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Abstract: The emerging techniques in the Fifth Generation (5G) communication system, like the
millimeter-Wave (mmWave) and massive Multiple Input Multiple Output (MIMO), make it possible
to measure the Angle-Of-arrival (AOA), Receive Signal Strength (RSS) and Time-Of-flight (TOF) by
using various types of mobile devices. At the same time, there is always significant interest in the
high-precision localization techniques based on the joint metric of AOA/RSS/TOF, which enable one
to overcome the drawback of the single metric-based localization. Motivated by this concern, we rely
on the Cramer–Rao Lower Bound (CRLB) to analyze the localization errors of RSS/AOA, RSS/TOF,
AOA/TOF and the Joint Metric of AOA/RSS/TOF (JMART)-based localization. The error bounds
derived in this paper can be selected as the benchmarking results to evaluate the indoor localization
performance. Finally, extensive simulations are conducted to support our claim.

Keywords: localization error; angle-of-arrival; received signal strength; time-of-arrival; Cramer–Rao
lower bound

1. Introduction

Indoor localization has gained considerable attention over the past decade due to the significant
development of ubiquitous Location-Based Services (LBSs). The popular Global Positioning System
(GPS) [1] has been recognized as a success for outdoor localization under the Line-Of-Sight
(LOS) propagation property, whereas extending the GPS to the indoor environment with the
None-Line-Of-Sight (NLOS) propagation property faces a serious challenge due to the irregular
signal fading and multi-path interference. An alternative approach to address this challenge is the
site survey-based location fingerprinting approach, which is based on the construction of a database
of location fingerprints collected at Reference Points (RPs). In this case, the target locations are
estimated by mapping the newly-collected Received Signal Strengths (RSSs) against the pre-constructed
database of location fingerprints [2–5]. However, the existence of the multi-path effect, wall sheltering
and channel interference still results in the significant temporal and spatial variation of RSSs and
consequently leads to the increase of localization error [6].

The emerging techniques in the Fifth Generation (5G) communication system enable us to measure
the Angle-Of-Arrive (AOA), RSS and Time-Of-Flight (TOF) with various types of mobile devices [7].
Then, the indoor localization by using the Joint Metric of AOA/RSS/TOF (JMART) will be preferred
compared to the conventional metric by using the AOA, RSS or TOF solely [8–11], which is more
vulnerable to the environmental changes.

The motivation of this paper is to investigate the benefits and impact of the JMART on the indoor
localization error. In concrete terms, we use the Fisher Information Matrix (FIM) [12–14] to measure
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the information of the JMART and then rely on the Cramer–Rao Lower Bound (CRLB) [15] to solve the
corresponding unbiased localization problem [16].

The rest of this paper is structured as follows. We survey some related work in Section 2.
In Section 3, we derive the error bound by selecting the conventional AOA, RSS or TOF solely as
the metric, as well as investigate the impact of the metrics of RSS/AOA, RSS/TOF and AOA/TOF
on indoor localization error, which helps to derive the error bound by the JMART. The extensive
simulations are provided in Section 4 to verify the benefits of the JMART. Finally, we conclude the
paper and give the future directions in Section 5.

2. Related Works

Depending on the ranging metric, the existing indoor localization solutions in wireless networks
can be commonly classified into three categories, AOA-based, RSS-based and TOF-based indoor
localization [17]. The performance of RSS-based indoor localization highly depends on the physical
layout, propagation loss and channel interference, while the NLOS propagation property may seriously
degrade the performance of AOA-based and TOF-based indoor localization due to the difficulty of
detecting the direct signal path and measuring the time of flight of the signal, respectively [18].
Thus, the metric by using the AOA, RSS or TOF solely is vulnerable to environmental changes. To solve
this problem, the authors in [19] proposed to use the metric of RSS/TOF to conduct the localization
based on the determining likelihood function, which is used to depict the relations between the
measurements and distances. The authors in [20] presented a scheme in which the metrics of RSS and
AOA are integrated to restrain the NLOS fading. The authors in [21] developed an efficient approach
to localize the mobile sensors using the metrics of TOF and AOA with the help of multiple seeds
adopted to obtain adequate observations.

There are batches of studies analyzing the error bound of localization by using the FIM.
The authors in [22] selected the CRLB to investigate the localization error by performing the unbiased
Gaussian range estimation based on the metric of AOA. In [23], the authors proposed to use
the information inequality-based Position Error Bound (PEB) to analyze the error performance of
TOF-based cooperative localization. The authors in [24] investigated the impact of the bandwidth
and sampling rate of the receiver on the accuracy of the radar localization systems based on the
Cramer–Rao bounds of the TOF and TDOA. In [25], the authors derived the error bound of the
RSS-based localization for the uncertain network topology by using the Fisher information and
Cramer–Rao inequality. Similarly, the authors in [26] analyzed the CRLB of the localization by
selecting the Signal Strength Difference (SSD) as the location fingerprint. In addition, the bound of
localization error helps greatly in designing effective localization algorithms, as well as providing
valuable suggestions for the construction of superior localization systems by revealing the error trends,
which are associated with the network deployment. In [27], the authors quantifies via the Cramer–Rao
bound on location estimators, which use measured TOF or RSS. The authors in [28] realized the
highly-accurate positioning of the sensors by using the metrics of RSS and TOF. Different from the
literature above, which analyzed the unbiased localization problem, the authors in [29] analyzed the
impact of various parameters in system design, as well as the biased measurements on positioning
performance and meanwhile derived an asymptotic expression for positioning mean-square error in
the network-based multilateral localization system. The mathematical analysis in [29] is based on the
CRLB and maximum likelihood theory. Furthermore, the authors in [30] studied the deterministic
CRLBs for the estimation of the specular multipath parameters and target locations in an asynchronous
direct sequence code division multiple access system, which operates over the specular multipath
fading channel.

