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Abstract: Location estimation plays a crucial role in Location-Based Services (LBSs) with satisfactory
user experience. The Wireless Local Area Network (WLAN) localization approach is preferred
as a cost-efficient solution to indoor localization on account of the widely-deployed WLAN
infrastructures. In this paper, we propose a new WLAN Received Signal Strength (RSS)-based indoor
localization approach using the semi-supervised manifold alignment with dimension expansion.
In concrete terms, we first construct an innovative objective function based on the augmented physical
coordinates and the corresponding WLAN RSS measurements. Second, the closed-form solution to
the objective function is derived out according to the Lagrange multiplier equation, which results
in the manifold in physical coordinate space. Third, the target location is estimated by matching
the transformed newly-collected RSS against the manifold. The localization performance with noise
perturbation is analyzed upon the constructed objective function, and meanwhile, the closed-form
solution to the objective function with respect to multiple types of measurements is also derived out
for the sake of leveraging all of the potential measurements for indoor localization. The extensive
testing results show that the proposed approach performs well in localization accuracy even at
low calibration load, and its performance can be further improved by using multiple types of
measurements for localization.

Keywords: WLAN; indoor localization; semi-supervised learning; manifold alignment;
dimension expansion

1. Introduction

In modern society, people spend almost 90% of their time within indoor environments [1],
which provides great potential and vast development prospects towards indoor Location-Based
Services (LBSs) [2,3]. Although the Global Navigation Satellite System (GNSS) [4] is regarded as
the most prestigious and prevalent solution to outdoor localization, it has deteriorated localization
performance or even has no assistance for localization by considering the serious signal attenuation in
the structure-complex indoor environment, such as shopping malls, airports and underground parking
lots [5]. Therefore, various indoor localization alternatives are proposed to make up for the GNSS in
indoor environments, like the Assistant Global Positioning System (A-GPS) [6], cellular networks [7],
Wireless Local Area Networks (WLAN) [8], Bluetooth [9], Radio Frequency Identification (RFID) [10],
Near Field Communication (NFC) [11], Visible Light Communications (VLC) [12], Infrared Radiation
(IR) [13] and motion sensor-based [14] localization approaches. Among them, the WLAN-based
localization approach is preferred due to the wide deployment of WLAN infrastructures [15].
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The measurements, like Time Of Arrival (TOA) [16], Time Difference Of Arrival (TDOA) [17] and
Angle Of Arrival (AOA) [18], as well as the propagation model [19] and Received Signal Strength
(RSS) fingerprinting [20], have attracted significant attention for WLAN localization. As the most
frequently-used measurement, RSS fingerprinting [21] is featured with no extra hardware requirement.
However, the RSS fingerprinting involves time-consuming and labor-intensive location calibration,
which significantly limits its application to the large-scale indoor environment.

To solve this problem, the semi-supervised learning approach [22] has been studied intensively for
indoor localization based on a limited number of calibrated locations with known physical coordinates
and the corresponding collected RSS measurements. On the one hand, the semi-supervised learning
approach requires a small number of calibrated locations, which can effectively relieve the load for
the off-line site survey of the target environment. On the other hand, the satisfactory localization
performance is normally reached by the semi-supervised learning approach without any motion sensor
assistance. As one of the most popular representatives in semi-supervised learning, the manifold
alignment approach has been carefully investigated [23]. The conventional manifold alignment
approaches generally assume that the measurements collected at nearby locations, which are used for
localization, are featured with good neighborhood relations in a low-dimensional manifold. Based on
this, the solution to the objective function in manifold alignment is calculated as the closed-form in
the low-dimensional manifold. Then, the target locations are estimated by the closed-form solution
to the objective function in the low-dimensional manifold. This approach heavily depends on the
similarity of the calibrated fingerprints in the low-dimensional space, which cannot well preserve the
neighborhood relations of the calibrated fingerprints, and meanwhile, its objective function involves
the online RSS measurements, which decrease the stability of transformation relations among the
calibrated fingerprints.

Different from the conventional manifold alignment approaches, we propose a new one that
can better preserve the neighborhood relations of the physical coordinates and the corresponding
RSS measurements at nearby locations. The basic idea of the proposed approach is to perform the
augmentation of physical coordinates to make the dimensions of the augmented physical coordinates
and RSS measurements equal and then construct the two transformation matrices with respect to
the augmented physical coordinates and the corresponding raw RSS measurements. After that, the
target locations can be estimated by using the neighbors in the common manifold transformed from
the augmented physical coordinates, as well as the newly-collected RSS measurements. In sum, the
three main contributions of this paper are summarized as follows. First of all, an innovative objective
function in manifold alignment is constructed based on the augmented physical coordinates and the
corresponding RSS measurements, which can be easily generalized to the scenario with multiple types
of measurements used for localization. Second, the localization performance under different noise
perturbation is discussed for the sake of exploring the robustness of the function-based localization
solution in various noise environments. Third, by the extensive testing results, a higher localization
accuracy is verified to be achieved by the proposed approach compared with the existing Weighted
K-nearest Neighbor (WKNN), Bayesian, kernel and manifold alignment approaches.

