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Abstract: Accurate and reliable forecasting on annual electricity consumption will be valuable for
social projectors and power grid operators. With the acceleration of electricity market reformation
and the development of smart grid and the energy Internet, the modern electric power system is
becoming increasingly complex in terms of structure and function. Therefore, electricity consumption
forecasting has become a more difficult and challenging task. In this paper, a new hybrid electricity
consumption forecasting method, namely grey model (1,1) (GM (1,1)), optimized by moth-flame
optimization (MFO) algorithm with rolling mechanism (Rolling-MFO-GM (1,1)), was put forward.
The parameters a and b of GM (1,1) were optimized by employing moth-flame optimization algorithm
(MFO), which is the latest natured-inspired meta-heuristic algorithm proposed in 2015. Furthermore,
the rolling mechanism was also introduced to improve the precision of prediction. The Inner
Mongolia case discussion shows the superiority of proposed Rolling-MFO-GM (1,1) for annual
electricity consumption prediction when compared with least square regression (LSR), GM (1,1), FOA
(fruit fly optimization)-GM (1,1), MFO-GM (1,1), Rolling-LSR, Rolling-GM (1,1) and Rolling-FOA-GM
(1,1). The grey forecasting model optimized by MFO with rolling mechanism can improve the
forecasting performance of annual electricity consumption significantly.

Keywords: annual electricity consumption; grey model (1,1) (GM (1,1)); Moth-flame optimizer (MFO);
rolling mechanism; parameters optimization

1. Introduction

Electricity consumption is one of the significant indices of electrical power supply system planning
and operation management. The characteristics analysis of electric power consumption is the primary
requirement for the quality, stable, economic and safe operation of power grid. Since it is very
difficult to store electric energy, precise and reliable forecasting on electricity consumption is of great
significance to satisfy the continuously increasing demand for electricity, sustain the industrialization
development, and formulate long-term stable energy policy [1].

Since the 1970s, much literature has focused on developing various kinds of forecasting techniques
for electric energy [2]. The traditional forecasting methods mainly include electric elasticity coefficient
method [3], trend extrapolation technique [4], regression analysis method [5–7], time series method [8],
and so on. However, the traditional approach greatly depends on an accurate model. Some parameters
are set as fixed values in the process of prediction so that the forecasting results would be difficult for
reflecting the real electricity demand accurately, which causes the traditional models to show a poor
performance for electricity consumption forecasting in terms of accuracy and reliability [9].
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With the acceleration of electricity market reformation and the development of smart grid and
the energy Internet, the modern power grid is becoming increasingly complex in terms of structure
and function. Simultaneously, with the continuous progress of modern science and technology and
the gradual deepening of basic theory research, the emergence of interdisciplinary theory provides a
solid theoretical and mathematical foundation for the accurate prediction of electric energy demand.
Metaxiotis et al. [10] stated that the artificial intelligence algorithms have been widely applied in
various fields, mostly due to their symbolic reasoning, flexibility and explanation capabilities. Wang
and Yang [11] proposed a prediction model in terms of non-linear combined neural network, which
can effectively take account of the merits of non-linear regression analysis and artificial neural network.
Azadeh et al. [12] used time, temperature, and historical loads as inputs of an artificial neural networks
(ANN) model for a more accurate short-term forecasting, and ANN-based results are compared to
that of conventional regression models. It is observed that ANN models are superior to regression
models in most cases in accordance with mean absolute percentage error (MAPE). Ma et al. [13]
presented a new power load forecasting method on the basis of fuzzy inference and ANN, and a
practical example was used to show that the prediction accuracy could be enhanced using the proposed
method. Chen and Wang [14,15] presented a collaborative fuzzy-neural approach based on fuzzy
back propagation networks to predict annual electricity consumption. AlRashidi and EL-Naggar [16]
presents a particle swarm optimization (PSO) as an innovation to forecast annual peak load for Kuwait
and Egypt. Cong et al. [17] used three kinds of kernel functions (radial basis kernel functionlinear,
and poly) to establish a prediction model based on support vector machine (SVM) theory, and the
fitting degree was tested with three evaluating indicators, namely MAPE, PMSE and Theil IC. Cheng
and Chen [18] combined BP, GM (1,1), triple exponential smoothing model, and polynomial trend
extrapolation model together to accurately forecast energy consumption. Xue and Cao [19] established
a combination forecasting model consisting of neural network, grey forecasting model and time series
model to predict Chinese energy consumption. Because the selection of the parameters of some
intelligent algorithms and the weight coefficients of the combination forecasting models exerted a great
influence on the prediction accuracy, many scholars have performed a number of researches related to
the method of parameter selection and optimization. Liang [20] raised a prediction model based on the
improved fruit fly algorithm to optimize the parameters of SVM so that the accuracy of forecasting can
be enhanced. Li et al. [21] used a modified PSO combined with simulated annealing algorithm (SA) to
optimize SVM. Wu et al. [22] used genetic algorithms to obtain the best-optimized parameter values of
SVM model to enhance the precision of forecasting. Wang et al. [23] used support vector regression
optimized by differential evolution algorithm to predict electricity consumption. Zhao et al. [24]
employed fruit fly optimization algorithm to obtain the weights of combination forecasting model for
urban saturated power load analysis.