However, the existing literature mainly focused on the analysis of the localization error bound
by selecting the AOA, RSS or TOF solely as the metric. Different from these, we investigate the error
bound with respect to the JMART used for the indoor localization. The most important contribution
of this paper is to derive the error bounds by using the AOA, RSS, TOF and JMART respectively for
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the unbiased localization problem. To achieve this goal, on the one hand, we use the deviation σ to
approximately describe the multipath effect, which is also used in [22–26]. On the other hand, our work
aims to be applied in the future 5G communication system, in which many emerging techniques,
like the millimeter-wave and massive Multiple Input Multiple Output (MIMO), make it possible to
estimate the signal parameters (such as the AOA or TOF) of multipath signals with high resolution.
In addition, the analytical result of the error bound can be derived as a function of the number of
Access Points (APs), RSS distributions and noise power.

3. Error Bound Analysis

In this section, we will derive the error bounds of localization by using the single measurement of
RSS, TOF or AOA, double measurements of RSS/AOA, RSS/TOF or AOA/TOF and the JMART based
on the FIM.

Let θ̂i = (x̂i , ŷi)
T be the unbiased estimate of the i-th real location θi = (xi , yi)

T. Then, the
covariance matrix with respect to θ̂i is calculated by:

E
[(

θ̂i − θi

) (
θ̂i − θi

)T
]
=

[
σ2

x̂i

σ2
ŷi x̂i

σ2
x̂i ŷi

σ2
ŷi

]
(1)

where σ2
x̂i

and σ2
ŷi

are the Mean Square Errors (MSEs) with respect to x̂i and ŷi. σ2
x̂i ŷi

and σ2
ŷi x̂i

are the
covariance between x̂i and ŷi and between ŷi and x̂i, respectively. The notations “var”, “E” and “T”
stand for the variance, Expectation and Transpose operations. If θ̂i is calculated from the unbiased
estimate of the measurement (e.g., RSS, TOF or AOA) at the i-th real location mi, we can use the FIM
to construct the relations below to present the lower bound of the variance of θ̂i.

var[θ̂i] ≥ E

{
−

∂2 ln fθi (mi)

∂θi
2

}−1

= J(θi)
−1 (2)

where fθi (mi) and J (θi) are the Probability Distribution Function (PDF) of mi and FIM with respect
to θi. Using the concept of the score function in [31], we obtain that:

U (θi) =
∂

∂θi
ln fθi (mi) (3)

where U (θi) is the score function with respect to θi.
For any θi under the regularity condition [31], if fθi (mi) belongs to the exponential family,

we have:

E [U (θi)] = E
[

∂

∂θi
ln fθi (mi)

]
= E

[
1

fθi (mi)
· ∂

∂θi
fθi (mi)

]
= 0, (4)

Based on [26], we obtain that J (θi) = −E
{

U(θi)
∂θi

}
= −E

[
∂ ln fθi (mi)

∂θi

]2
. Let:

J (θi) =

[
Jxixi (mi)

Jyixi (mi)

Jxiyi (mi)

Jyiyi (mi)

]
(5)

where



Jxixi (mi) = −E
{

∂2

∂xi
2 ln fθi (mi)

}
Jxiyi (mi) = −E

{
∂2

∂xi∂yi
ln fθi (mi)

}
Jyixi (mi) = −E

{
∂2

∂yi∂xi
ln fθi (mi)

}
Jyiyi (mi) = −E

{
∂2

∂yi
2 ln fθi (mi)

}
.
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Based on (2), since:

J(θi)
−1 =

1
|J (θi)|

·
[

Jyiyi (mi)

−Jxiyi (mi)

−Jyixi (mi)

Jxixi (mi)

]
, (6)

where |J (θi)|=Jxixi (mi) Jyiyi (mi)− Jxiyi (mi)
2, we calculate that: σ2

x̂i
= E(x̂i − xi)

2 ≥ Jyiyi (mi)

|J(θi)|

σ2
ŷi
= E(ŷi − yi)

2 ≥ Jxi xi (mi)

|J(θi)|

(7)

Then, by selecting the RSS as the metric for the localization, the CRLB with respect to θi under m
APs condition equals:

Vm (mi) =
Jxixi (mi) + Jyiyi (mi)

|J (θi)|
(8)

Therefore, the average localization error bound for the target environment, Vave (mi), is:

Vave (mi) =
1
n

n

∑
i=1

Vm (mi) (9)

where n is the number of real locations in the target environment.