The rest of this paper is organized as follows. In Section 2, we survey some related work on the
manifold alignment approaches used in RSS fingerprinting-based indoor localization. In Section 2, the
proposed approach is described in detail. Then, the testing results are presented in Section 4. Finally,
in Section 5, we conclude the paper and provide some future directions.

2. Related Work

As we know, the RSS fingerprinting-based indoor localization requires the site survey of the
target environment, which is always time-consuming and labor-intensive. To solve this problem,
the semi-supervised learning approach has attracted significant attention by using a small number
of calibrated locations to achieve the satisfactory localization performance [24]. As one of the most
popular representatives in semi-supervised learning, the manifold alignment approach is much
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preferred for indoor localization. This approach is based on the assumption that the measurements
collected at nearby locations, which are used for localization, like the RSS, TOA and AOA,
are featured with good neighborhood relations in a low-dimensional manifold [25]. By perturbing the
local geometries of physical coordinates, the manifold alignment approach in [26] locates the target
with a limited number of calibrated locations. The authors in [27] give a solution to the fast radio
map construction in indoor WLAN environment by using the crowdsourced manifold alignment
approach. Additionally, the locations of the target are estimated by matching the newly-collected
RSS measurements against the radio map in a low-dimensional manifold. By employing the
unsupervised manifold alignment approach, the authors in [28] utilize the WLAN RSS fingerprints
and newly-collected RSS measurements to construct a source dataset and meanwhile rely on the
coordinates of RSS fingerprints to construct a destination dataset. After performing the transformation
from the source into destination datasets, the target is located based on the neighbor matching of
the transformed data with respect to the newly-collected RSS measurements and coordinates of RSS
fingerprints in the common manifold. The authors in [29] apply the local tangent space alignment
and Multidimensional Scaling (MDS) approaches to develop a new manifold learning approach,
by which the pairwise distance between every two RSS, TOA and TDOA measurements is considered
to construct various local maps, and the overlap of different local maps is aligned to obtain the relative
global coordinates in physical space. The manifold flattering approach for anchor-less localization
is proposed in [30]. This approach relies on the Euclidean distance matrix to gradually infer the
unknown distances among the newly-collected RSS measurements and then applies the MDS approach
to calculate the relative locations of the target. The authors in [31] propose to use the semi-supervised
Laplacian regularized least squares approach for localization. Specifically, this approach depends
on an alignment criterion to learn the appropriate kernel function with respect to the similarities
between different anchors and then uses the manifold regularization-based semi-supervised learning
approach to locate the target. A motion sensor-free localization approach is discussed in [32], in which
the floor plan and temporal RSS sequences are used to perform the graph matching-based manifold
alignment. The authors in [33] embed the RSS measurements collected on different floors into a
common low-dimensional manifold and then align the labeled and unlabeled RSS measurements for
localization. In all, the previous literature mainly focuses on the similarity of the calibrated fingerprints
in the low-dimensional space and involves the online RSS measurement in the objective function,
which sometimes cannot preserve the neighborhood relations of the calibrated fingerprints well and
guarantee the stability of transformation relations with respect to the physical coordinates and the
related RSS measurements.

Different from the approaches mentioned above, the proposed semi-supervised manifold
alignment with dimension expansion is based on an innovative objective function that can better
preserve the neighborhood relations of the augmented physical coordinates and the corresponding
RSS measurements at nearby locations. Our goal is to obtain the transformation matrices with respect
to the augmented physical coordinates, as well as the corresponding RSS measurements, which form
the common manifold, and then achieve the localization of the target based on merely the known
transformation relations. In addition, the localization performance under different noise perturbation
conditions is analyzed, and meanwhile, the generalization of the objective function to the scenario
with multiple types of measurements used for localization is also discussed.

3. Algorithm Description

3.1. Location Calibration

In the target environment, we denote the sets of l calibrated locations, as well as corresponding
RSS measurements as H′ = {(c11, c12), · · · ,(cl1, cl2)} and G = {(rss11, · · · , rss1m), · · · ,(rssl1, · · · ,
rsslm)}, where (ci1, ci2)(1 ≤ i ≤ l) is the two-dimensional physical coordinate of the i-th calibrated
location. (rssi1, · · · , rssim) is the RSS measurement collected at (ci1, ci2), where rssik(1 ≤ k ≤ m) is the
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RSS value from the k-th AP at the i-th calibrated location and m is the number of Access Points (AP).
To guarantee that the physical coordinates and RSS measurements have the same dimension, we simply
replicate the physical coordinate of each calibrated location m/2 times (when m is odd, the replication
will do (m− 1)

/
2 times, which is ended by adding the former element of the two-dimensional physical

coordinate, such that H =

(c11, c12, ..., c11, c12, c11︸ ︷︷ ︸
m in total

), · · · ,(cl1, cl2, ..., cl1, cl2, cl1︸ ︷︷ ︸
m in total

)

) to obtain the set of

l augmented physical coordinates H =

(c11, c12, ..., c11, c12︸ ︷︷ ︸
m in total

), · · · ,(cl1, cl2, ..., cl1, cl2︸ ︷︷ ︸
m in total

)

. To be clearer,

the result of location calibration is shown in Figure 1.