The grey system theory proposed by Chinese professor Deng Julong is a theory that deals with
uncertainty issues with the characteristics of less data and imperfect information [25]. Grey model
(1,1) (GM (1,1)), which is a kind of grey forecasting model, has been employed in many forecasting
problems, such as the prediction of short term and long term electric load [26,27], tourism flow [28],
airline industry [29], automobile production [30], wave [31], wind speed and wind power [32], per
capita annual net income forecast of rural households [33], fuel production [34], and carbon emissions,
energy demand and economic growth [35]. Since the power system also has the characteristics of grey
system, GM (1,1) has been used in electric energy demand forecasting [36–39]. However, the accuracy
of electricity demand prediction is affected by many factors, such as political environment, economic
development and social status. Therefore, the exponentially growing rule of GM (1,1) may not
show a good forecasting performance in electricity demand prediction. Under this circumstance, the
optimization of GM (1,1) is widely discussed. Recently, several studies have made valuable progress,
for example, GM (1,1) with rolling mechanism was employed to predict annual peak load [40] and the
chaotic co-evolutionary PSO algorithm was employed to determine the parameters of GM (1,1) [41].
Kumar and Jain [42] utilized grey model with rolling mechanism to predict electricity and coal demand.
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Jiang and Qian [43] presented a load forecasting model on the basis of the improved GM (1,1) Euler
model, which uses the Euler formula to modify the whitenization equation with the aim of weakening
the effect of the equation on the predicting results. Case analysis shows that the forecasting precision
of improved GM (1,1) Euler model is better than that of the general grey model.

In the past few years, many swarm intelligence algorithms have also been proposed to solve
practical optimization issues, such as particle swarm optimization (PSO) [44], genetic algorithm
(GA) [45], ant colony optimization (ACO) [46], differential evolution algorithm (DE) [47], evolutionary
strategy (ES) [48], evolutionary programming (EP) [49,50] and fruit fly optimization algorithm
(FOA) [51–53]. Moth-flame optimization (MFO) is a novel nature-enlightenment algorithm, which was
proposed by Mirjalili in 2015 to compete with the current optimization algorithms [54]. In this paper,
the parameters of GM (1,1) would be optimized by employing MFO. Moreover, as the data may be
used to perform diverse tendencies or features at different times, a rolling mechanism is also applied to
address these differences in this paper [33,40,42]. PE, MAPE and RMSE are employed to compare the
forecasting performances of LSR, GM (1,1), FOA-GM (1,1), MFO-GM (1,1), Rolling-LSR, Rolling-GM
(1,1), Rolling-FOA-GM (1,1), and Rolling-MFO-GM (1,1). The main contributions of this paper include:

(1) A new intelligent optimization algorithm named MFO is utilized to optimize the parameters
of GM (1,1) model, and it is verified that it can increase the precision of annual electricity
demand prediction.

(2) Currently, most literature only study the combination of optimization algorithm or rolling
mechanism with grey model for annual electricity consumption forecasting. However, this
paper fulfills the triple combination of GM (1,1), optimization algorithm and rolling mechanism.
Moreover, the empirical case shows that this triple combination can improve the forecasting
accuracy drastically.

The remainder of this study is as follows. The basic theories of GM (1,1) and MFO are introduced
in Section 2. Section 3 illustrates the concrete procedures of Rolling-MFO-GM (1,1). The forecasting
of electricity consumption of Inner Mongolia using Rolling-MFO-GM (1,1) is given in Section 4.
Section 5 compares the results of Rolling-MFO-GM (1,1) with other forecasting models. Section 6
draws the conclusions.

2. Basic Theories of GM (1,1) and MFO

2.1. GM (1,1)

In grey system theory, the stochastic process is regarded as the grey variable varying in a certain
range. During the procedure of grey model, the disorganized initial data would be managed to a
regularity generated data sequence through an accumulated generating operation. Then, a differential
fitting method is employed to establish differential equation to describe the disciplinarian of generated
data sequence. Finally, the prediction will be realized. GM (1,1) is the most common and simple grey
model with convenient operation and high accuracy of prediction [55]. Its specific process of modeling
is as follows.