3.1. Metric of Single Measurement

3.1.1. Metric of RSS

In this section, we select the metric of RSS to conduct the indoor localization. For simplicity, we
select the COST231 model to depict the propagation property, which is also considered in [32,33] as a
good compromise among practicability, precision and simplicity. The COST231 model is shown in (10).

P̂ik = P(d0)− 10βlog10(
dik
d0

)− Pw − χ1 (10)

where P̂ik and P(d0) are the RSSs received (in dBm) at the locations with dik and d0 meters, respectively,
from the AP. d0 and dik are the reference distance and distance between the k-th AP, (xk , yk) and θi.
β is the path loss exponent. Pw is the path loss caused by the walls. χ1 is a random variable following
the Gaussian distribution with the mean zero and variance σ1

2, N
(
0,σ1

2). The PDF of Pik with respect
to θi is:

fθi (Pik) =
m

∏
k=1

1√
2πσ1

exp

(
− ξi1

2

2σ1
2

)
(11)

where ξi1 = P̂ik − P(d0) + 10βlog10(dik) + Pw f . m is the AP number. Based on (5), we can
calculate that: 

J (θi) =

[
Jxx (RSS)
Jyx (RSS)

Jxy (RSS)
Jyy (RSS)

]
Jxx (RSS) = ρ1

m
∑

k=1

[
cosαik

dik

]2

Jxy (RSS) = Jyx (RSS) = ρ1
m
∑

k=1

sinαik cosαik
dik

2

Jyy (RSS) = ρ1
m
∑

k=1

[
sinαik

dik

]2

(12)
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where αik = arctan |yi−yk |
|xi−xk |

. ρ1 =
(

10β
σ1 ln 10

)2
. The geometric relationship between the locations (xi, yi)

and (xk, yk) is shown in Figure 1.

i-th real location 

k-th AP 

αik 

dik

|xi-xk|

|yi-yk|

X

Y

0

 (xk , yk)

(xi , yi)

Figure 1. Geometric relations between the i-th real location and k-th Access Point (AP).

Therefore, based on (8), the localization error bound by using the metric of RSS with respect to
θi equals:

Vm (RSS) = Jyy(RSS)+Jxx(RSS)
Jxx(RSS)·Jyy(RSS)−Jxy

2(RSS)

= 1
ρ1
·

m
∑

k=1

[
cosαik

dik

]2
+

m
∑

k=1

[
sinαik

dik

]2

m
∑

k=1

[
sinαik

dik

]2
×

m
∑

k=1

[
cosαik

dik

]2
−
[

m
∑

k=1

sinαik cosαik
dik

2

]2

(13)

3.1.2. Metric of TOF

Here, by selecting the TOF as the measurement to conduct the indoor localization, the distance
between the locations (xi, yi) and (xk , yk) can be calculated by:

d̂ik = c · tik+χ2 =

√
(xi − xk)

2 + (yi − yk)
2+χ2 (14)

where tik is the time of flight of the signal from the k-th AP to the receiver located at (xi, yi). c is the
flight speed. χ2 is a random variable that follows the Gaussian distribution with the mean zero and
variance σ2

2 = c2στ
2, N

(
0,σ2

2). στ
2 is the variance of time of flight of the signal. The PDF of dik

with respect to θi is:

fθi (dik) =
m

∏
k=1

1√
2πσ2

exp

(
− ξi2

2

2σ22

)
(15)

where ξi2 = d̂ik −
√
(xi − xk)

2 + (yi − yk)
2. Based on (5), we can calculate that:

J (θi) =

[
Jxx (TOF)
Jyx (TOF)

Jxy (TOF)
Jyy (TOF)

]
Jxx(TOF) = ρ2

m
∑

k=1
(cosαik)

2

Jxy(TOF) = Jyx(TOF) = ρ2
m
∑

k=1
sinαik · cosαik

Jyy(TOF) = ρ2
m
∑

k=1
(sinαik)

2

(16)
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where ρ2 =
(

1
c·στ

)2
. Based on (8), the localization error bound by using the metric of TOF with respect

to θi equals:

Vm (TOF) = Jyy(TOF)+Jxx(TOF)
Jxx(TOF)·Jyy(TOF)−Jxy

2(TOF)

= 1
ρ2
·

m
∑

k=1
(cosαik)

2+
m
∑

k=1
(sinαik)

2

m
∑

k=1
(sinαik)

2×
m
∑

k=1
(cosαik)

2−
(

m
∑

k=1
sinαik ·cosαik

)2

(17)

3.1.3. Metric of AOA

When the AOA is selected as the measurement to conduct the indoor localization, the arrived
angle from the k-th AP is estimated by:

α̂ik = αik+χ3 = arctan
yi − yk
xi − xk

+χ3 (18)

where αik is the angle of direct signal path between the k-th AP and receiver located at (xi, yi). χ3 is a
random variable that follows the Gaussian distribution with the mean zero and variance σ3

2=σα
2,

N
(
0,σ3

2). σα
2 is the variance of angle of the received signal. The PDF of αik with respect to θi is:

fθi (αik) =
m

∏
k=1

1√
2πσ3

exp

(
− ξi3

2

2σ32

)
(19)

where ξi3 = α̂ik − arctan yi−yk
xi−xk

. Based on (5), we can calculate that:

J (θi) =

[
Jxx (AOA)

Jyx (AOA)

Jxy (AOA)

Jyy (AOA)

]
Jxx(AOA) = ρ3

m
∑

k=1

[
sinαik

dik

]2

Jxy(AOA) = Jyx(AOA) = −ρ3
m
∑

k=1

sinαik cosαik
dik

2

Jyy(AOA) = ρ3
m
∑

k=1

[
cosαik

dik

]2

(20)

where ρ3 =
(

1
σα

)2
.