(rss11,...,rss1m) (c11,c12,...,c11,c12)

(rss21,...,rss2m)

(rssi1,...,rssim)

...

(rssl1,...,rsslm)

(c21,c22,...,c21,c22)

(ci1,ci2,...,ci1,ci2)

...

(cl1,cl2,...,cl1,cl2)

Augmented physical coordinatesRSS measurements

... ...

m in total

Figure 1. Result of location calibration.

3.2. Manifold Alignment with Dimension Expansion

Let X = {xi} and Y= {yi} (1 ≤ i, j ≤ l) be the manifolds corresponding to the augmented
physical coordinates and the corresponding RSS measurements, respectively. Here, the augmented
physical coordinates and the corresponding RSS measurements are two different types of
measurements. Then, the objective function in the proposed manifold alignment for indoor localization
is constructed as:

arg minX,Y{ ∑
i∈{1,2,...,l}

(||xi − yi||2) + ∑
i,i′∈{1,2,...,l}

(||xi − xi′ ||2Sx
ii′) +

∑
j,j′∈{1,2,...,l}

(||yj − yj′ ||2Sy
jj′)}

(1)

where Sx
ii′ = e−||hi−hi′ ||2 and Sy

jj′ = e−||gj−gj′ ||2 ; hi and gj stand for the i-th augmented physical
coordinate and j-th RSS measurement, respectively; and the notation “|| • ||” represents the two-norm
operation. In (1), the first term is to guarantee that the manifolds corresponding to the augmented
physical coordinates and the corresponding RSS measurements can be well aligned, while the second
and third terms are to preserve the neighborhood relations of the augmented physical coordinates and
the corresponding RSS measurements at nearby locations, respectively. Since the manifolds X and Y are
obtained from the transformation of the augmented physical coordinates and the corresponding RSS
measurements, we can convert the objective function into the one by optimizing the transformation
matrices with respect to the augmented physical coordinates and the corresponding RSS measurements,
Px and Py, such that:

arg minPx ,Py{ ∑
i∈{1,2,...,l}

(||Px
Thi − Py

Tgi||2) + ∑
i,i′∈{1,2,...,l}

(||Px
Thi − Px

Thi′ ||2Sx
ii′) +

∑
j,j′∈{1,2,...,l}

(||Py
Tgj − Py

Tgj′ ||2Sy
jj′)}.

(2)
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Since:

∑
i∈{1,2,...,l}

||Px
Thi − Py

Tgi||2 = Tr(Px
THHTPx + Py

TGGTPy − Px
THGTPy − Py

TGHTPx), (3)

∑
i,i′∈{1,2,...,l}

(||Px
Thi − Px

Thi′ ||2Sx
ii′) = 2Tr(Px

THLxHTPx), (4)

and:

∑
j,j′∈{1,2,...,l}

(||Py
Tgj − Py

Tgj′ ||2Sy
jj′) = 2Tr(Py

TGLyGTPy), (5)

where the notation “Tr(•)” represents the trace of the matrix; Lx = Dx − Sx and Ly = Dy − Sy;

Sx =
{

Sx
ii′
}

and Sy =
{

Sy
jj′

}
; and Dx =

{
Dx

ii′
}

and Dy =
{

Dy
jj′

}
are the diagonal matrices satisfying

Dx
ii = ∑l

i′=1 Sx
ii′ and Dy

jj = ∑l
j′=1 Sy

jj′ , respectively; we can convert (2) into:

arg minPx ,Py{Tr(Px
THHTPx + Py

TGGTPy − Px
THGTPy − Py

TGHTPx)+

2Tr(Px
THLxHTPx) + 2Tr(Py

TGLyGTPy)}
(6)

Let P =

(
Px

Py

)
, Z =

(
H 0
0 G

)
and Ω =

(
I + 2Lx −I
−I I + 2Ly

)
, where I is a l× l unit matrix.

Then, we can simply rewrite (6) as:

arg minP

{
Tr
(

PTZΩZTP
)}

(7)

By applying the scale and translation invariance constrains of the solution to (7), we set
PTZZTP = I′ and PTZe = 0, where I′ is a m × m unit matrix and e is a 2l × m all one matrix.
Using the Lagrange multiplier approach, we can construct the Lagrange equation in (8).