It is assumed that Xp0q is the initial sequence which can be illustrated as

Xp0q “
!

xp0qp1q, xp0qp2q, ¨ ¨ ¨ , xp0qpnq
)

(1)

The one-time accumulated generating sequence is

Xp1q “
!

xp1qp1q, xp1qp2q, ¨ ¨ ¨ , xp1qpnq
)

(2)

where

xp1qpkq “
k
ÿ

i“1

xp0qpiq, k “ 1, 2, 3, ¨ ¨ ¨ , n (3)

The background value array Zp1q can be calculated as
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Zp1q “
!

zp1qp2q, zp1qp3q, ¨ ¨ ¨ , zp1qpnq
)

(4)

where

zp1qpkq “ 0.5xp1qpkq ` 0.5xp1qpk´ 1q, k “ 2, 3, ¨ ¨ ¨ , n (5)

Then, the primitive form and basis form of GM (1,1) can be given by Equations (6) and (7), respectively.

xp0qpkq ` axp1qpkq “ b (6)

xp0qpkq ` azp1qpkq “ b (7)

where a indicates the development parameter, and b implies the grey action.
Suppose

^
a “ pa, bqT as the parameter vector, and

Y “

¨

˚

˚

˚

˚

˚

˝

xp0qp2q

xp0qp3q
...

xp0qpnq

˛

‹

‹

‹

‹

‹

‚

, B “

¨

˚

˚

˚

˚

˚

˝

´zp1qp2q

´zp1qp3q
...

´zp1qpnq

1

1
...

1

˛

‹

‹

‹

‹

‹

‚

(8)

By employing the least square estimation method, the parameter vector
^
a should be

â “ pBT Bq
´1

BTY (9)

The differential equation

dxp1q

dt
` axp1q “ b (10)

is called as albinism differential equation of GM (1,1), and its solution (known as time response
function) is expressed as

xp1qptq “
ˆ

xp1qp1q ´
b
a

˙

e´at `
b
a

(11)

Then, the time response sequence of GM (1,1) can be expressed as

^
x
p1q
pkq “

ˆ

xp0qp1q ´
b
a

˙

e´apk´1q `
b
a

(12)

which is the solution of Xp1q, k “ 1, 2, ¨ ¨ ¨ , n.

Finally, the forecasting sequence
^

X
p0q

can be obtained by employing the inverse accumulated
generating operation (IAGO), namely

^

X
p0q
“

$

’

’

’

’

&

’

’

’

’

%

^
x
p0q
p1q “ xp0qp1q

^
x
p0q
pkq “

^
x
p1q
pkq ´

^
x
p1q
pk´ 1q “ p1´ eaq

ˆ

xp0qp1q ´
b
a

˙

e´apk´1q,

k “ 2, 3, ¨ ¨ ¨ , n

(13)

2.2. Moth-Flame Optimization Algorithm (MFO)

Inspired by the navigation method of moths in nature called transverse orientation, Mirjalili
proposed a new intelligent optimization method named Moth-flame optimization algorithm (MFO)
in 2015. In this method, a moth flies by maintaining a fixed angle with respect to the moon, which is
a highly effective mechanism for travelling long distance in a straight path. A conceptual model of
transverse orientation is shown in Figure 1. As the moon keeps a long distance from the moth, this
mechanism guarantees flying in straight line. Despite the effectiveness of transverse orientation, what
we usually observe is that moths fly spirally around artificial lights, which is due to the inefficiency of
the transverse orientation, in which it can only help for moving in straight line when the light source
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is very far. When moths see an artificial light, they also try to keep a similar angle with the light to
fly in straight line. Since such a light is extremely close compared to the moon, maintaining a similar
angle to the light source will cause the moth to eventually converge towards the light, which can be
illustrated in Figure 2 [54].
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According to the behavior of converging towards an artificial light, the steps of the MFO are
listed below.

Step 1: Parameters setting.

The primary parameters of MFO include: the number of moths and flames, Agents_no;
the number of variables, dim; the maximum iteration number, Max_iteration; and the lower bound,
lb “ rlb1, lb2, lb3, ...., lbn´1, lbns, and upper bound, ub “ rub1, ub2, ub3, . . . , ubn´1, ubns of variables.

Step 2: Position initialization.

The position of moths and flames are indicated as Equations (14) and (15), respectively:

M “

»

—

—

—

—

–

m1,1 m1,2 ... ... m1,d

m2,1 m2,2 ... ... m2,d
...

...
...

...
...

mn,1 mn,2 . . . . . . mn,d

fi

ffi

ffi

ffi

ffi

fl

(14)
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F “

»

—

—

—

—

–

F1,1 F1,2 ... ... F1,d

F2,1 F2,2 ... ... F2,d
...

...
...

...
...

Fn,1 Fn,2 . . . . . . Fn,d

fi

ffi

ffi

ffi

ffi

fl

(15)

where M is the position matrix of moths; F is the position matrix of flames; n is the number of moths;
and d is the number of variables (dimensions).

The initialization of M and F can be calculated by

m˚,j or F̊ ,j “ pubj ´ lbjq ˆ randpq ` lbj (16)

where m˚,j and F̊ ,j implies the values of the j-th column of the matrix M and F, respectively; rand is
the random number generated with uniform distribution in the interval [0, 1]; and ubj and lbj indicate
the upper bound and lower bound of j-th variable, respectively.

Step 3: Fitness value selection.

