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Abstract: This paper proposes an optimal control scheme based on a synchronized phasor
(synchrophasor) for power system secondary voltage control. The framework covers voltage stability
monitoring and control. Specifically, a voltage stability margin estimation algorithm is developed
and built in the newly designed adaptive secondary voltage control (ASVC) method to achieve more
reliable and efficient voltage regulation in power systems. This new approach is applied to improve
voltage profile across the entire power grid by an optimized plan for VAR (reactive power) sources
allocation; therefore, voltage stability margin of a power system can be increased to reduce the risk
of voltage collapse. An extensive simulation study on the IEEE 30-bus test system is carried out to
demonstrate the feasibility and effectiveness of the proposed scheme.

Keywords: PHASOR measurement unit; power system control; synchronized phasor; secondary
voltage control

1. Introduction

Voltage instability has been regarded as one of the primary threats to the security of modern power
network operation during the past few decades. Power system disturbances such as a continuous
load increase and/or a major change in network topology can result in voltage collapse. The voltage
collapse problem, which is characterized by the loss of voltage magnitude at certain locations of the
power grid, has caused several severe blackout events worldwide [1,2].

A number of planning and operation technologies have been proposed to mitigate the risk of
voltage collapse [3]. Among these technologies, phasor measurement unit (PMU) based schemes
to secure power systems have become one of the enabling techniques which are under active
investigations. Indeed, the use of PMUs in modern power systems becomes popular [4,5].

In order to provide a better voltage support in transmission networks, the coordinated voltage
control has been developed. It is organized as a hierarchical structure with three levels: the
primary, secondary, and tertiary voltage control. Significant attention has been given to the study
of the secondary level, which is an automatic regulation of voltage and reactive power for power
systems [6–19]. The task of the secondary voltage control (SVC) is to regulate system voltage profile and
to protect against potential voltage instability scenario at an early stage. The conventional approaches
use only the voltage information at the observed buses (the so-called pilot nodes) as a triggering signal,
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but just monitoring voltage magnitudes alone may give the wrong indication in static voltage stability
study [20]. In other words, voltage stability issues cannot be fully prevented by the traditional SVC
methods; therefore, an additional accepted measure of static voltage stability is required for a more
reliable SVC scheme.

The voltage stability margin (VSM), which is defined to be the distance between the given
operating point and the voltage-collapse point, can serve as the static voltage stability indicator.
A wide variety of approaches have been proposed for static VSM evaluation [21–26], wherein the
measurement-based methods [25,26] address such problem by using the impedance-matching concept,
i.e., at the maximum loading condition, load impedance is equal to Thevenin equivalent impedance
in magnitude. Due to the elegance and simplicity of the measurement-based method, it becomes an
attractive alternative in static voltage stability monitoring. In this paper, a VSM index computed from
synchrophasor data is utilized.

This paper is concerned with designing an optimal voltage control scheme using synchrophasor
measurements. In the proposed technique, the voltage magnitude and static voltage stability margin
are considered as two key criteria for activating the proposed control strategy; therefore, a more
efficient secondary voltage control can be accomplished. The rest of the paper is organized as follows:
In Section 2, the proposed scheme based on the PMU technique is presented. Section 3 describes the
fundamental theories and mathematical principles of the proposed scheme. Numerical simulations
and test results are given and discussed in Section 4. Section 5 concludes the paper.

2. Overview of the Proposed Scheme

The overall architecture of the proposed scheme is shown in Figure 1. The functions and principles
of the scheme are briefly described in this section.
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The designed scheme is illustrated with the part enclosed by the dashed line shown in Figure 1.
Indeed, it consists of two primary functions: (i) voltage profile and static VSM monitoring function,
which monitors not only voltage magnitudes but static VSM as well using synchrophasor data from
PMUs; and (ii) adaptive secondary voltage control (ASVC) function which provides appropriate
control actions to the controllers. The proposed scheme aims to regulate voltage profiles and to enlarge
static voltage stability margin by means of a proper adjustment of VAR sources when the power grid
has poor voltage profile and/or shows the risk to voltage collapse.