L(P) = PTZΩZTP− λ(PTZZTP− I′)− µPTZe (8)

where λ and µ are the Lagrange coefficients. Calculating the partial derivative of L(P) with respect
to P, we obtain:

∂L(P)
∂P

= 2ZΩZTP− 2λZZTP− µZe (9)

By setting (9) equal to zero, one has:

2ZΩZTP− 2λZZTP− µZe = 0 (10)

Meanwhile, by multiplying VPT to (10), we can have:

VPT(2ZΩZTP− 2λZZTP)− µVPTZe = 0 (11)

where V is a 2m×m matrix satisfying VPT = I” and I” is a 2m× 2m unit matrix; we note that PTZe = 0;
thus, we can obtain:

2ZΩZTP− 2λZZTP = 0 (12)

Let ZΩZT = E and ZZT = M. Then, we can rewrite (12) as:

EP = λMP (13)

Finally, since PTZΩZTP=λPTZZTP=λI’, the solution to (7) is equivalent to the solution of the m
generalized eigenvectors, which are corresponding to the m non-zero smallest generalized eigenvalues
in (13).
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3.3. Target Localization

For each location query, we transform the newly-collected RSS measurement r = (rssnew
1 , rssnew

2 ,
..., rssnew

m ) into Py
TrT, where rssnew

k (1 ≤ k ≤ m) is the newly-collected RSS value from the k-th AP.
After that, we locate the target at the location, which is closest to rssnew

k (1 ≤ k ≤ m) in manifold
N = {Px

THT}, such that:
arg min

hi

{
||Px

Thi
T − Py

TrT||2
}

(14)

3.4. Noise Perturbation

Considering the noise perturbation in the indoor environment, we focus on the impact of an
increment of G, ∆, on the localization performance in this section. In this case, the objective function
in (6) can be converted into:

minPx ,Py{Tr(Px
THHTPx + Py

T(G+∆)(G+∆)TPy − Px
TH(G+∆)TPy − Py

T(G+∆)HTPx)+

2Tr(Px
THLxHTPx) + 2Tr(Py

T(G+∆)Ly(G+∆)TPy)}
= minPx ,Py{Tr(Px

THHTPx + Py
TGGTPy − Px

THGTPy − Py
TGHTPx) + Tr(Py

TG∆TPy + Py
T∆TGPy+

Py
T∆∆TPy − Px

TH∆TPy − Py
T∆HTPx) + 2Tr(Px

THLxHTPx) + 2Tr(Py
TGLyGTPy)+

2Tr(Py
TGLy∆TPy) + 2Tr(Py

T∆LyGTPy) + 2Tr(Py
T∆Ly∆TPy)}

(15)

Similarly, we rewrite (15) as:

minP{Tr(PTZΩZTP + PTZΩ

(
0 0
0 ∆

)T

P + PT

(
0 0
0 ∆

)
ΩZTP+

PT

(
0 0
0 ∆

)
Ω

(
0 0
0 ∆

)T

P)} s.t.PTZZTP = I’, PTZe = 0

(16)

To obtain the solution of P in (16), we construct the Lagrange equation as follows.

L(P) = PTZΩZTP + PTZΩ

(
0 0
0 ∆

)T

P + PT

(
0 0
0 ∆

)
ΩZTP+

PT

(
0 0
0 ∆

)
Ω

(
0 0
0 ∆

)T

P− λ(PTZZTP− I’)− µPTZe

(17)

Then, the partial derivative of L(P) with respect to P equals:

∂L(P)
∂P = 2ZΩZTP− 2λZZTP− µZe + ZΩ

(
0 0
0 ∆

)T

P + ZΩT

(
0 0
0 ∆

)T

P+

(
0 0
0 ∆

)
ΩTZTP +

(
0 0
0 ∆

)
ΩZTP + 2

(
0 0
0 ∆

)
Ω

(
0 0
0 ∆

)T

P

(18)

Since ΩT = Ω, (18) can be equivalent to:

∂L(P)
∂P = 2ZΩZTP− 2λZZTP− µZe + 2ZΩ

(
0 0
0 ∆

)T

P + 2

(
0 0
0 ∆

)
ΩZTP+

2

(
0 0
0 ∆

)
Ω

(
0 0
0 ∆

)T

P

(19)
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Due to:

2ZΩ

(
0 0
0 ∆

)T

P + 2

(
0 0
0 ∆

)
ΩZTP + 2

(
0 0
0 ∆

)
Ω

(
0 0
0 ∆

)T

P

= 2

(
0 −H∆T

−H∆T G(I + 2Ly)∆T + ∆(I + 2Ly)GT + ∆(I + 2Ly)∆T

)
P

, (20)

we can rewrite (19) as:

∂L(P)
∂P = 2ZΩZTP− 2λZZTP− µZe+

2

(
0 −H∆T

−H∆T G(I + 2Ly)∆T + ∆(I + 2Ly)GT + ∆(I + 2Ly)∆T

)(
Px

Py

)
= 2ZΩZTP− 2λZZTP− µZe+

2

(
−H∆TPy

−H∆TPx + (G(I + 2Ly)∆T + ∆(I + 2Ly)GT + ∆(I + 2Ly)∆T)Py

)
(21)

3.4.1. Impact of Noise Perturbation on P

We now explore the difference between the partial derivative in (9) and (21). From (21), if P stays
unchanged as the value ∆ increases, then the value −H∆TPy will decrease, and consequently, we have:

2ZΩZTP− 2λZZTP− µZe + 2

(
−H∆TPy

−H∆TPx + (G(I + 2Ly)∆T + ∆(I + 2Ly)GT + ∆(I + 2Ly)∆T)Py

)
6= 0 (22)

Thus, P will change as the value ∆ increases. In addition, since:

2ZΩZTP− 2λZZTP = 2

(
H(I + 2Lx − λI)HT −HGT

−GHT G(I + 2Ly − λI)GT

)
P (23)

where Lx=Dx − Sx and Ly=Dy − Sy are the symmetric matrices, we can obtain that the expectation of
each column in I + 2Lx − λI, Ct (1 ≤ t ≤ l), equals:

E(Ct) =
1− λ

l
(24)

where the notation “E(•)” represents the expectation operation.
At the same time, it is obtained that λ� l from (15), and therefore, the value E(Ct) should be zero

from the statistical aspect. In this case, we have E(H(I + 2Lx − λI)) = 0 and E(G(I + 2Ly − λI)) = 0.
To make (21) equal to zero, −H∆TPy −HGTPy is required to be a constant, and thereby, the value Py

will decrease as the value ∆ increases. Similarly, −H∆TPx + (G(I + 2Ly)∆T + ∆(I + 2Ly)GT + ∆(I +
2Ly)∆T)Py −GHTPx is also required to be a constant by the zero expectation constraint. Therefore, we
conclude that the value P decreases as the value ∆ increases.

3.4.2. Impact of Noise Perturbation on Localization Accuracy

As the value ∆ increases, we assume that the decreased values with respect to the solutions
to (7), Px

T and Py
T, are Px

T−Φ1 and Py
T−Φ2, respectively. We notate hp(1 ≤ p ≤ l) as the estimated

coordinate in HT for the newly-collected RSS measurement r without the variation ∆. For simplicity
and without losing generality, we select the one-norm operation for the localization. Then, we have:

||Py
Thp−Px

TrT||1 = min
j∈{1,2,...,l}

{||Py
Thj−Px

TrT||1} (25)
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where the notation “|| • ||1” represents the one-norm operation.
Under the variation ∆, we assume that the transformed vector for the newly-collected

RSS measurement, r, is (Px
T−Φ1)rT, and the manifold corresponding to HT is {(Py

T−Φ2)h1,
(Py

T−Φ2)h2, ..., (Py
T−Φ2)hl}. Based on this, the distance between hp and rT is changed into:

||(Py
T−Φ2)hp−(Px

T−Φ1)rT||1= ||Py
Thp − Px

TrT −Φ2hp+Φ1rT||1, (26)

and meanwhile, the distance between hk(k ∈ {1, 2, ..., l}, k 6= p) and rT equals:

||(Py
T−Φ2)hk−(Px

T−Φ1)rT||1= ||Py
Thk−Px

TrT−Φ2hk+Φ1rT||1. (27)

Then, it is obtained that ||(Py
T−Φ2)hp−(Px

T−Φ1)rT||1 − ||(Py
T−Φ2)hk−(Px

T−Φ1)rT||1 is
equivalent to ||Py

Thp−Px
TrT−Φ2hp||1 − ||Py

Thk−Px
TrT−Φ2hk||1, and due to the arbitrariness of

hk, we have:
||Py

Thp−Px
TrT−Φ2hp||1 − ||Py

Thk−Px
TrT−Φ2hk||1 > 0 (28)

Therefore, hk becomes the estimated location with respect to r, which will be deteriorated as the
value ∆ increases.

3.4.3. Impact of System Parameters on Localization Accuracy

First of all, with the increase of number of samples at each calibrated location, the RSS variation
can be described as:

lim
u→∞

(
∑n

i=1 (rij −mj1)
2

n
−

∑n+u
i=1 (rij −mj2)

2

n + u
)> 0 (29)

where rij is the RSS from the j-th AP in the i-th RSS sample; n is the number of samples; and mj1 and
mj2 are the mean of n and n + u RSSs from the j-th AP, respectively. Based on (29), we can easily obtain
that as the sample number increases, the value ∆ will decrease, and consequently, higher localization
accuracy is achieved.

Second, as the number of calibrated locations increases, the values Lx and Ly decrease, which will
result in the decrease of the values H(I + 2Lx − λI) and G(I + 2Ly − λI) accordingly. Then, to make
(23) equal to zero, the value P should be increased, which indicates that an increase of the number of
calibrated locations results in a higher localization accuracy.

Third, with the increase of augmentation dimension from m to 2m, 3m, etc., the values Lx and
Ly increase, which will result in the increase of the values H(I + 2Lx − λI) and G(I + 2Ly − λI)
accordingly. In this case, to make (23) equal to zero, the value P should be decreased, which indicates
that the increase of augmentation dimension results in the lower localization accuracy.

3.5. Multiple Measurements

To be general, we extend the objective function to the scenario with multiple types of
measurements used for localization in (30).

arg min{XN1,XN2,...,XNt}{ ∑
w,v∈{1,2,...,t} and w 6=v
q∈{1,2,...,l}

(||xNwq − xNvq ||2) + ∑
q,q′∈{1,2,...,l}

(||xN1q − xN1q′
||2SN1

qq′ )+

∑
q,q′∈{1,2,...,l}

(||xN2q − xN2q′
||2SN2

qq′ ) + ... + ∑
q,q′∈{1,2,...,l}

(||xNtq − xNtq′
||2SNt

qq′)}
(30)

where XNu =
{

xNuq

}
(1 ≤ q ≤ l, 1 ≤ u ≤ t) is the u-th manifold corresponding to u-th type

of measurements Du =
{

duq
}
(1 ≤ q ≤ l) and SNu

qq′ = e−||duq−duq′ ||2 and t is the total types of
measurements.