To evaluate each flame, a fitness function that can generate fitness values by inputting the
position of flames would be given during optimization, and the matrix OF is employed to store the
corresponding fitness values of flames.

OF “

»

—

—

—

—

–

OF1

OF2
...

OFn

fi

ffi

ffi

ffi

ffi

fl

(17)

where OF is the matrix for saving the fitness value of flames, and n indicates the number of moths.
Selecting and saving the fitness value will make a moth never lose the best solutions in each

iteration. With the purpose of increasing the probability of finding better solutions, the best solutions
obtained so far are considered as the flames. Therefore, the matrix OF always includes n recent best
solutions obtained thus far.

Step 4: Iteration start.

In order to mathematically model the behavior of converging towards the light, a logarithmic
spiral is defined for the MFO algorithm to simulate the spiral flying path of moths with respect to
a flame:

Mi “ SpMi, Fjq “ Di ¨ ebt ¨ cosp2πtq ` Fj (18)

Di can be calculated as follows:
Di “

ˇ

ˇFj ´Mi
ˇ

ˇ (19)

where Mi indicates the i-th moth, Fj indicates the j-th flame, S is the spiral function, Di indicates the
distance of the i-th moth for j-th flame, b is a constant for defining the shape of logarithmic spiral, and
t is a random number in [–1, 1].

As the primary component of MFO method, the spiral movement illustrates how the moths
update their positions around a flame. The t parameter in the spiral equation implies how much the
next position of the moth should be close to the flame (t = ´1 shows the closest position to the flame,
while t = 1 indicates the farthest).

However, the position updating in Equation (18) only requires the moths to move around a
flame, which causes the MFO algorithm to be converged in local optima quickly. To avoid local
optimum stagnation, each moth is obliged to update its position according to only one of the flames in
Equation (18). In each iteration and after updating the list of flames, the flames are sorted based on
their fitness values. Then, the moths update their positions with respect to their corresponding flames.
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However, the position updating of moths with respect to n different locations in the search space
will possibly degrade the exploitation of best promising solutions. In order to solve this, an adaptive
mechanism is carried out for the number of flames. Figure 3 described the way that the number of
flames is declined adaptively during the course of iterations. The formula which is employed in this
regard is as follows:

f lame_no “ roundpN ´ l ˆ
N ´ 1

T
q (20)

where l implies the current number of iteration, N indicates the maximum number of flames, and T is
the maximum number of iterations.
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Step 5: Optimal flames selection.

The position of the flame would be updated if any of the moths becomes fitter than it. According
to this rule, the position and the fitness of flames would be updated, and then re-determine the best
flame and update its position if any moth becomes fitter than the best flame selected from the previous
iteration. When the iteration criterion is met, the best solution would be returned as the best obtained
approximation of the optimum.

3. Rolling-MFO-GM (1,1) Model

This paper proposed a new optimized grey forecasting model named Rolling-MFO-GM (1,1),
which uses MFO to optimize the parameters of GM (1,1), and also employs the rolling mechanism to
improve the predicting precision. The principle of Rolling-MFO-GM (1,1) is represented as follows.

3.1. MFO-GM (1,1)

Generally, the parameters a and b of GM (1,1) are usually determined by the least square estimation
method [56]. However, as the accuracy of forecasting is required to be enhanced, many scholars have
employed various kinds of methods to optimize these two parameters, such as intelligent optimization
algorithms, which can improve the forecasting performance of grey model. In this paper, the two
parameters of GM (1,1) are optimally determined by MFO on the purpose of improving the accuracy
of annual electricity consumption. The procedures of MFO-GM (1,1) are elaborated below.

Step 1: Parameters initialize.

Five parameters should be set firstly, which are the number of moths and flames, Agents_no;
the number of variables, dim; the maximum iteration number, Max_iteration; and the lower bound,
lb “ rlb1, lb2, lb3, ...., lbn´1, lbns, and upper bound, ub “ rub1, ub2, ub3, ...., ubn´1, ubns, variables. In this
paper, it is assumed that Agents_no = 100, dim = 2, Max_iteration = 1000, lb = [´10, 10], ub = [0, 10,000].



Appl. Sci. 2016, 6, 20 8 of 18

Step 2: Optimization starts.

When employing MFO to optimize the parameters of GM (1,1), the fitness function should
be determined firstly. This paper uses the Mean Absolute Percentage Error (MAPE, shown as
Equation (21)) to build the fitness function.

MAPE “
1
n

n
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ˇ

xpkq ´
^
xpkq

xpkq

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ 100% (21)

where xpkq is the practical value at time k; and
^
xpkq is the forecasting value at time k.