Therefore, based on (8), the localization error bound by using the metric of AOA with respect to
θi equals:

Vm (AOA) =
Jyy(AOA)+Jxx(AOA)

Jxx(AOA)·Jyy(AOA)−Jxy
2(AOA)

= 1
ρ3
·

m
∑

k=1

[
sinαik

dik

]2
+

m
∑

k=1

[
cosαik

dik

]2

m
∑

k=1

[
sinαik

dik

]2
×

m
∑

k=1

[
cosαik

dik

]2
−
[

m
∑

k=1

sinαik cosαik
dik

2

]2

(21)

3.2. Metric of Double Measurements

3.2.1. Metric of AOA/RSS

When the metrics of AOA and RSS are selected to conduct the indoor localization, the metric of
AOA/RSS follows the bivariate normal distribution. The PDF of the metric of AOA/RSS with respect
to θi is:

fθi (A/R) =
m

∏
k=1

1

2πσ1σ3
√

1− ρ13
2

exp
(
− v13

2(1− ρ13
2)

)
(22)
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where ρ13 is the correlation coefficient with respect to Pik and αik, v13 = ξi1
2

σ1
2 + ξi3

2

σ3
2 − 2ρ13

ξi1
σ1

ξi3
σ3

.
From (5), we can obtain:

Jxx (A/R) = Jxx(RSS)
1−ρ13

2 + Jxx(AOA)
1−ρ13

2 −
2ρ13
√
ρ1ρ3

1−ρ13
2

m
∑

k=1

sinαik cosαik
dik

2

Jxy (A/R) = Jxy(RSS)
1−ρ13

2 +
Jxy(AOA)

1−ρ13
2 −

ρ13
√
ρ1ρ3

1−ρ13
2

m
∑

k=1

sin2αik−cos2αik
dik

2

Jyx (A/R) = Jyx(RSS)
1−ρ13

2 +
Jyx(AOA)

1−ρ13
2 +

ρ13
√
ρ1ρ3

1−ρ13
2

m
∑

k=1

sin2αik−cos2αik
dik

2

Jyy (A/R) = Jyy(RSS)
1−ρ13

2 +
Jyy(AOA)

1−ρ13
2 +

2ρ13
√
ρ1ρ3

1−ρ13
2

m
∑

k=1

sinαik cosαik
dik

2

(23)

Therefore, based on (8), the error bound by using the metric of AOA/RSS with respect to θi is:

Vm (A/R) =
Jxx (A/R) + Jyy (A/R)

Jxx (A/R) · Jyy (A/R)− Jxy(A/R)2 (24)

3.2.2. Metric of RSS/TOF

When the metrics of RSS and TOF are selected to conduct the indoor localization, the metric of
RSS/TOF follows the bivariate normal distribution. The PDF of the metric of RSS/TOF with respect to
θi is:

fθi (R/T) =
m

∏
k=1

1

2πσ1σ2
√

1− ρ12
2

exp
(
− v12

2(1− ρ12
2)

)
(25)

where ρ12 is the correlation coefficient with respect to Pik and dik, v12 = ξi1
2

σ1
2 + ξi2

2

σ2
2 − 2ρ12

ξi1
σ1

ξi2
σ2

.
From (5), we can obtain:

Jxx (T/A) = Jxx(TOF)
1−ρ23

2 + Jxx(AOA)
1−ρ23

2 −
2ρ23
√
ρ2ρ3

1−ρ23
2

m
∑

k=1

sinαik cosαik
dik

Jxy (T/A) =
Jxy(TOF)
1−ρ23

2 +
Jxy(AOA)

1−ρ23
2 −

ρ23
√
ρ2ρ3

1−ρ23
2

m
∑

k=1

sin2αik−cos2αik
dik

Jyx (T/A) =
Jyx(TOF)
1−ρ23

2 +
Jyx(AOA)

1−ρ23
2 +

ρ23
√
ρ2ρ3

1−ρ23
2

m
∑

k=1

sin2αik−cos2αik
dik

Jyy (T/A) =
Jyy(TOF)
1−ρ23

2 +
Jyy(AOA)

1−ρ23
2 +

2ρ23
√
ρ2ρ3

1−ρ23
2

m
∑

k=1

sinαik cosαik
dik

(26)

Therefore, based on (8), the error bound by using the metric of RSS/TOF with respect to θi is:

Vm(R/T)i =
Jxx (R/T) + Jyy (R/T)