The flowchart of the proposed scheme is illustrated in Figure 2 and is described in the following:
Step 1: In this study, we assume that PMUs are installed at the selected pilot buses. Using the

precise timing signal provided by GPS as the common time base for PMUs, both magnitude and phase
angle of voltage and current signals at different PMU locations can be measured, at exactly the same
time instant from all observable system buses. Once the PMU measurements with time tags are entered
into the designed scheme, these coherent and real-time measured quantities are then used to process
the tasks of the proposed scheme.
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Step 2: At this stage, the proposed scheme performs voltage profile evaluation and static voltage
stability margin estimation simultaneously.

(1) The voltage magnitudes, which are extracted from the PMUs in step 1, are used to evaluate the
voltage magnitudes of the monitored buses. As long as the measured voltages are not within the
specified limit, voltage violation is confirmed. Then, the scheme will issue a trigger signal to the
ASVC function. Otherwise, the scheme will go back to Step 1.
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(2) As mentioned before, depending on bus voltages for the activation of control actions is not a
very reliable strategy to be adopted. Another important index, which measures the proximity
of an operating point to voltage instability, is the voltage stability margin (VSM). Therefore, the
scheme needs to further check to see whether the current power system state is operated within
a sufficient safety margin or not. If the computed value VSM is less than the predetermined
security margin, inadequate VSM is identified. This will initiate the ASVC action accordingly.

Step 3: When critical voltage level or inadequate VSM is detected, the ASVC method will be
activated automatically. The proposed control strategy can provide appropriate control actions to
improve voltage profiles as well as voltage stability margin of the power system. That is, the proposed
scheme is capable of preventing the system from possible voltage collapse.

The following section shows the detailed principles and methods used in the proposed scheme.

3. Principles of the Scheme

The proposed scheme is intended to automatically improve power system voltage profiles and
static voltage stability margin simultaneously. The basic principles of the scheme will be derived in the
following subsections.

3.1. Adaptive Secondary Voltage Control (ASVC) Function

First, consider that the approximate model of the small disturbance voltage-var control is
represented by

«

∆QG
∆QL

ff

“

«

BGG BGL
BLG BLL

ff«

∆ |VG|

∆ |VL|

ff

(1)

where ∆ Q and ∆ |V| are the reactive power and voltage magnitude change vectors; B stands for the
system susceptance matrix; and the subscripts L and G denote the load and the voltage-controlled
buses, respectively. In the above matrix equation, load voltage changes ∆ |V| can be expressed as

∆ |VL| “ J1q´ J2u (2)

where
J1 “ B´1

LL

J2 “ J1BLG
(3)

q “ ∆QL

u “ ∆ |VG| .
(4)

Notice that q and u are considered as reactive power load disturbances and control
variables, respectively.

In this study, the feedback control law is used to develop the secondary voltage controller. The
control vector is determined by using the worst-case design, the technique which addresses the
problem by applying the minimization of the maximum load voltage deviation as an objective function
for the optimal control model. Mathematically, the problem is to search an optimal set of control
solutions such that the l8 norm of load voltage changes is minimized.

Suppose that PMUs are placed at the chosen pilot nodes; the voltage deviations at the observed
buses can be elaborated by

∆
ˇ

ˇVp
ˇ

ˇ “

ˇ

ˇ

ˇ
V*

p

ˇ

ˇ

ˇ
´
ˇ

ˇVp
ˇ

ˇ (5)

where
ˇ

ˇ

ˇ
V*

p

ˇ

ˇ

ˇ
and

ˇ

ˇVp
ˇ

ˇ denote the pilot-node set-point voltages determined by tertiary level and
pilot-node measured voltages obtained from installed PMUs, respectively. In the proposed secondary
voltage control, both voltage profile and static voltage stability margin are adopted to serve as trigger
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signals, as shown in Figure 3. It utilizes pilot-bus voltage changes ∆
ˇ

ˇVp
ˇ

ˇ as input signals, and generates
control actions u as output signals.

Appl. Sci. 2016, 6, 14 5 of 12 

signals, as shown in Figure 3. It utilizes pilot-bus voltage changes pΔ V  as input signals, and 

generates control actions u as output signals. 