In MFO-GM (1,1), the parameters a and b are determined by the position of flames stored in the
column vector OF. According to the initialization position generated by Equation (16), GM (1,1) can be
built, and Equation (13) can be calculated. The actual data sequence

!

xp0qp1q, xp0qp2q, ¨ ¨ ¨ , xp0qppq
)

is

selected as the input sequence, and then the forecasting sequence
"

^
x
p0q
p1q,

^
x
p0q
p2q, ¨ ¨ ¨ ,

^
x
p0q
ppq

*

can

be calculated in accordance with the GM (1,1). Furthermore, the fitness function can be confirmed
which minimizes the result of MAPE of forecasting data elements, which is defined as follow:

f “ min
1
p

p
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xp0qpkq ´
^
x
p0q
pkq

xp0qpkq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ 100% (22)

Up to now, the best solution can be selected at the first iteration. The next 999 iterations (the
maximum iterations, 1000, minus the initial iteration, 1) will be carried out on the basis of this
optimization mechanism of MFO.

Step 3: Optimization ends.

In the process of optimization, different MAPEs would be generated due to the different
parameters values, and the best MAPE could be found by the end of the optimization. Furthermore,
the optimal parameters a and b could be calculated by MFO based on Equation (22). Then, the future
data can be forecasted by substituting the optimal parameters a and b into Equation (13).

The process of MFO-GM (1,1) is illustrated in Figure 4.
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3.2. Rolling-GM (1,1)

The procedures of rolling-GM (1,1) are much more complicated than those of GM (1,1). Since
the rolling mechanism focuses on utilizing recent data to predict future electricity demand, which
can exhibit the latest development of economic and society, it can enhance the accuracy of forecasting
results to a great extent [33,40].

It is assumed that p data elements are used as the input sequence of GM (1,1), and q data elements
are to be forecasted by GM (1,1) in each rolling course. The procedures of rolling-GM (1,1) can be
summarized below.

Step 1: sequence
!

xp0qp1q, xp0qp2q, ¨ ¨ ¨ , xp0qppq
)

is initially utilized as the input sequence of GM (1,1),

and then data elements
!

xp0qpp` 1q, xp0qpp` 2q, ¨ ¨ ¨ , xp0qpp` qq
)

can be predicted.

Step 2: As the rolling mechanism focused on updating data with the most recent ones, GM (1,1)
needs to be rebuilt with p new actual data elements. In order to forecast the data elements
"

^
x
p0q
pp` q` 1q,

^
x
p0q
pp` q` 2q, ¨ ¨ ¨ ,

^
x
p0q
pp` 2qq

*

, the sequence
!

xp0qp1q, xp0qp2q, ¨ ¨ ¨ , xp0qppq
)

need to be replaced by the latest p data elements
!

xp0qpq` 1q, xp0qpq` 2q, ¨ ¨ ¨ , xp0qpq` pq
)

,
which would be employed to rebuild GM (1,1).

Step 3: Repeat Step 2 until all the data elements that need to be forecasted are obtained.

The forecasting procedure of rolling-GM (1,1) is illustrated in Figure 5.
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3.3. Rolling-MFO-GM (1,1)

Rolling-MFO-GM (1,1) is much more complex than GM (1,1) and MFO-GM (1,1), in which the
parameters of GM (1,1) are optimized by MFO and the rolling mechanism is also introduced to enhance
the precision of forecasting results. The steps of Rolling-MFO-GM (1,1) are listed as follows.
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Step 1: The actual data sequence
!

xp0qp1q, xp0qp2q, ¨ ¨ ¨ , xp0qppq
)

is utilized to build MFO-GM (1,1), and
then the optimal parameters a and b could be calculated by MFO using Equation (22). Then

the forecasting sequence
"

^
x
p0q
pp` 1q,

^
x
p0q
pp` 2q, ¨ ¨ ¨ ,

^
x
p0q
pp` qq

*

can be calculated using

Equation (13).
Step 2: As the rolling mechanism aims at employing the latest data for forecasting; in

this step, MFO-GM (1,1) should be rebuilt using the new practical data sequence
!

xp0qpq` 1q, xp0qpq` 2q, ¨ ¨ ¨ , xp0qpq` pq
)

. Then, the parameters a and b would
be re-optimized by MFO using Equation (23) and the forecasting sequence
!

x̂p0qpp` q` 1q, x̂p0qpp` q` 2q, . . . , x̂p0qpp` 2qq
)

can be calculated using Equation (13).

f “ min
1
p

p
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xp0qpq` kq ´
^
x
p0q
pq` kq

xp0qpq` kq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ 100% (23)

Step 3: Repeat Step 2 until all the forecasting data points are obtained.