Appl. Sci. 2016, 6, 338 9 of 18

Let P =


P1

P2
...

Pt

, Z =


D1 0 · · · 0
0 D2 · · · 0
· · · · · · · · · · · ·
0 0 · · · Dt

, and Ω =


(t− 1)I + 2L1

−I
· · ·
−I

−I
(t− 1)I + 2L2

· · ·
−I

· · · −I
· · · −I
· · · · · ·
· · · (t− 1)I + 2Lt

, where Pu is the transformation matrix with respect to Du. Similarly, we can

convert (30) into (the details of the derivation are shown in the Appendix):

arg min
P
{Tr(PTZΩZTP)} s.t.PTZZTP = It, PTZet = 0. (31)

After the solution of P in (31) is obtained, we locate the target by:

arg min
laug

{
∑t

p=2 ||P1
Tlaug

T − Pp
Tnewp

T||2
}

(32)

where P1 and Pp(2 ≤ p ≤ t) stand for the transformation matrices with respect to the augmented
physical coordinates Iaug and p-th type of measurement, respectively, and newp is the p-th type of
newly-collected measurement in (33).

newp = (newp
1 , newp

2 , ..., newp
m) (33)

where newp
k is the newly-collected value corresponding to p-th type of measurement from the k-th AP.

4. Testing Results

4.1. Testing Results

To demonstrate the analytical results derived in the previous section, we perform the simulations
about the proposed approach under different noise perturbations, signal propagation models
(see Table 1) and the number of calibrated locations and RSS samples in an indoor environment
with the dimensions of 56 m × 19.3 m, as shown in Figure 2. This environment is covered by five
WLAN APs, notated as AP1, · · · , AP5, and meanwhile, there are 93 labeled locations (with “•”),
which are evenly distributed with 2-m intervals. Here, the simulation parameters are set as follows.
The standard deviation of noise ranges from 2 dB to 5 dB; the ratio of calibrated fingerprints ranges
from 30% to 100%; and the number of RSS samples at each RP ranges from 150 to 200.

Table 1. Parameters in different signal propagation models.

Types of Models Models Formulation Parameters Setting

Log-distance [33] P(d) = P(d0)− 10n log( d
d0
)− χσ

P(d0) = −12 dBm; n = 2;
d0 = 1 m; σχσ = 2 dB

Multi-wall [34] P(d) = P(d0)− 10n log( d
d0
)−WaNw

P(d0) = −12 dBm; n = 2
d0 = 1 m; Wa = 10 dB

Supachai [35] P(d) = P(d0)− 10nSF log( d
d0
)− FAF− χσ

P(d0) = −12 dBm; nSF = 2;
d0 = 1 m; σχσ = 2 dB; FAF = 5 dB

Breakpoint [36]
P(d) = P(d0)− 10n1 log( d

d0
)u(dbp − d)−

10(n1 log( d
d0
) + n2 log( d

dbp
))u(d− dbp)

P(d0) = −12 dBm; n1 = 2;
n2 = 1.5; d0 = 1 m; dbp = 5 m
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Figure 2. Layout of an indoor environment.

Figure 3a shows the sum of elements in Px and Py under different values ∆. The purple and green
lines stand for the fitted curves with respect to Px and Py, respectively. From this figure, we can find
that as the value ∆ increases, the sum of elements in both Px and Py decreases, which demonstrates
that the value P will decrease with the increase of ∆.

Figure 3b shows the Cumulative Distribution Functions (CDFs) of errors by using the proposed
approach under different standard deviations of noise. From this figure, we can find that a slighter
noise perturbation (or smaller standard deviation of noise) results in a higher localization accuracy
as expected. In Figure 3c, we show the localization performance of the proposed approach when
the signal attenuation property satisfies the log-distance [34], multi-walls [35], Supachai [36] and
breakpoint [37] models, respectively. From this figure, we can find that the breakpoint model performs
best in localization accuracy due to the fact that most of the labeled locations are distributed in the
straight corridors, which is applicable to the breakpoint model [38]. In the results that follow, we set the
initial parameters as follows. The standard deviation of noise is 2 dB; the ratio of calibrated fingerprints
is 100%; the number of RSS samples at each RP is 200; the signal attenuation property satisfies the
breakpoint [37] model in the simulation; and the augmentation dimension is m, where m is the number
of APs. Based on this initial parameter setting, we use the control variates method to perform each
testing. Specifically, when the value of a parameter varies, the initial values are distributed to the other
parameters.

Figure 3d shows the CDFs of errors by using the proposed approach under different ratios between
the number of calibrated and labeled locations (or called different ratios of calibrated fingerprints).
From this figure, we can find that as the ratio between the number of calibrated and labeled locations
increases, the localization accuracy also increases. For instance, the mean error under the ratio of
30% (or by using 28 calibrated locations) is 3.3 m, while the one under the ratio of 100% (or by
using 93 calibrated locations) decreases to 2.1 m. Figure 3e shows the variation the CDFs of errors
as the number of RSS measurements collected at each calibrated location increases from 150 to 200.
As expected, a larger number of collected RSS measurements results in a higher localization accuracy.