Jxx (R/T) · Jyy (R/T)− Jxy(R/T)2 (27)

3.2.3. Metric of TOF/AOA

When the metrics of TOF and AOA are selected to conduct the indoor localization, the metric of
TOF/AOA follows the bivariate normal distribution. The PDF of the metric of TOF/AOA with respect
to θi is:

fθi (T/A) =
m

∏
k=1

1

2πσ2σ3
√

1− ρ232
exp

(
− v23

2(1− ρ232)

)
(28)

where ρ23 is the correlation coefficient with respect to dik and αik, v23 = ξi2
2

σ2
2 + ξi3

2

σ3
2 − 2ρ23

ξi2
σ2

ξi3
σ3

.
From (5), we can obtain:
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Jxx (R/T) = Jxx(RSS)
1−ρ12

2 + Jxx(TOF)
1−ρ12

2 −
2ρ12
√
ρ1ρ2

1−ρ12
2

m
∑

k=1

cos2αik
dik

Jxy (R/T) = Jxy(RSS)
1−ρ12

2 +
Jxy(TOF)
1−ρ12

2 −
ρ12
√
ρ1ρ2

1−ρ12
2

m
∑

k=1

sinαik cosαik
dik

Jyx (R/T) = Jyx(RSS)
1−ρ12

2 +
Jyx(TOF)
1−ρ12

2 −
ρ12
√
ρ1ρ2

1−ρ12
2

m
∑

k=1

sinαik cosαik
dik

Jyy (R/T) = Jyy(RSS)
1−ρ12

2 +
Jyy(TOF)
1−ρ12

2 −
2ρ12
√
ρ1ρ2

1−ρ12
2

m
∑

k=1

sin2αik
dik

(29)

Therefore, based on (8), the error bound by using the metric of TOF/AOA with respect to θi is:

Vm (T/A) =
Jxx (T/A) + Jyy (T/A)

Jxx (T/A) · Jyy (T/A)− Jxy(T/A)2 (30)

3.3. JMART

In this section, we will continue to investigate the benefits and impact of the JMART on indoor
localization error. Based on the previous discussion, the PDF of the JMART with respect to θi can be
calculated by: 

fθi (JMART) = 1√
(2π)3|Σ|1/2

exp
{
− 1

2 xTΣ−1x
}

Σ = var(x) =

 σ1
2 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ3
2

 (31)

where x = (ξi1, ξi2, ξi3). Then, we have:

J (θi) =
∂xT

∂θi
Σ−1 ∂x

∂θi
+

1
2

tr(Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θi
) (32)

Since the variances of P̂ik, d̂ik, and α̂ik are constant, we convert (32) into:

J (θi) =
∂xT

∂θi
Σ−1 ∂xT

∂θi

Σ−1 = 1
r


1−ρ23

2

σ1
2

ρ13ρ23−ρ12
σ1σ2

ρ12ρ23−ρ13
σ1σ3

ρ13ρ23−ρ12
σ1σ2

1−ρ13
2

σ2
2

ρ12ρ13−ρ23
σ2σ3

ρ12ρ23−ρ13
σ1σ3

ρ12ρ13−ρ23
σ2σ3

1−ρ12
2

σ3
2

 (33)

where r = 1 + 2ρ12ρ13ρ23 − ρ12
2 − ρ13

2 − ρ23
2. Then, we can obtain:

J (θi) =

[
∂ξi1
∂xi

∂ξi2
∂xi

∂ξi3
∂xi

∂ξi1
∂yi

∂ξi2
∂yi

∂ξi3
∂yi

]
· Σ−1 ·


∂ξi1
∂xi

∂ξi1
∂yi

∂ξi2
∂xi

∂ξi2
∂yi

∂ξi3
∂xi

∂ξi3
∂yi

=
1
r

[
M11 M12

M21 M22

]
(34)