ASVC
Algorithm

Trigger

pΔ V u

Insufficient 
VSM

Voltage Limit 
Violation

 
Figure 3. Block diagram of the proposed ASVC method. Once voltage limit violation or insufficient 
VSM is identified, the ASVC algorithm will be triggered automatically. 

Based on different numbers of pilot buses being used, the following conditions are considered. 
(1) All Load Buses as Pilot Buses: This means that voltage measurements are available at all load 

buses. Under this circumstance, the first term 1J q  in Equation (2) can be replaced by pΔ V ; 

therefore, the problem formulation of the voltage control strategy is stated as 

2min J

subject to
∞

−

≤ ≤

pu

min max
G G G

Δ V u

V V V
 (6) 

where min
GV  and max

GV  are the lower and upper bounds of generator voltage magnitudes, respectively. 

(2) Partial Load Buses as Pilot Buses: This means that voltage measurements are only available 
at the given pilot buses, and thus  only has some elements of the vector  under this 

situation. Indeed,  can be related to q by the equation , in which Jp is the matrix 

with the rows of  corresponding to the pilot points selected. 

Since there are fewer measurements than variables to be estimated, the equation  is 

underdetermined. In the proposed method, however, any reactive power disturbance variable vector 
q that satisfies  can be utilized to determine feasible control signals that minimize 

∞LΔ V . The least-norm technique [27], which is the most commonly used for solving an 

underdetermined set of linear equations, is applied to approximate q. In this case, the problem is to 
find q that satisfies  and minimizes 

2
q . Thus, the estimate of q is given by 

( ) 1T T
p p pJ J J

−
=*

pq Δ V  (7) 

With the optimal q*, the proposed control strategy can be formulated in the following  
search problem: 

1 2min J J

subject to
∞

−

≤ ≤

*

u

min max
G G G

q u

V V V .

 (8) 

The constrained optimization problems in Equations (6) and (8) can be reformulated as linear 
programming problems [27] and be solved by using a linear programing solver such as linprog 
function in the MATLAB optimization toolbox [28]. The optimal control actions, which are obtained 

pΔ V 1J q

pΔ V pJ = pq Δ V

1J

pJ = pq Δ V

pJ = pq Δ V

pJ = pq Δ V

Figure 3. Block diagram of the proposed ASVC method. Once voltage limit violation or insufficient
VSM is identified, the ASVC algorithm will be triggered automatically.

Based on different numbers of pilot buses being used, the following conditions are considered.
(1) All Load Buses as Pilot Buses: This means that voltage measurements are available at all load

buses. Under this circumstance, the first term J1q in Equation (2) can be replaced by ∆
ˇ

ˇVp
ˇ

ˇ; therefore,
the problem formulation of the voltage control strategy is stated as

min
u
||∆

ˇ

ˇVp
ˇ

ˇ´ J2u ||
8

subject to
ˇ

ˇVmin
G

ˇ

ˇ ď |VG| ď
ˇ

ˇVmax
G

ˇ

ˇ

(6)

where
ˇ

ˇVmin
G

ˇ

ˇ and
ˇ

ˇVmax
G

ˇ

ˇ are the lower and upper bounds of generator voltage magnitudes, respectively.
(2) Partial Load Buses as Pilot Buses: This means that voltage measurements are only available at

the given pilot buses, and thus ∆
ˇ

ˇVp
ˇ

ˇ only has some elements of the vector J1q under this situation.
Indeed, ∆

ˇ

ˇVp
ˇ

ˇ can be related to q by the equation Jpq “ ∆
ˇ

ˇVp
ˇ

ˇ, in which Jp is the matrix with the rows
of J1 corresponding to the pilot points selected.