Finally, based on the same layout in Figure 2, we give a simple example about the localization
performance by using the single RSS measurement, double RSS and AOA measurements and
triple RSS, AOA and TOA measurements for localization, respectively, in Figure 3f. In the testing,
the standard deviations of AOA and TOA measurements are assumed to be evenly distributed in the
ranges of [0.5◦, 5◦] and [0.3 ns, 6 ns], respectively, which are also used in [39]. From this figure, we can
find that more types of measurements used for localization generally result in a higher localization
accuracy, which triggers the motivation of generalizing the proposed approach to the scenario with
multiple types of measurements used for localization.
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Figure 3. Parameter discussion in simulation. (a) Sum of elements in Px and Py under different values
∆; (b) CDFs (Cumulative Distribution Functions) of errors under different noise perturbations; (c) CDFs
of errors under different signal attenuation properties; (d) CDFs of errors under different numbers of
calibrated locations; (e) CDFs of errors under different numbers of RSS measurements; (f) CDFs of
errors by using different types of measurements for localization.
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4.2. Experimental Results

In this section, we will continue to examine the performance of the proposed approach in the real
indoor environment with the same layout in Figure 2. We set that the ratio of calibrated fingerprints
ranges from 30% to 100%, the number of RSS samples at each RP ranges from 10 to 150 and the
augmentation dimension ranges from m to 5m, where m is the number of APs. The CDFs of errors
by using the proposed approach under different ratios between the number of calibrated and labeled
locations are shown in Figure 4a, from which we can find that the localization accuracy also increases
as the ratio increases.

Figure 4b shows the CDFs of errors by using the proposed approach under different numbers
of RSS measurements collected at each calibrated location. As expected, a larger number of collected
RSS measurements results in a higher localization accuracy, which is in accordance with the previous
discussion. The CDFs of errors by the proposed approach under different augmentation dimensions
are shown in Figure 4c. As can be seen from this figure, the localization performance deteriorates
with the increase of augmentation dimension. Meanwhile, as for the augmentation corresponding to
the physical coordinates, we also explore the localization performance with random replication with
which the replicated value is selected randomly from the initial two-dimensional physical coordinate.
Figure 4d shows the localization errors under different replications for the physical coordinates
augmentation. Each running time relates to a specific replication, and the corresponding CDFs of the
mean and standard deviation of errors are shown in Figure 4e. From these figures, we can find that
more than 80% mean errors are smaller than 3 m, and meanwhile, the localization accuracy can be well
guaranteed under most of the replications for the physical coordinates augmentation.

Figure 4f compares the CDFs of errors of the target by using the proposed and other four
popular approaches, i.e., WKNN, Bayesian, kernel and the conventional manifold alignment without
transformation matrices [28]. From this figure, we can find that the proposed approach outperforms
the other four in localization accuracy, which demonstrates the significant benefit provided by the
dimension expansion to the manifold alignment for indoor localization. In addition, the mean and
standard deviation of errors are also illustrated in Table 2, from which we can find that both the
smallest mean and standard deviation of errors, i.e., 2.4 m and 1.1 m, are achieved by the proposed
approach. Furthermore, Figure 5 shows the mean of errors under different numbers of RSS samples at
each RP and the ratios of calibrated fingerprints, from which we can find that the proposed approach
achieves good localization performance especially under the small number of RSS samples at each RP
and low ratios of calibrated fingerprints.

Table 2. Mean and standard deviation of errors by different approaches.

Approaches Mean of Errors (m) Standard Deviation of Errors (m)

The proposed 2.4 1.1
WKNN 5.6 1.5

Bayesian 4.1 1.3
Kernel 3.8 1.2

Manifold alignment 3.4 1.2
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Figure 4. Parameter discussion in the actual environment. (a) CDFs of errors under different numbers
of calibrated locations; (b) CDFs of errors under different numbers of RSS measurements; (c) CDFs of
errors under different augmentation dimensions; (d) localization errors under different replications for
physical coordinates augmentation; (e) CDFs of mean and standard deviation of errors; (f) CDFs of
errors by different approaches.
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Figure 5. Mean of errors under different numbers of RSS (Received Signal Strength) samples at each
RP and the ratios of calibrated fingerprints.