where:
M11 =

(
1− ρ23

2) Jxx(RSS) +
(
1− ρ13

2) Jxx(AOA) +
(
1− ρ12

2) Jxx(TOF)− 2A
M12 =

(
1− ρ23

2) Jxy(RSS) +
(
1− ρ13

2) Jxy(AOA) +
(
1− ρ12

2) Jxy(TOF)− B1 − B2

M21 =
(
1− ρ23

2) Jyx(RSS) +
(
1− ρ13

2) Jyx(AOA) +
(
1− ρ12

2) Jyx(TOF)− C1 − C2

M22 =
(
1− ρ23

2) Jyy(RSS) +
(
1− ρ13

2) Jyy(AOA) +
(
1− ρ12

2) Jyy(TOF)− 2D

(35)
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A = ρ13ρ23−ρ12
σ1σ2

∂ξi1
∂xi

∂ξi2
∂xi

+ρ12ρ23−ρ13
σ1σ3

∂ξi1
∂xi

∂ξi3
∂xi

+ρ12ρ13−ρ23
σ2σ3

∂ξi2
∂xi

∂ξi3
∂xi

B1 = ρ13ρ23−ρ12
σ1σ2

∂ξi1
∂xi

∂ξi2
∂yi

+ ρ12ρ23−ρ13
σ1σ3

∂ξi1
∂xi

∂ξi3
∂yi

+ ρ12ρ13−ρ23
σ2σ3

∂ξi2
∂xi

∂ξi3
∂yi

B2 = ρ13ρ23−ρ12
σ1σ2

∂ξi1
∂yi

∂ξi2
∂xi

+ ρ12ρ23−ρ13
σ1σ3

∂ξi1
∂yi

∂ξi3
∂xi

+ ρ12ρ13−ρ23
σ2σ3

∂ξi2
∂yi

∂ξi3
∂xi

C1 = ρ13ρ23−ρ12
σ1σ2

∂ξi1
∂yi

∂ξi2
∂xi

+ ρ12ρ23−ρ13
σ1σ3

∂ξi1
∂yi

∂ξi3
∂xi

+ ρ12ρ13−ρ23
σ2σ3

∂ξi2
∂yi

∂ξi3
∂xi

C2 = ρ13ρ23−ρ12
σ1σ2

∂ξi1
∂xi

∂ξi2
∂yi

+ ρ12ρ23−ρ13
σ1σ3

∂ξi1
∂xi

∂ξi3
∂yi

+ ρ12ρ13−ρ23
σ2σ3

∂ξi2
∂xi

∂ξi3
∂yi

D = ρ13ρ23−ρ12
σ1σ2

∂ξi1
∂yi

∂ξi2
∂yi

+ ρ12ρ23−ρ13
σ1σ3

∂ξi1
∂yi

∂ξi3
∂yi

+ ρ12ρ13−ρ23
σ2σ3

∂ξi2
∂yi

∂ξi3
∂yi

(36)

Therefore, the error bound by using the JMART with respect to θi is:

Vm (JMART) = r
M11 + M22

M11M22 + M12M21
(37)

Finally, based on (9), we can easily obtain the average error bounds for the target environment by
using different metrics for indoor localization.

4. Simulation Results

We conduct the simulations in a Line-Of-Sight (LOS) environment with the dimensions of 10 m
by 10 m. The 100 and 15 candidate mobile (with a 1-m interval) and AP locations are uniformly
calibrated in the target area, as shown in Figure 2. In the simulations, we set σ1 ∈ [ 0.5 dB 6.5 dB ],
σα ∈ [ 0.5 deg 5 deg], στ ∈ [ 0.3 ns 6 ns] and β = 2, which are also used in [34]. For the sake of
investigating the impact of AP number and noise power on the error bound and Fisher information,
we calculate the error bound, V, for the target area by:

V =
1
s

s

∑
k=1

[
1
n
·

n

∑
i=1

V{Lk
1,Lk

2··· ,Lk
m}

θi

]
(38)

where s = Cm
15 is the number of sets of candidate AP locations.

{
Lk

1, Lk
2 · · · , Lk

m

}
is the k-th set of

candidate AP locations, namely the k-th AP deployment scheme. n = 100 is the number of candidate

mobile locations. V{Lk
1Lk

2··· ,Lk
m}

θi
is the error bound with respect to i-th mobile location, θi, under the

k-th AP deployment scheme.

Candidate AP locations Real mobile locations

(0,0)
X (m)

Y (m)

(10,0)

(0,10)

Figure 2. Layout of candidate mobile and AP locations.
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4.1. Impact of AP Number

Based on the previous discussion, we can calculate that:

Vm (RSS)−Vm+1 (RSS) ≥


sinαi(m+1)

di(m+1)

√
ηim(RSS)

m
∑

k=1

[
cosαik

dik

]2
−ωim(RSS)

− cosαi(m+1)
di(m+1)

√
ηim(RSS)

m
∑

k=1

[
sinαik

dik

]2
−ωim(RSS)


2

ρ1
2ωim(RSS) ·ωi(m+1)(RSS)

(39)

where


ηim(RSS) =

m
∑

k=1

[
cosαik

dik

]2
+

m
∑

k=1

[
sinαik

dik

]2

ωim(RSS) =
m
∑

k=1

[
sinαik

dik

]2
×

m
∑

k=1

[
cosαik

dik

]2
−
[

m
∑

k=1

sinαik cosαik
dik

2

]2 .

Vm (TOF)−Vm+1 (TOF) ≥


sinαi(m+1)

√
ηim(TOF)

m
∑

k=1
[cosαik]

2 −ωim(TOF)

− cosαi(m+1)

√
ηim(TOF)

m
∑

k=1
[sinαik]

2 −ωim(TOF)


2

ρ22ωim(TOF) ·ωi(m+1)(TOF)

(40)

where


ηim(TOF) =

m
∑

k=1
[cosαik]

2 +
m
∑

k=1
[sinαik]

2

ωim(TOF) =
m
∑

k=1
[sinαik]

2 ×
m
∑

k=1
[cosαik]

2 −
[

m
∑

k=1
sinαik cosαik

]2 . ηim(AOA) = ηim(RSS) and

ωim(AOA) = ωim(RSS).

