersions extracted
from best fits the IXS spectra of neon. Fits were obtained with a single exponential viscoelastic model
for the memory function decay (Equations (12)). The linear hydrodynamic sound dispersion (see
Equations (3a)) is also reported for reference as derived using tabulated values of the adiabatic sound
speed [71]. Data are adapted with permission from [6] copyrighted by American Physical Society.
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As previously mentioned, the validity of the simple viscoelastic model demands that the thermal
contribution to the memory function decay has negligible amplitude (y ~ 1). The soundness of
this assumption is supported by the bottom panel of Figure 11, where the value of v computed for
supercritical Ne [65,66] is reported.
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Figure 11. Lower panel: the generalized specific heat ratio as derived from MD computations for
Lennard Jones models simulating deeply supercritical neon ([66], red dots). The unit value is reported
as a dashed line for reference. Lower panel: the thermal diffusivity, as derived from MD simulations
in [66], while using the simplified hydrodynamic expression in Equations (3c). In all plots horizontal
dashed line indicate the macroscopic values (from National Institute of Standards and Technology
NIST database [72] of the symbols having corresponding color.

The curve is consistent with the macroscopic limit at the lowest Qs; however both curves suggest
that the weight of the thermal contribution (proportional to y — 1) is drastically reduced beyond
Q ~ 7 nm~! since therein vy differs from 1 by less than 10%.

The generalized thermal diffusivity obtained from the same work is reported in the upper plot.
One can confidently conclude that thermal diffusivity drastically decreases with Q consistently with
the INS result of Bell et al. [40]. Furthermore, it appears that in the supercritical sample the departure
from the hydrodynamic value happens at higher Q values and is much smoother. This seems consistent
with the extended hydrodynamic behavior (up to ~8 nm ™) of acoustic parameters already discussed
in reference to Figure 10. It has to be noticed that trends similar to the ones in Figure 11 were also
reported in a previous MD work on a Lennard Jones system representative of Ar at the triple point.

A final remark concerns the instantaneous term in the memory function decay (last term in
Equation (9)). It is reasonable to expect that this contribution is rather weak for low-viscosity and
non-associated fluids as noble gases. This conclusion is support the soundness of a simple viscoelastic
assumption. On the other hand in Ref. [42], using a double exponential model allows one to extract

essentially the same value for the two timescales involved, at least for Q > 4-5 nm~!.

4.1. Microscopic vs. Structural Relaxations

The results discussed in [6] indicate that the relaxation phenomenon causing the viscoelastic
response of neon has a microscopic origin as opposite to the structural character of relaxations
routinely observed in associated and/or highly viscous fluids. It should be emphasized that structural
and microscopic relaxations have different physical origin and phenomenology: the former are
cooperative in character and involve readjustments of the structure in response to a mechanical or
a scattering-induced perturbation. Consequently, they are prevalent in glass-forming systems or
associated fluids, i.e., fluids with extended network of bonds, this is, e.g., liquid water [12,13,93-95],
hydrogen fluoride [14], glycerol [17]. Since collective rearrangements of the structure are hampered by
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viscous processes, the timescale of structural relaxation follows a temperature dependence roughly as
steep as the one of viscosity.

Conversely, microscopic relaxations are induced by single molecules’ motions in the 10713 s
window and are dominating in simple systems, such as dense gases and non-associated, weakly
viscous, fluids. These fast motions can be naturally identified with vibration-like cage oscillations. Due
to their non-cooperative nature, microscopic relaxations are not significantly slowed down by viscosity
and their timescale exhibits only a weak dependence on thermodynamic conditions.

To quantitatively assess the hypothesized microscopic nature of viscoelastic processes in neon,
sensible variable to take as a reference is the mean free time between interatomic collisions,
T.. This depends on atomic size, mass and shape, as well as on the interaction potential and
thermodynamic state of the system. Without sophisticated calculations, a reasonable estimate can be
obtained assuming as model a hard sphere gas following the Maxwell-Boltzmann statistics. For this
system the inter-collision time can be easily calculated as:

M
_ 14
T =\ T6rdksT (14)

where d is the hard sphere diameter. In this context 7. can be identified as the characteristic timescale of
interatomic interactions and for microscopic, or collisional, relaxations is reasonable that the relaxation
time T and 1. have comparable values. In Figure 12 the Q-dependence of the reduced relaxation time
Y = 14 /7c is reported as obtained using T« values measured in neon in Ref. In spite of the important
scattering of data, it is clear that for Q larger than about 8 nm~! ¥ approaches the unit value, as
expected in the merely collisional limit. In this perspective, data in Figure 12 lead to the conclusion
that for Q > 8 nm~! THz relaxation processes of neon are intimately related to interatomic collisions.
This may be an expected conclusion, particularly since relaxation processes are activated by the
coupling of density fluctuations with some internal degree of freedom of the system. Given that
microscopic components of a monatomic fluid lack internal degrees of freedom, it seems natural to
identify local cage oscillations as the internal degree of freedom that density fluctuations couple to.

-3
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3
® T=40K ® n=347nmm
3
® T=50K ®  1n=367nm

3
n=385nm ]

5 10 15 20 25 30
Q(m™)

Figure 12. The Q-dependence of reduced relaxation time ¥ = T4 /1. as obtained from Ne data at
the thermodynamic conditions indicated in the plot. Data are adapted with permission from [6]
copyrighted by American Physical Society. The horizontal line marks the unit value characteristic of
the collisional regime.

At this stage, THz viscoelastic data available in literature can be used to compare the case of Ne to
the one even more studied of water. This comparison seems particularly meaningful due to the disparate
nature of microscopic structure and, in particular, to the presence of a large-scale connectivity in water.
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A meaningful reference to compare viscoelastic effects in different materials is provided by the
generalized longitudinal viscosity, whose link the viscoelastic spectral parameters is given by the formula:

plws — wh)T

= Q2 (15)

Figure 7 displays the Q-dependence of n; extracted (through Equation (15)) from the viscoelastic
modeling of neon spectra in [6] at the thermodynamic conditions considered in Figure 4. Results on
neon are compared with those obtained in liquid water from an IXS [13] and a joint INS and INS result
on heavy water [78]. Some clear features readily emerge from the comparison:

(1) Viscosity curves of Ne are only weakly dependent on thermodynamic conditions, although the
macroscopic viscosity in the spanned thermodynamic interval undergoes important variations.
Combined thermodynamic [72] and bulk viscosity data [28] of neon lead to estimate a more
than 300% variation of 1; within the probed thermodynamic range, clearly non reproduced
by mesoscopic measurements. Conversely, viscosity data of water in the same plot have a T
dependence as sharp as the one of macroscopic viscosity [96]. This discrepancy is likely due to
the large weight of structural processes in water, especially at the low Qs covered by data of [13].
Structural relaxations, owing to their collective nature can only be observed over long distances,
or, equivalently, at high Qs and are expectedly dominating in associate liquids.

(2) High T values of 1; approach from above low-Q neon data. This seems consistent with the
inferred link between structural relaxation and local readjustment of the hydrogen bond (HB)
network in water [12,13]. At the highest T5 the average number of HBs per molecule is sensibly
lower which weakens the strength of structural relaxations [13,19].

(3) The strong Q-dependence of 1; in water suggests that at Q higher than the values covered by
Ref. [13], viscosity curves of water and neon tend to get closer to each other also considering
that the latter have an essentially flat Q-dependence at high Qs. This impression is confirmed
by 1; data derived from extremely high resolution INS measurements of on deuterated water
(line + open squares symbols) at T = 288 K, which covered a Q-range larger than those of other
water data reported in the same plot.

Overall, data in Figure 13 lead to the conclusion that the merely collisional component of relaxation
in water becomes more relevant either at high T, i.e., upon approaching supercritical condition, or at
high Qs, where structural relaxation become less prevalent.

n, (Pas)

1E-6 Bl

10 20 30

Q (nm’")

Figure 13. Longitudinal viscosity data derived using Equation (15) either from IXS measurements [13],
on normal water (line + squares symbols), or from joint IXS and INS measurements [78] on heavy
water (line + open squares). Data are redrawn with permission from [13] and [78] copyrighted by the
American Physical Society. The temperatures are indicated in the plot. Neon data correspond to the
same thermodynamic conditions and symbols as in Figure 4 and are redrawn with permission from [6]
copyrighted by American Physical Society.
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4.2. 2001-2003: Quantum Effects on the Line-Shape