Since there are fewer measurements than variables to be estimated, the equation Jpq “ ∆
ˇ

ˇVp
ˇ

ˇ is
underdetermined. In the proposed method, however, any reactive power disturbance variable vector
q that satisfies Jpq “ ∆

ˇ

ˇVp
ˇ

ˇ can be utilized to determine feasible control signals that minimize
||∆ |VL| ||8. The least-norm technique [27], which is the most commonly used for solving an
underdetermined set of linear equations, is applied to approximate q. In this case, the problem
is to find q that satisfies Jpq “ ∆

ˇ

ˇVp
ˇ

ˇ and minimizes ||q||2. Thus, the estimate of q is given by

q* “ JT
p

´

Jp JT
p

¯´1
∆
ˇ

ˇVp
ˇ

ˇ (7)

With the optimal q*, the proposed control strategy can be formulated in the following
search problem:

min
u
|| J1q*´ J2u ||8

subject to
ˇ

ˇVmin
G

ˇ

ˇ ď |VG| ď
ˇ

ˇVmax
G

ˇ

ˇ .
(8)

The constrained optimization problems in Equations (6) and (8) can be reformulated as linear
programming problems [27] and be solved by using a linear programing solver such as linprog function
in the MATLAB optimization toolbox [28]. The optimal control actions, which are obtained from
Equations (6) or (8), ensure that the resulting worst load voltage change can precisely remain within
the range of the predefined constraint regardless of any unexpected load disturbances acting on
the system.
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3.2. Voltage Stability Margin Estimation Function

A common static voltage stability index is expressed by the voltage stability margin which
shows how far the system is away from a possible instability event. In order to rapidly assess static
voltage stability of a power grid, the local measurement-based methods have been presented in the
works [25,26]. The key idea of these techniques is provided here.

To start with, consider a load at bus i connected to a complex power system, which can be
simplified to a single-machine-infinite-bus system by an estimated Thevenin equivalent network as
shown in Figure 4, where Eth

i , Zth
i , and ZL

i correspond to Thevenin equivalent voltage, Thevenin
equivalent impedance, and load impedance in phasor representation at bus i, respectively. When
the power transmitted is maximum at bus i,

ˇ

ˇZL
i

ˇ

ˇ is identical to
ˇ

ˇ

ˇ
Zth

i

ˇ

ˇ

ˇ
. Based on the impedance match

theory, tracking
ˇ

ˇZL
i

ˇ

ˇ and
ˇ

ˇ

ˇ
Zth

i

ˇ

ˇ

ˇ
plays an important role in real-time voltage instability detection.
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Using the approach above, the impedance based VSM index of bus i is defined as

VSMi “

ˇ

ˇZM
i

ˇ

ˇ

ˇ

ˇZL
i

ˇ

ˇ

“ 1´

ˇ

ˇ

ˇ
Zth

i

ˇ

ˇ

ˇ

ˇ

ˇZL
i

ˇ

ˇ

(9)

where
ˇ

ˇZL
i

ˇ

ˇ and
ˇ

ˇ

ˇ
Zth

i

ˇ

ˇ

ˇ
can be obtained by using the local measured voltage and current phasors which

are available from the installed PMU [25,26]. The static voltage stability margin for the entire power
system is defined to be

VSM “ min tVSMi | i “ 1, 2, . . . , pu (10)

where p represents the set of numbers of pilot buses. Note that the value of VSM is between 0 and
1. At the voltage-collapse point, the VSM is equal to 0. Although the approach proposed in [25]
was employed to estimate VSM, it is noteworthy that any other measurement-based method of VSM
analysis can be applied for this purpose, for example, the one proposed in [26].

The index VSM incorporated with the voltage magnitudes at the monitored buses will be used as
the triggering signals for activating the proposed ASVC approach. Figure 5 illustrates the proposed
control strategy, where ε1 and ε2 are the threshold levels for voltage change and security margin,
respectively. In Figure 5, if the power system is operated at the critical state with poor voltage profile
or insufficient VSM, then the ASVC function will be automatically initiated to steer the power system
away from the point which is prone to voltage collapse.
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4. Simulation Results

This section presents numerical examples of the developed control scheme, i.e., simultaneous
system voltage profiles improvement as well as static voltage stability margin enlargement, on a
sample power network. The simulation program is coded using MATLAB® and implemented on a
personal computer which has a CPU with Intel® Core™2 Duo 2.66 GHz and a memory with 4 GB.