Vm (AOA)−Vm+1 (AOA) ≥


cosαi(m+1)

di(m+1)

√
ηim(AOA)

m
∑

k=1

[
sinαik

dik

]2
−ωim(AOA)

− sinαi(m+1)
di(m+1)

√
ηim(AOA)

m
∑

k=1

[
cosαik

dik

]2
−ωim(AOA)


2

ρ32ωim(AOA) ·ωi(m+1)(AOA)

(41)

where ηim(AOA) = ηim(RSS) and ωim(AOA) = ωim(RSS).
As can be seen from (39)–(41), the increase of AP number decreases the error bound or keeps

the error bound unchanged [26]. The relation Vm
(
mj
)
= Vm+1

(
mj
)

holds under the condition of
αi1 = αi2 = · · · = αi(m+1), which indicates that the APs are collinearly distributed. Similarly, we
can also find that the increase of AP number decreases the error bound or keeps the error bound
unchanged by using the metric of double measurements or JMART.

4.1.1. Performance of Metric of Single Measurement

Figures 3 and 4 illustrate the sum of diagonal elements in the FIM, which represents the Fisher
information with respect to the metrics of RSS, TOF and AOA and the corresponding error bounds.
In Figure 3, the metric of AOA is verified to be able to provide much more Fisher information
compared with the metric of RSS or TOF. In addition, the larger number of APs results in the higher
Fisher information as expected. Figure 4 shows that the error bound increases consistently as the
variance of the metric of RSS, AOA or TOF increases. Furthermore, we also find that the smaller
variance of the metric of RSS, AOA or TOF corresponds to the higher Fisher information and lower
error bound in indoor localization.
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Figure 3. Sum of diagonal elements in the Fisher Information Matrix (FIM) with respect to the metrics
of (a) Signal Strength (RSS), (b) Time-of-flight (TOF) and (c) Angle-of-arrival (AOA).
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Figure 4. Error bounds achieved by the metrics of Receive (a) RSS, (b) TOF and (c) AOA.

4.1.2. Performance of the Metric of Double Measurements

Figures 5 and 6 illustrate the Fisher information provided by different metrics of double
measurements and the corresponding error bounds. In the simulation, we set σ1 = 3 dB,
σα = 2.25 deg and στ = 3 ns. From these figures, the metric of TOF/AOA can be verified to perform
best in providing the most Fisher information. Similarly, the larger number of APs corresponds to the
higher Fisher information and lower error bound. In addition, we can find that the increase of the
absolute value of correlation coefficient generally increases the Fisher information, as well as decreases
the error bound.
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Figure 5. Sum of diagonal elements in the FIM with respect to the metrics of (a) AOA/RSS,
(b) TOF/AOA and (c) RSS/TOF.
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Figure 6. Error bounds achieved by the metrics of (a) AOA/RSS, (b) TOF/AOA and (c) RSS/TOF.

4.1.3. Performance of JMART

Figure 7 shows the Fisher information and the corresponding error bounds by the JMART.
From this figure, we can find that the larger number of APs results in the higher Fisher information and
lower error bounds’ indoor localization, which are in accordance with the results under the metrics of
single and double measurement given above.
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4.2. Impact of AP Locations

In this section, we will continue to investigate the relations between the error bounds and AP
locations. As the distance between the i-th real location and m-th AP, dim, decreases to dim

′ = `dim
(0 < ` ≤ 1), we have:

Vm (RSS)−Vm
′ (RSS) ≥


W1(RSS)

√
ηi(m−1)(RSS)

m−1
∑

k=1

[
cosαik

dik

]2
−ωi(m−1)(RSS)

−W2(RSS)

√
ηi(m−1)(RSS)

m−1
∑

k=1

[
sinαik

dik

]2
−ωi(m−1)(RSS)


2

ρ1
2 ·ωim(RSS) ·ω′ im(RSS)

(42)

where


cos′αim = xi−xm

′

`dim
; sin′αim = yi−ym

′

`dim

W1(RSS) = (sin′αim)
2

`2dim
2 − sin2αim

dim
2

W2(RSS) = (cos′αim)2

`2dim
2 − cos2αim

dim
2

and ω′ im(RSS) =
m−1
∑

k=1

(
sin2αik

dik
2 + sin′2αim

`2dim
2

)

m−1
∑

k=1

(
cos2αik

dik
2 + cos′2αim

`2dim
2

)
−
[

m−1
∑

k=1

sinαik cosαik
dik

2 + sin′αimsin′αim
`2dim

2

]2

.

Vm (TOF)−Vm
′ (TOF) ≥


W1(TOF)

√
ηi(m−1)(TOF)

m−1
∑

k=1
[cosαik]

2 −ωi(m−1)(TOF)

−W2(TOF)

√
ηi(m−1)(TOF)

m−1
∑

k=1
[sinαik]

2 −ωi(m−1)(TOF)


2

ρ22 ·ωim(TOF) ·ω′ im(TOF)
(43)

where

{
W1(TOF) = (sin′αim)

2 − (sinαim)
2

W2(TOF) = (cos′αim)
2 − (cosαim)

2 , ω′ im(TOF) =
m−1
∑

k=1

(
sin2αik+sin′2αim

)
m−1
∑

k=1

(
cos2αik + cos′2αim

)
−
[

m−1
∑

k=1
sinαik cosαik + sin′αimsin′αim

]2

.