The treatment discussed so far is fully classical in character, being based on the assumption
that all involved operators are commuting and the correlation functions are even function of time
or, equivalently, that the spectral shape is symmetric in w. It can be assumed that the onset of
quantum effects primarily induces an asymmetry on the shape of S(Q,w) due to the different statistical
population of states having distinct w values. In all experimental and computational works mentioned
in this review, the spectrum is described within a quasi-classical approximation. According to such
approximation, quantum effects only influence the statistical populations of states having different ws,
through the so-called detailed balance principle [97]. This can be fulfilled in infinite possible ways; one
of the most commonly used consisting in the multiplication of the classical S(Q,w) profile by the factor
n(w,T) = hw/kgT[1 — exp(—hw/kgT)], i.e.:

hew 1

S(Qlw) = k37T 1 _exp(—ﬁCU/kBT)

] 5c(Q,w) (16)

Here Sc(Q, w) is the “classical”, or symmetric, part of the spectrum which is essentially the
Fourier transform of the intermediate scattering F(Q,f). While deriving a model for S¢(Q, w) it is
assumed that the operator defining the time evolution of density are classical commuting variables.
However, in real fluids quantum deviations may be important.

In this respect, it's worth distinguishing between two possible quantum effects on S(Q,w): i)
“diffraction” or “delocalization” effects, which arise from the non-commutative nature of Hamiltonian
operators; and ii) exchange effects, reflect the symmetry restriction to be fulfilled in a many body
system of identical particles.

Both effects depend on the de Broglie wavelengh A = £ (27t/mkp T)l/ 2

, however:

o Diffraction effects are relevant only when A matches the length-scales over wich the interparticle
potential U(r;;) varies apppreciably.

e  Exchange effects are instead relevant when Abecomes comparable with interatominc centers of
mass distance and are thus observable only for small mass atoms, for which such a distance can
be relatively small. These effects only emerge at very low temperature and responsible for few
“spectacular” quanto-mechanical manifestations, such as, e.g., Bose condensation and superfluidity.

One can reasonably assume that all sampple considerd in this review are either fully classical or
moderately quantum fluids, for which exchange effects can be discarded, while quantum deviation
can be achieved through 7f-order corrections of classical results. For moderately quantum fluids,
one can still derive F(Q,t) using a memory function formalism. However, the operators defining the
Hamiltonian of the system are generally non-commuting. For these systems, the time dependence of
density fluctuation is derived as the solution of the Heisenberg equation of motion:

5 (Q,1) = 1100, H] = 3 exp[iQ- ru ()], H] 7)

where the Hamiltonian, H, for a N particle system reads as:

v2
H= Y 3 +2U(m) (18)
i=1,..N i#]j

where V2 is the Laplacian operator and U (rij) is a pair potential acting between the i-th and j-th atoms.

Three IXS works performed at the beginning of the new millennium were focused on the onset
of quantum effects on the spectrum of supercritical He [98] and liquid Ne [99,100]. Whilst in the first
work , quantum effects were investigated for moderate Qs as a function of temperature and density; in
the two IXS works on Ne, due to the unprecedented wide Q range the whole transition in Q form the
classical (continuous) to the quantum (single particle) regimes was crossed.
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In all these IXS works, quantum effects were sought for in the coefficients governing the short
time dynamics, i.e. the spectral moments, which for a quantum fluid read as:

(W) = 1/i" (0" /ot") F (g, t)];—o = {[llo, HI H] ... HDI; (19)

In principle the (w™) can be computed from direct integration of IXS intensity. However, a rigorous
computation is non-trivial, since one must cope with all spurious intensity effects and the contribution
to the integral from the finite instrumental resolution. One can easily eliminate spurious intensity
effect—as long as these are w-independent—by dealing with spectral moments’ ratios. Conversely,
eliminating the resolution contribution would require a numerical deconvolution of the measured
line-shape, which is ill-determined unless the spectral shapes has the form of a single featureless peak.
In the IXS works mentioned above spectral moments were instead computed from direct integration of
best fit (non-convoluted) model line-shape. This procedure led to estimate that, for instance, quantum
effects in the neon measurement of Figures 12 and 13 although clearly sizable, are < 15%-20%, even at
the lowest Ts and/or the highest densities. This estimate is roughly consistent with the one reported
by Bell et al. [40]. One may wonder what influence these effects can have on the relaxation process.