The IEEE 30-bus system is used as an example to show the effectiveness of the proposed scheme.
This sample system consists of 41 transmission lines, 6 VAR sources, and 24 loads. The system data
including line parameters and bus data are given in [29]. For all examples, the permissible value
adopted for voltage magnitude is set at 0.95 ď |V| ď 1.05 p.u., and the security margin for the test
system is set as VSM ě 0.3 p.u.. These are the threshold levels for triggering the proposed control
algorithm. The voltage profile improvement index xrms used in this research is expressed by the root
mean square value of voltage changes at all load buses, i.e.,

xrms “

¨

˝

1
m

m
ÿ

j“1

||xj||
2
2

˛

‚

1{2

(11)

where m is the number of load buses in the test system, and xj for each j “ 1, 2, . . . , m denotes the
resulting voltage change at each of the load buses. In this test system, m is set to be 24. Note that the
smaller the value of xrms, the better the voltage profile will be.

In order to verify the performance of the presented methodology to power system secondary
voltage control, we have studied a lot of experiments. These simulation cases include different load
levels, different load patterns, various pilot-bus selections, and various branch outage contingencies.
Among those investigated cases, some typical test results for the scenarios given in Table 1 are briefly
summarized in the following.

Table 1. Case studies for the IEEE 30-bus system (“#” Indicates” number” & ”/” indicates ”None”).

Case PMU Locations at Load Change Pattern Line Outage Contingency

I #30 Single bus /
II #3, #12 All buses /
III #24, #29 Several buses Line #27–#28
IV All Several buses /
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4.1. Case I

In the first case, bus load change pattern is considered. The load at bus #30 is gradually increased
by 15% of its initial load level from the time instant 1 min to 2.5 min of the simulation.

In this test, the voltage magnitude |V30| “ 0.9388 p.u. of pilot bus #30 drops below the constraint
of 0.95 p.u. at t “ 2.5 min. This low voltage violation activates the proposed ASVC immediately,
and Figure 6a illustrates the voltage trace at pilot bus #30 during the simulation test of case I. When
the proposed scheme is used to carry out the secondary voltage control, voltage violation will be
eliminated effectively. In addition, the value of VSM is increased from 0.51 to 0.72 p.u., as shown in
Figure 6b. This demonstrates that larger VSM can be achieved simultaneously with improvement of
overall network voltage.
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Figure 6. Simulation result of case I. (a) The trace of |V30|; (b) The trace of VSM.

4.2. Case II

In case II, a new operating condition and new load change pattern are investigated. From the
time instant 0.5 min to 2 min of the simulation, all the loads in the IEEE 30-bus system are increased by
20% based on the initial load levels.

During the load increase, the voltage magnitudes at the monitored buses (bus #3 and #12 in this
case) are within the pre-determined voltage limits, but static voltage stability margin of the power
system is less than the threshold level of 0.3 p.u. at t “ 2 min. This means that the system has a great
potential of voltage collapse without any remedial control. Under such situation, however, no control
actions will be initiated by the traditional SVC methods which consider only bus voltages as trigger
signal. Instead, the proposed scheme employs not only voltage magnitudes but also static voltage
stability margin as criteria; therefore, inadequate VSM (VSM “ 0.23 ă 0.3 p.u.) is identified.

After applying the proposed ASVC, all the voltage magnitudes are maintained within the range
of predefined constraint and the static voltage stability margin is enlarged as well. The simulation
result is illustrated in Figure 7, showing that the VSM is significantly increased from 0.23 to 0.57 p.u..
The enlargement of the static voltage stability margin is a result of the improvement in the system
voltage profile.
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4.3. Case III 

This example is to demonstrate the performance of the proposed scheme with respect to branch 
outage contingency following several loads increase condition. In this case, the loads at bus #12, #24, 
and #29 are increased by 20% from the time instant 0.5 min to 2 min, and the transmission line 
connected between bus #27 and #28 is tripped in a contingency at 2 min. 