Vm (AOA)−Vm
′ (AOA) ≥


W2(AOA)

√
ηi(m−1)(AOA)

m−1
∑

k=1

sin2αik
dik

2 −ωi(m−1)(AOA)

−W1(AOA)

√
ηi(m−1)(AOA)

m−1
∑

k=1

cos2αik
dik

2 −ωi(m−1)(AOA)


2

ρ32 ·ωim(AOA) ·ω′ im(AOA)
(44)

where ω′ im(AOA) = ω′ im(RSS). Similarly, we can also find that the decrease of the distance between
the i-th real location and k-th AP decreases the error bound or keeps the error bound unchanged by
using the metric of double measurements or JMART. To show this result more clearly, we conduct the
simulations in a square area with the dimensions of 10 m by 10 m, as shown in Figure 2. By fixing
three APs at the locations (10 m, 10 m), (10 m, 0 m) and (0 m, 10 m), we calculate the error bounds
with respect to the mobile location (5 m, 5 m) as a function of the fourth AP ∈ [0, 10 m]× [0, 10 m] in
Figures 8–10.
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4.2.1. Performance of the Metric of Single Measurement

From Figure 8, we can find that the smaller distance between the i-th real location and fourth AP
generally results in the lower error bound. Based on this, we can optimize the AP locations towards
the lowest error bounds.
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Figure 8. Error bounds under different locations of the fourth AP by the metrics of (a) RSS, (b) TOF and
(c) AOA.

4.2.2. Performance of Metric of Double Measurements

Figure 9 shows the error bounds by using different metrics of double measurements. The relations
between the error bounds and AP locations exhibited in Figure 9 are in accordance with the ones by
using the metric of a single measurement. In addition, based on the results in Figures 9 and 10, the
error bounds achieved by the metric of double measurements are lower than the ones by the metric of
single measurement.
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Figure 9. Error bounds under different locations of the fourth AP by the metrics of (a) AOA/RSS,
(b) TOF/AOA and (c) RSS/TOF.

4.2.3. Performance of JMART

Figure 10 shows the error bounds under different locations of the fourth AP by using the JMART
for localization. Obviously, the error bounds achieved by the JMART are the lowest compared with the
ones by the metrics of single and double measurements.
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Figure 10. Error bounds under different locations of the fourth AP by the JMART.

4.3. Impact of Noise Power

Based on the previous discussion in Section 3, the deviation of the metrics of RSS, AOA and TOF
(or called noise power) determines the values of ρ1, ρ2 and ρ3 and thereby affects the error bound.
Then, in this section, we will focus on the impact of the deviation of the metrics of RSS, AOA and TOF
on error bounds.

4.3.1. Performance of Metric of Single Measurement

In Figures 3 and 4, we have illustrated the relations between the error bounds and the deviation
of the metrics of RSS, AOA and TOF [27]. The increase of the deviation of the metrics of RSS, AOA
and TOF consistently decreases the Fisher information and meanwhile increases the error bounds.

4.3.2. Performance of Metric of Double Measurements

Figures 11 and 12 show the Fisher information provided by using the metrics of AOA/RSS,
TOF/AOA and RSS/TOF and the corresponding error bounds under different deviations of the
metrics of RSS, AOA and TOF. From these figures, we can find that the Fisher information and error
bounds are highly affected by AOA deviation, while the impact of RSS and TOF deviation on the
Fisher information and error bounds is slight.
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Figure 11. Sum of the diagonal elements in the FIM by using the hybrid (a) AOA/RSS, (b) TOF/AOA
and (c) RSS/TOF.
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Figure 12. Error bounds by using the hybrid (a) AOA/RSS, (b) TOF/AOA and (c) RSS/TOF.

4.3.3. Performance of JMART

Finally, Figure 13 shows the variation of the Fisher information and the corresponding error
bounds by the JMART under different deviations of the metrics of RSS, AOA and TOF. From this
figure, we can find that both the Fisher information and error bounds are significantly determined
by AOA deviation, which are in accordance with the results under the metrics of single and double
measurement given above.
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Figure 13. Sum of diagonal elements in the FIM (a) and error bounds (b) by the JMART.

5. Conclusions

In this paper, we present the theoretical analysis of the error bounds by selecting the single,
double and JMART measurements as the metric for indoor localization. The purpose of the analysis is
to better design an indoor localization system, either through the judicious selection of the metrics
for localization or though the optimal AP deployment. Based on the extensive simulations, we find
that the JMART is able to provide higher Fisher information, as well as achieve lower error bounds
compared with the ones by using the metrics of single and double measurements. Furthermore, we
find that the increase of AP number decreases the error bounds or keeps the error bounds unchanged,
while as the noise power increases, the error bounds with respect to the single, double and JMART
measurements will also increase. In general, since the smaller distance between the AP and testing
locations results in the lower error bound, we are able to optimize the AP locations towards the lowest
error bound. Our future work is to rely on the analytical relations of the Fisher information, error
bounds, metrics used for localization and AP deployment to design a more effective indoor localization
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system, and meanwhile, we will continue to study the error bounds for the biased localization problem
by using different metrics for the indoor localization.
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