It can be shown that the so-called quantum viscoelastic [101], an exponential ansatz, can still be
used. The direct consequence of quantum effects is a global softening of the interaction potential.
This stems from the delocalized nature of the tagged particle, which enables a deeper penetration in
the region where the interatomic potential is repulsive.

5. 2006-Present: Toward a New Vision of the Supercritical Phase

Based on the results previously discussed, it may be natural to conclude that the viscoelastic
behavior is a dynamic fingerprint of the liquid phase, which disappears when supercritical conditions
are reached. Indeed, the PSD has often been considered an almost universal feature of liquid aggregates,
since almost ubiquitously observed in liquid systems as disparate as, for instance hard sphere [102]
and Lennard-Jones models [103], noble gases [43,46,71], as well as diatomic [8], associated [12,13] and
glass forming [15,17] systems. Its disappearance at deeply supercritical conditions was considered as
an indication that supercritical fluids do not exhibit a high frequency viscoelasticity.

The actual test of this conjecture requires a thorough investigation of the THz spectral shape of
supercritical fluid at extreme P and T values. For many decades, this has been an almost prohibitive
task, owing to a number of experimental difficulties. As mentioned, the development of IXS brought
about a substantial narrowing of the beam cross section, while the improved performance of undulators
and crystal optics have dramatically enhanced the flux achievable in ordinary THz spectroscopy
measurements. This paved the way to new class of IXS experiments at extreme pressures based
upon the use of diamond anvil cells (DACs). Taking advantage of this opportunity, an IXS DACs
measurement on deeply supercritical oxygen demonstrated that a PSD of about 20% in amplitude is
visible at temperatures as high as nearly twice the critical one [104]. The results of this measurement
imposed a global revision of the previous idea that THz viscoelasticity phenomena could represent
a dynamical fingerprint of the liquid phase. Another breakthrough came from a successive joint XS
and MD work on Ar at extreme pressures [105], which showed the occurrence of a dynamic transition
upon crossing a boundary in the supercritical domain. A dramatic reduction in the amplitude of PSD
was, in fact, observed upon crossing the Widom line [106] and was interpreted as a crossover between
a “liquid like” and a “gas like” sub-regions of the supercritical phase. As a reminder, the Widom line
is defined as the locus of specific heat maxima, which emanates from the critical point toward the
supercritical domain with essentially the same slope as the coexistence line. For this reason, the Widom
line is often considered a “prosecution” of the coexistence line beyond the critical point.

Perhaps the most intriguing aspect of these results is that the mere existence of a boundary in the
thermodynamic plane challenges the long-standing vision of the supercritical phase as intrinsically
uniform [107], thus opening up unexplored theoretical scenarios and novel investigation opportunities.
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Another important result came from the recent conclusion that PSD effects are intimately related
to the onset of shear propagation.

The occurrence of a shear mode propagation in argon was first demonstrated by a MD simulation
on a Lennard Jones Ar [41,42]. As a common result, it was observed that at some wavelengths
transverse current spectra bore evidence for a well-defined maximum, indicating the occurrence of
a shear mode propagation.

More recently, a joint IXS and MD simulation work on deeply supercritical argon [108] evidenced
a close connection between the ability of a fluid system to support shear mode propagation and the
presence of a sizeable PSD. In this work IXS spectra were measured along a nearly isobaric path (with
P ~ 1 GPa) with T spanning the 300 K-436 K temperature range, while MD data spanned the same
isobar within a larger T-interval (up to 800 K).

As a result, it was there shown that the disappearance of the PSD in deep supercritical conditions
is accompanied by a parallel shear modes overdamping (see Figure 14). Overall, the fundamental
character of the PSD and its link to thermodynamic transformations (previously disputed by [109]),
are convincingly demonstrated in the work of Bolmatov ef al. There, in fact, the PSD and the shear
mode propagation are linked together and interpreted as different manifestations of the same universal
property of fluids: the onset of a high frequency viscoelasticity.