The procedure of Rolling-MFO-GM (1,1) is illustrated in Figure 6.
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4. Forecasting Annual Electricity Consumption by Employing Rolling-MFO-GM (1,1) Model

In this paper, Rolling-MFO-GM (1,1) is applied to forecast the electricity consumption of Inner
Mongolia, China. The electricity consumption of energy-intensive industries accounts for a significant
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share of total electricity demand of Inner Mongolia, so accurately forecasting electricity consumption
will contribute to the sustainable development of regional industry and electric power grid. The sample
data, the annual electricity consumption of Inner Mongolia between 2001 and 2014, are collected from
North China Electric Power Statistical Yearbook. The changing trend of these 14 data is shown in
Figure 7. This paper set p “ 9 and q “ 1, which implies nine data points are used as the input sequence
feeding into Rolling-MFO-GM (1,1), and one data point needs to be forecasted. The primary reason for
using nine data points is that its forecasting result performs better than using other data sequences,
such as five data points, six data points or eight data points, namely the forecasting result of using
nine data points is much closer to the actual value. The detailed procedures of predicting electricity
consumption of Inner Mongolia is displayed in Figure 8. It can be drawn that the parameters of a and b
can be optimized after five times rolling. Therefore, five groups of parameters a and b can be obtained.
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Five sets of optimal parameters a and b for electricity consumption forecasting of Inner Mongolia
from 2010 to 2014 are shown in Table 1. Then, the electricity consumption between 2010 and 2014 can
be forecasted using Equation (13), which is also shown in Table 1.

Table 1. Optimal parameters’ values and forecasting results by using rolling-MFO-GM (1,1).

Year
Parameters

Forecasting Value Actual Value The Gapa b

2010 ´0.2137 241.6629 1546.38 1536.83 ´9.55
2011 ´0.1774 349.1043 1881.12 1864.07 ´17.05
2012 ´0.1711 444.6820 2189.21 2016.76 ´172.45
2013 ´0.1416 629.6003 2315.54 2068.01 ´247.53
2014 ´0.1341 750.4858 2462.04 2251.05 ´210.99

The gap means the different between the forecasting value and actual value. Of which, the negative value
indicates the forecasting value is larger than the actual value.

5. Comparison of Forecasting Results by Different Forecasting Models

With the aim of evaluating the precision of Rolling-MFO-GM (1,1) model for annual electricity
consumption forecasting, the LSR (least square regression) method, GM (1,1), FOA (fruit fly
optimization)-GM (1,1), MFO-GM (1,1), Rolling-LSR, Rolling-GM (1,1) and Rolling-FOA-GM (1,1)
are selected as the compared models. Among these models, LSR method, GM (1,1), FOA-GM (1,1)
and MFO-GM (1,1) are a class of forecasting models without rolling mechanism, while Rolling-LSR,
Rolling-GM (1,1), Rolling-FOA-GM (1,1) and Rolling-MFO-GM (1,1) are another class of forecasting
models with rolling mechanism. Specifically, LSR method, which is not a grey-based forecasting
technique, is selected to validate the effectiveness of the proposed approach.

As the most well-known linear model in statistics and mathematics, LSR method is an effective
technique to realize correlation analysis between variables. Given a set of training samples, LSR can
find the coefficients of a linear model by minimizing the residual sum of squares [57]. For LSR method,
the electricity consumption data points from 2001 to 2009 of Inner Mongolia will be treated as the
training samples. The regression coefficient a and constant term b are shown in Table 2. According to
the regression model, the forecasting values can be obtained (see Table 3).

For GM (1,1), the input data sequence is the electricity consumption data from 2001 to 2009 of
Inner Mongolia, and then the parameters a and b can be determined (see Table 2). On the basis of this,
the forecasting results of 2010–2014 can be calculated using Equation (13) (see Table 3).

For FOA-GM (1,1), the optimization algorithm FOA is applied to iteratively select the optimal
value of parameters a and b of GM (1,1). Before iteration, the original parameters of FOA are set as
follows: maxgen = 100, sizepop = 20, pX_axis, Y_axisq Ă r- 50, 50s, FR Ă r- 10, 10s, X_axis “ rands p1, 2q,
Y_axis “ rands p1, 2q. The values of parameters a and b optimized by FOA are listed in Table 2, and
the prediction results are shown in Table 3.

For MFO-GM (1,1), the forecasting procedure is shown as Figure 4. Applying the electricity
consumption from 2001 to 2009 as input sequence, the parameters a and b can be optimized by MFO.
Before iteration, the initial parameters setting are same as that in Section 3.2. Then, we can use the
optimal values of a and b which are itemized in Table 2 to calculate the electricity consumption of
2010–2014, and the results are shown in Table 3.

For Rolling-LSR, we can obtain five regression models using five groups of data sequence. The
electricity consumption from 2001 to 2009 are treated as the input sequence of LSR, so the electricity
consumption of 2010 can be calculated based on the first regression model. Then, the data from 2002 to
2010 are employed as input sequence, so the electricity consumption of 2011 can be forecasted on the
basis of the second regression model, and so on. Finally, five regression models can be obtained, and
the electricity consumption from 2010 to 2014 can be forecasted, which are shown in Table 3.
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Table 2. The parameters’ values determined by different compared forecasting models.