5. Conclusions

We have proposed a new semi-supervised manifold alignment approach with dimension
expansion for indoor WLAN localization. Based on the innovative objective function constructed from
the augmented physical coordinates and the corresponding RSS measurements, the neighborhood
relations of the nearby locations can be well preserved in the corresponding manifolds. In addition,
the localization performance has been carefully analyzed by considering different noise perturbations
and system parameters, and meanwhile, the objective function corresponding to the multiple types of
measurements used for localization has also been deduced. Finally, the testing results demonstrate
that the proposed approach is able to achieve the satisfactory localization accuracy especially with
limited location calibration load. In future, the application of the proposed approach to a large-scale
indoor multi-floor environment forms an interesting topic.
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Appendix A

We rewrite the objective function with multiple types of measurements used for localization as:

arg min{XN1,XN2,...,XNt}{ ∑
w,v∈{1,2,...,t} and w 6=v
q∈{1,2,...,l}

(||xNwq − xNvq ||2) + ∑
q,q′∈{1,2,...,l}

(||xN1q − xN1q′
||2SN1

qq′ )+

∑
q,q′∈{1,2,...,l}

(||xN2q − xN2q′
||2SN2

qq′ ) + ... + ∑
q,q′∈{1,2,...,l}

(||xNtq − xNtq′
||2SNt

qq′)}
(A1)

where XNu =
{

xNuq

}
(1 ≤ q ≤ l, 1 ≤ u ≤ t) is the u-th manifold corresponding to u-th type of

measurements Du =
{

duq
}
(1 ≤ q ≤ l) and SNu

qq′ = e−||duq−duq′ ||2 . In (A1), the first term is to guarantee
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that the manifolds corresponding to the t types of measurements can be well aligned, while the second
to (t + 1)-th terms are to preserve the neighborhood relations of different types of measurements at
nearby locations. Since the manifold XNu is obtained from the transformation of Du, we can convert
the objective function into the one by optimizing the transformation matrix with respect to Du, Pu,
such that:

arg min{P1,P2,...,Pt}{ ∑
w,v∈{1,2,...,t} and w 6=v
q∈{1,2,...,l}

(||Pw
Tdwq − Pv

Tdvq||2) + ∑
q,q′∈{1,2,...,l}

(||P1
Td1q − P1

Td1q′ ||2SN1
qq′ )+

∑
q,q′∈{1,2,...,l}

(||P2
Td2q − P2

Td2q′ ||2SN2
qq′ ) ... + ∑

q,q′∈{1,2,...,l}
(||Pt

Tdtq − Pt
Tdtq′ ||2SNt

qq′)}
(A2)

Since:

∑
w,v∈{1,2,...,t} and w 6=v
q∈{1,2,...,l}

(||Pw
Tdwq − Pv

Tdvq||2) =

∑
w,v∈{1,2,...,t} and w 6=v

Tr(Pw
TDwDw

TPw + Pv
TDvDv

TPv − Pw
TDwDv

TPv − Pv
TDvDw

TPw)
(A3)

and:

∑
q,q′∈{1,2,...,l}

(||Pu
Tduq − Pu

Tduq′ ||2SNu
qq′ ) = 2Tr(Pu

TDuLuDu
TPu) (A4)

where Lu = Eu − Su; Su =
{

SNu
qq′

}
; and Eu =

{
Eu

qq′

}
is a diagonal matrix satisfying Eu

qq = ∑l
q′=1 SNu

qq′ ,
we can convert (A2) into:

arg min{P1,P2,...,Pt}{∑
t
u=1 2Tr(Pu

TDuLuDu
TPu) + ∑

w,v∈{1,2,...,t} and w 6=v
Tr(Pw

TDwDw
TPw+

Pv
TDvDv

TPv − Pw
TDwDv

TPv − Pv
TDvDw

TPw)
(A5)

By setting P =


P1

P2
...

Pt

, Z =


D1 0 · · · 0
0 D2 · · · 0
· · · · · · · · · · · ·
0 0 · · · Dt

 and

Ω =


(t− 1)I + 2L1 −I · · · −I

−I (t− 1)I + 2L2 · · · −I
· · · · · · · · · · · ·
−I −I · · · (t− 1)I + 2Lt

, we can simplify (A5) into:

arg min
P
{Tr(PTZΩZTP)} (A6)

Similarly, by applying the scale and translation invariance constrains of the solution to (A6), we
have PTZZTP = It and PTZet = 0, where It is an m× m unit matrix and et is a (t× l)× m all one
matrix. Using the Lagrange multiplier approach, we can construct the Lagrange equation in (A7).

L(P) = PTZΩZTP− λt(PTZZTP− It)− µtPTZet (A7)

where λt and µt are the Lagrange coefficients. Calculating the partial derivative of L(P) with respect
to P, we obtain:

∂L(P)
∂P

= 2ZΩZTP− 2λtZZTP− µtZet (A8)

By setting (9) equal to zero, one has:

2ZΩZTP− 2λtZZTP− µtZet = 0 (A9)
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Then, by multiplying VtPT to (A9), we have:

VtPT(2ZΩZTP− 2λtZZTP)− µtVtPTZet = 0 (A10)

where Vt is a (t×m)×m matrix satisfying VPT = It’ and It’ is a (t×m)× (t×m) unit matrix. Since
PTZet = 0, we can obtain:

2ZΩZTP− 2λtZZTP = 0 (A11)

By setting ZΩZT = E’ and ZZT = M’, we convert (A11) into:

E’P = λM’P (A12)

Finally, since PTZΩZTP= λtPTZZTP= λtIt, the solution to (A6) is equivalent to the solution of
the m generalized eigenvectors, which correspond to the m non-zero smallest generalized eigenvalues
in (A12).
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