The results of this work suggest that the dynamic response of supercritical fluids is characterized
by different regimes characteristic of distinct thermodynamic subdomains:

(1) A gas-like domain, featured by the absence of PSD effects and the related inability of the fluid to
support transverse wave propagation and

(2)  Aliquid-like domain in which the system exhibits merely viscoelastic features such as a sizable
PSD and the onset of shear mode propagation.

Furthermore, in the work of Bolmatov and collaborators [108] the Frenkel line [110] was identified
as the crossover line between the two thermodynamic regions. The interpretation of the Frenkel line as
a crossover line demarcating the presence/absence of transverse acoustic propagation was originally
discussed in [111]. It was also previously predicted that the occurrence, across the Frenkel line, of both
dynamic and structural crossovers accompanied by changes in phonon states [112-115]. Finally, it is
worth mentioning a more recent work on deeply supercritical Ar [116], which provides compelling
evidence for important dynamical changes occurring upon crossing the Frenkel line and having the
form of strong localization of the longitudinal sound mode.
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Figure 14. The dispersion curve of deeply supercritical Ar at P = 1 GPa, as evaluated from the

maxima position of MD simulated longitudinal (red dots) and transverse current spectra (open circles).

The corresponding hydrodynamic dispersion is also reported as a dashed line for comparison. Adapted
with permission from [108]. Copyright (2016) of American Chemical Society.
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Most importantly, the assessed parallelism between the disappearance of the PSD and the
overdamping of shear mode finally indicates that the observed viscoelastic behavior in noble gases is
related relaxation process primarily affecting the shear viscosity.

6. Conclusions and Future Perspectives

This brief review results THz studies on the viscoelastic response of simplest systems as noble
gases have, across the years evidenced a rather complex behavior. The study of relaxation processes
in noble gases and, in particular, the comparison with those observed in more complex, associated
fluids led the scientific community to identify a new class of relaxation phenomena completely
different from structural (or x-)relaxations routinely observed glass formers and highly viscous
materials. These new relaxation phenomena are faster (in the sub-ps) and only weakly dependent
on thermodynamic conditions. Furthermore, their timescale is weekly affected by first neighbors
arrangement, as suggested to its flat Q-dependence which presents no reminiscence of S(Q) oscillations.

’

These collisional relaxations become visible also in associate fluids at temperature approaching critical
conditions—due to the decrease in network connectivity—and/or over short distances, over which
collective rearrangements cannot take place. These phenomena have recently observed to drastically
affect the shear components of viscosity and to be intimately related to the presence of transverse
acoustic modes propagation.

Most importantly, the study of viscoelastic phenomena at extreme supercritical conditions
challenges the long-standing vision of the supercritical phase as inherently uniform state of matter.
Nowadays these results call for a new and more complex understanding of the supercritical domain,
based on the existence of liquid-like (viscoelastic) and gas-like (merely viscous) sub-domains separated
by a thermodynamic boundary. Shedding further light onto this revolutionary hypothesis is certainly
one of the main motivations for the scientific community working in the field.

Looking ahead, further advances in the study of relaxation phenomena in noble gases and more
specifically in noble gases are still held back by inherent limitation in the used techniques. If from
one side INS is still hampered by both incident flux and kinematic limitation, the main drawback of
current IXS is the broad and slowly decaying (essentially Lorentzian) resolution wings. When focusing
on relaxation processes the relevant spectral information is gathered in the extremely low frequency or
quasi-elastic spectral window, often on the side of a dominating central peak. A narrow resolution
width is thus required to properly resolve the spectral features of interest, while a superior contrast is
necessary to discern them from the broad wings of the elastic line.

Fortunately, a new concept optics for both monochromatization and energy analysis holds the
promise for new generation spectrometers meting the required performance [117]. This will enable
to perform IXS experiments with a resolution function <1 meV broad and essentially Gaussian in
shape. The feasibility of such high resolution optical schemes has been demonstrated in a recent
work [118], while a beamline based on this working principle has recently become operative at the
new synchrotron NSLS II of Brookhaven National Laboratory [119]. This new opportunity is certainly
quite encouraging and, in the near future, deemed to further advance our knowledge of the complex
THz dynamics of simple liquids.
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