Year
LSR GM (1,1) FOA-GM (1,1) MFO-GM (1,1) Rolling-LSR Rolling-GM (1,1) Rolling-FOA-GM (1,1)

a b a b a b a b a b a b a b

2010

128.8292 39.4175 ´0.1821 313.8648 0.1808 307.2826 ´0.2137 241.6629

128.8292 39.4175 ´0.1821 313.8648 ´0.1808 307.2826
2011 150.4075 111.0747 ´0.1622 422.0084 ´0.1730 381.0492
2012 162.1653 193.8000 ´0.1554 512.346 ´0.2041 316.606
2013 198.3753 350.5633 ´0.1404 644.246 ´0.2152 310.4759
2014 199.8292 529.1364 ´0.1172 828.0705 ´0.0653 1094.4900

Table 3. The forecasting results of different compared models.

Year Actual
Value

LSR GM (1,1) FOA-GM (1,1) MFO-GM (1,1) Rolling-LSR Rolling-GM (1,1) Rolling-FOA-GM (1,1)

Forecasting
Value The Gap Forecasting

Value The Gap Forecasting
Value The Gap Forecasting

Value The Gap Forecasting
Value The Gap Forecasting

Value The Gap Forecasting
Value The Gap

2010 1536.83 1327.72 209.11 1668.59 ´131.76 1654.8 ´117.97 1546.38 ´9.55 1327.72 209.11 1668.59 ´131.76 1654.8 ´117.97
2011 1864.07 1434.55 429.52 1997.67 ´133.6 1981.16 ´117.09 1888.76 ´24.69 1615.17 248.90 1845.96 18.11 1849.66 14.41
2012 2016.76 1561.38 455.38 2391.64 ´374.88 2371.88 ´355.12 2306.93 ´290.17 1815.5 201.26 2258.21 ´241.45 2192.67 ´175.91
2013 2068.01 1597.21 470.80 2863.32 ´795.31 2839.65 ´771.64 2817.69 ´749.68 2334.36 ´266.35 2363.73 ´295.72 2404.58 ´336.57
2014 2251.05 1689.04 562.01 3428.01 ´1176.96 3399.68 ´1148.63 3441.54 ´1190.49 2527.44 ´276.39 2520.12 ´269.07 2069.51 181.54

The gap means the different between the forecasting value and actual value. Of which, the positive value of the gap indicates the actual value is larger than the forecasting value, while
the negative value indicates the forecasting value is larger than the actual value.
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For Rolling-GM (1,1), the forecasting procedure is illustrated in Figure 5. We use the electricity
consumption from 2001 to 2009 as the input sequence of GM (1,1), and the first group of parameters
a and b can be obtained, then the electricity consumption of 2010 can be calculated. After that, the
data of 2002–2010 are utilized as input sequence, and the second group of parameters a and b can
be obtained, then the electricity consumption of 2011 can be forecasted. The rest can be done in the
same manner. Finally, five groups of parameters a and b and the forecasted electricity consumption of
2010–2014 can be obtained (see Table 3).

For Rolling-FOA-GM (1,1), the procedure of prediction is the same as Rolling-MFO-GM (1,1).
The only difference between these two models is the meta-heuristic algorithm employed to optimize
the parameters a and b of GM (1,1). The five groups of optimized values of parameters a and b obtained
by FOA in each iteration are listed in Table 2. The forecasting results are listed in Table 3.

The forecasting results of electricity consumption of Inner Mongolia from 2010 to 2014, utilizing
the different models above, are illustrated in Figure 9.
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As can be seen in Figure 9, the models with rolling mechanism show a better forecasting
performance than the models without rolling mechanism. Specially, the forecasted annual electricity
consumption using GM (1,1), FOA-GM (1,1) and MFO-GM (1,1) are much higher than actual electricity
consumption, while the forecasting results of Rolling-LSR, Rolling-GM (1,1), Rolling-FOA-GM (1,1),
and Rolling-MFO-GM (1,1) are much closer to actual values. Without rolling mechanism, the further
into the future, the more the forecasted annual electricity consumption deviates from the actual
annual electricity consumption. However, a forecast with rolling mechanism can pull it back at each
“roll”. The primary reason is that a rolling forecast can use more up-to-date information, which
takes not only the latest development of policy, the economy and society into account but also the
features of forecasting objective into consideration. Therefore, the accuracy of forecasting results with
rolling mechanism can be remarkably improved. This finding has also been verified in other practical
issues, such as the prediction of GDP, interest rate, and energy consumption [42,58]. Additionally,
the forecasting performance of MFO-GM (1,1) is much better to that of LSR, GM (1,1) and FOA-GM
(1,1), which implies using MFO to optimize the parameters of GM (1,1) is effective and promising.
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To further evaluate the accuracy of each forecasting model, several evaluation indicators
are selected to analyze the accuracy of forecasting results, namely Percentage Error (PE), Mean
Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE), which can be calculated as
Equations (24)–(26), respectively.

PE “
xpkq ´

^
xpkq

xpkq
ˆ 100% (24)

MAPE “
1
n

n
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ˇ

xpkq ´
^
xpkq

xpkq

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ 100% (25)

RMSE “

g

f

f

e

1
n

n
ÿ

k“1

pxpkq´
^
xpkqq2 (26)

where xpkq is the actual value at time k, and
^
xpkq is the forecasting value at time k.