As can be expected, the system has poor voltage profile and unsecure margin due to the 
disturbances of both load increase and line outage. Figure 8 shows the simulation result of case III. 
One can observe that the proposed scheme works satisfactorily in this case. 
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Figure 7. Simulation result of case II. (a) The trace of |V3|; (b) The trace of |V12|; (c) The trace of VSM.

4.3. Case III

This example is to demonstrate the performance of the proposed scheme with respect to branch
outage contingency following several loads increase condition. In this case, the loads at bus #12,
#24, and #29 are increased by 20% from the time instant 0.5 min to 2 min, and the transmission line
connected between bus #27 and #28 is tripped in a contingency at 2 min.

As can be expected, the system has poor voltage profile and unsecure margin due to the
disturbances of both load increase and line outage. Figure 8 shows the simulation result of case
III. One can observe that the proposed scheme works satisfactorily in this case.
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4.4. Case IV 

In the fourth case, we assume that PMUs are installed at all load buses. In addition, several loads 
change is considered. The loads at bus #3, #16, and #20 are gradually increased by 15% from the time 
instant 0.5 min to 1.5 min of the simulation. 

Figure 9 shows the traces of the selected pilot buses (bus #23 and #26 in this case) and VSM 
during the simulation of case IV. Since insufficient VSM ( 0.26 0.3VSM = < ) is detected at 1.5t =  min, 
the control strategy will be activated accordingly. Thus, the voltage levels and voltage stability 
margin are considerably enhanced after ASVC. This can be regarded clearly in Figure 9. 
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Figure 8. Simulation result of case III. (a) The trace of |V24|; (b) The trace of |V29|; (c) The trace of VSM.

4.4. Case IV

In the fourth case, we assume that PMUs are installed at all load buses. In addition, several loads
change is considered. The loads at bus #3, #16, and #20 are gradually increased by 15% from the time
instant 0.5 min to 1.5 min of the simulation.

Figure 9 shows the traces of the selected pilot buses (bus #23 and #26 in this case) and VSM during
the simulation of case IV. Since insufficient VSM (VSM “ 0.26 ă 0.3) is detected at t “ 1.5 min, the
control strategy will be activated accordingly. Thus, the voltage levels and voltage stability margin are
considerably enhanced after ASVC. This can be regarded clearly in Figure 9.
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Table 2 summarizes the test results for the above three cases. An inspection from the shown table 
indicates that both voltage profile and static voltage stability margin are greatly improved after 
applying the proposed control scheme. 

Table 2. Performance evaluation for the proposed scheme on the IEEE 30-bus system. 

Case 
 (p.u.) VSM (p.u.) 

Before After Before After 
I 0.0601 0.0355 0.51 0.72 
II 0.0348 0.0205 0.23 0.57 
III 0.0803 0.0411 0.18 0.49 
IV 0.0416 0.0194 0.26 0.39 

5. Conclusions 

A synchrophasor based optimal voltage control scheme, which considers both voltage profile 
and static voltage stability margin, is developed in order to achieve secure grid operations. A detailed 
derivation of the principles used in the scheme is presented with illustrated figures. An extensive 
simulation studies on the IEEE 30-bus test system is carried out to demonstrate the feasibility and 
effectiveness of the proposed scheme. 
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Table 2 summarizes the test results for the above three cases. An inspection from the shown
table indicates that both voltage profile and static voltage stability margin are greatly improved after
applying the proposed control scheme.
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Table 2. Performance evaluation for the proposed scheme on the IEEE 30-bus system.

Case
xrms (p.u.) VSM (p.u.)

Before After Before After

I 0.0601 0.0355 0.51 0.72
II 0.0348 0.0205 0.23 0.57
III 0.0803 0.0411 0.18 0.49
IV 0.0416 0.0194 0.26 0.39

5. Conclusions

A synchrophasor based optimal voltage control scheme, which considers both voltage profile
and static voltage stability margin, is developed in order to achieve secure grid operations. A detailed
derivation of the principles used in the scheme is presented with illustrated figures. An extensive
simulation studies on the IEEE 30-bus test system is carried out to demonstrate the feasibility and
effectiveness of the proposed scheme.
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