Next Article in Journal
Wing Geometry and Kinematic Parameters Optimization of Flapping Wing Hovering Flight
Previous Article in Journal
Modeling and Analysis of a Compliance Model and Rotational Precision for a Class of Remote Center Compliance Mechanisms
Article Menu

Export Article

Open AccessArticle
Appl. Sci. 2016, 6(12), 387; doi:10.3390/app6120387

Fictitious Reference Iterative Tuning-Based Two-Degrees-of-Freedom Method for Permanent Magnet Synchronous Motor Speed Control Using FPGA for a High-Frequency SiC MOSFET InverterMOSFET Inverter

Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
*
Author to whom correspondence should be addressed.
Academic Editor: Chien-Hung Liu
Received: 28 August 2016 / Revised: 5 November 2016 / Accepted: 18 November 2016 / Published: 28 November 2016
(This article belongs to the Section Energy)

Abstract

This paper proposes proportional-integral/proportional gain controller parameter tuning in a two-degrees-of-freedom (2DOF) control system using the fictitious reference iterative tuning (FRIT) method for permanent magnet synchronous motor (PMSM) speed control using a field-programmable gate array (FPGA) for a high-frequency SiC MOSFET (metal oxide semiconductor field-effect transistor) inverter. The PI-P (proportional-integral/proportional) controller parameters can be tuned using the FRIT method from one-shot experimental data without using a mathematical model of the plant. Particle swarm optimization is used for FRIT optimization. An inverter that uses a SiC MOSFET is presented to achieve high-frequency operation at up to100 kHz using a switching pulse-width modulation (PWM) technique. As a result, a high-responsivity and high-stability PMSM (permanent magnet synchronous motor) control system is achieved, where the speed response follows the ideal response characteristic for both the step response and the disturbance response. High-responsivity and optimal disturbance rejection can be achieved using the 2DOF control system. FPGA-based digital hardware control is used to maximize the switching frequency of the SiC MOSFET inverter. Finally, an experimental system is set up, and experimental results are presented to prove the viability of the proposed method. View Full-Text
Keywords: fictitious reference iterative tuning; PI-P controller; 2DOF; PMSM; SiC MOSFET inverter fictitious reference iterative tuning; PI-P controller; 2DOF; PMSM; SiC MOSFET inverter
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Harahap, C.R.; Hanamoto, T. Fictitious Reference Iterative Tuning-Based Two-Degrees-of-Freedom Method for Permanent Magnet Synchronous Motor Speed Control Using FPGA for a High-Frequency SiC MOSFET InverterMOSFET Inverter. Appl. Sci. 2016, 6, 387.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Appl. Sci. EISSN 2076-3417 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top