The PE results of different forecasting models show the superior performance of Rolling-MFO-GM
(1,1) when compared with that of other seven models, as shown in Table 4.

Table 4. Percentage Error (PE) comparison of eight forecasting models.

Year LSR GM (1,1) FOA-GM
(1,1)

MFO-GM
(1,1) Rolling-LSR Rolling-GM

(1,1)
Rolling-FOA-

GM (1,1)
Rolling-MFO-

GM (1,1)

2010 13.61% ´8.57% ´7.68% ´0.62% 13.61% ´8.57% ´7.68% ´0.62%
2011 23.04% ´7.17% ´6.28% ´1.32% 13.35% 0.97% 0.77% ´0.91%
2012 22.58% ´18.59% ´17.61% ´14.39% 9.98% ´11.97% ´8.72% ´8.55%
2013 22.77% ´38.46% ´37.31% ´36.25% ´12.88% ´14.30% ´16.27% ´11.97%
2014 24.97% ´52.28% ´51.03% ´52.89% ´12.28% ´11.95% 8.06% ´9.37%

The results of MAPE and RMSE shown in Table 5 verify again that the forecasting models with
rolling mechanism perform better than that without rolling mechanism. Furthermore, as can be seen in
Table 5, the MAPE value of LSR is smaller than GM (1,1) but much larger than MFO-GM (1,1), which
indicates that the MFO algorithm is effective. Meanwhile, according to the evaluating criterion of
MAPE listed in Table 6 [33], as the MAPE results of the forecasting models with rolling mechanism are
smaller than 10%, the forecasting power of these models is excellent, while the MAPE results of the
models without rolling mechanism are a little more than 20%, which indicate the forecasting power of
these models is reasonable. What is more, the Rolling-MFO-GM (1,1) is the best forecasting model for
annual electricity consumption due to its obtained smallest MAPE (6.29%). We can draw the same
conclusions from the results of RMSE as that of MAPE.

Table 5. Results of Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) for
different forecasting models.

Model LSR GM (1,1) FOA-GM
(1,1)

MFO-GM
(1,1) Rolling-LSR Rolling-GM

(1,1)
Rolling-FOA-

GM (1,1)
Rolling-MFO-

GM (1,1)

MAPE 21.39% 25.01% 23.98% 21.09% 12.42% 9.55% 8.30% 6.29%
RMSE 441.16 662.34 643.2 642.52 235.98 217.18 195.6 164.87

Table 6. Criterion of MAPE [33].

MAPE (%) Forecasting Power

<10 Excellent
10–20 Good
20–50 Reasonable
>50 Incorrect
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Above all, the superiority of Rolling-MFO-GM (1,1) can be safely concluded. The proposed
Rolling-MFO-GM (1,1), in which the parameters of GM (1,1) are optimized by employing the new
intelligent optimization algorithm MFO and the introduction of rolling mechanism, is of great practical
significance. Meanwhile, it can also be seen that MFO-GM (1,1) performs better than LSR, GM (1,1)
and FOA-GM (1,1), and Rolling-MFO-GM (1,1) is better than Rolling-LSR, Rolling-GM (1,1) and
Rolling-FOA-GM (1,1) in terms of annual electricity consumption forecasting. These findings indicate
that the utilization of MFO to optimize the parameters of GM (1,1) can greatly enhance the precision
of annual electricity consumption forecasting. Additionally, as the rolling mechanism uses recent
data as input sequence of forecasting model, which can consider the latest change trends of policy,
economy and society as well as the characteristics of forecasting subject, the models with rolling
mechanism can perform better than those without rolling mechanism in terms of annual electricity
consumption forecasting.

6. Conclusions

Accurate and reliable forecasting on annual electricity consumption will be valuable for
social projectors and power network operators. For the purpose of enhancing the accuracy of
electricity consumption prediction, this paper proposed a new hybrid optimized grey model named
Rolling-MFO-GM (1,1), which combines rolling mechanism, the latest intelligent optimization
algorithm MFO and grey forecasting model GM (1,1). What we can conclude from the empirical
analysis are as follows:

(1) Employing MFO to optimize the parameters of GM (1,1) can enhance the accuracy of annual
electricity consumption prediction significantly.

(2) The introduction of rolling mechanism can also make the forecasting results much closer to the
actual data.

Currently, many scholars focus on the combination of GM (1,1) with various kinds of intelligent
optimization algorithms or with rolling mechanism. Therefore, this paper combines GM (1,1),
intelligent optimization algorithm MFO, and rolling mechanism together, attempting to improve
the forecasting accuracy of annual electricity consumption. In future research, MFO can be employed
to optimize support vector machines, the weight coefficients of combination forecasting models, and
neural network for other forecasting issues, such as short-term electric power load forecasting, wind
speed forecasting, and so on.
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