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Abstract: This paper presented both the linear quadratic Gaussian technique (LQG) and the 

coefficient diagram method (CDM) as load frequency controllers in a multi-area power 

system to deal with the problem of variations in system parameters and load demand change. 

The full states of the system including the area frequency deviation have been estimated 

using the Kalman filter technique. The efficiency of the proposed control method has been 

checked using a digital simulation. Simulation results indicated that, with the proposed  

CDM + LQG technique, the system is robust in the face of parameter uncertainties and load 

disturbances. A comparison between the proposed technique and other schemes is carried 

out, confirming the superiority of the proposed CDM + LQG technique. 

Keywords: load frequency control (LFC); coefficient diagram method (CDM); linear 

quadratic Gaussian (LQG); integral control (I); kalman filter 
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1. Introduction 

Load frequency control plays a substantial function in power system operations, so control engineers 

are attempting to use several control methods in order to obtain the best solutions [1,2]. A proportional 

integral (PI) controller or an only integral controller is still widely applied in load frequency applications. 

In the literature, there are many techniques that have been applied for the load frequency issue. From 

these techniques, fixed parameter controllers are developed at nominal operating points, and they, 

however, may not be suitable under various operating conditions. For this reason, adaptive gain 

scheduling approaches have been proposed for LFC synthesis [3]. With this method, the disadvantages 

of the conventional proportional integral and derivative (PID) controllers, which require the adaptation 

of controller parameters, were overcome. However, it faces some difficulties such as the instability of 

transient response because of abrupt changes in the system parameters, in addition to the impossibility 

of obtaining accurate linear time invariant models at variable operating points [3]. In addition to dealing 

with changes in system parameters, fuzzy logic controllers have been used in many reports for LFC 

design in a two-area power system [4,5]. The applications of artificial neural networks and genetic 

algorithms in LFC have been studied in [6,7]. In spite of these efforts, it seems that, although the 

estimation of parameters is not required, the parameters of the controllers can be generally changed very 

quickly; despite the promising results achieved, the control algorithms are complicated and unstable 

transient response could still be observed. Therefore, some other elegant techniques are needed to 

achieve a more desirable performance. 

Recently, some papers have reported the application of the model predictive control (MPC) technique 

on the load frequency control issue [8,9]. In [8], the use of MPC in a multi-area power system is 

discussed. In [9], the effect of merging wind turbines on the multi-area power system controlled by MPC 

is discussed. From [8,9], fast response and robustness against parameter uncertainties and load changes 

can be obtained using an MPC controller, but MPC suffers from a calculation burden problem [8,9]. 

In [10], a robust technique using the coefficient diagram method (CDM) was presented for LFC. 

CDM is an algebraic algorithm which is applied to a polynomial loop in the parameter space using a 

coefficient diagram to get the necessary design information. Simulation results supported CDM as a 

power system load frequency controller. 

As a result of the complexity and change of the power system structure, new methods are asked to 

enhance the system performance. 

This paper presents a distributed LFC control method based on both the linear quadratic Gaussian 

(LQG) method and the CDM technique. LQG is designed to produce an optimal feedback control signal. 

System full states have been estimated using the Kalman filter technique. Both the Kalman state space 

model and the LQG feedback gains have been designed off-line. A system with the proposed  

CDM + LQG technique has been checked under parameter uncertainties and load disturbances using a 

digital simulation. A comparison between the proposed technique, CDM alone and the traditional 

integral controller are carried out, supporting the effectiveness of the proposed CDM + LQG technique. 

2. System Dynamics 

Figure 1 shows a power system with N control areas [1]. 
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Figure 1. Dynamic model of a control area in an interconnected environment. 

The model of frequency response for any area i of N power system control areas can be described  

as [2]:  ∆ ప݂ሶ = ൬ ௜൰ܪ12 ∆ ௠ܲ௜ − ൬ ௜൰ܪ12 ∆ ௅ܲ௜ − ൬ ௜൰ܪ௜2ܦ ∆ ௜݂ − ൬ ௜൰ܪ12 ∆ ௧ܲ௜௘,௜ (1)

While the dynamic of the governor can be expressed as: ∆ ௠ܲపሶ = ൬ 1ܶ௧௜൰ ∆ ௚ܲ௜ − ൬ 1ܶ௧௜൰ ∆ ௠ܲ௜ (2)

And the dynamic of the turbine can be expressed as: ∆ ௚ܲపሶ = ቆ 1ܶ௚௜ቇ ∆ ௖ܲ௜ − ቆ 1ܴ௜ ௚ܶ௜ቇ ∆ ௜݂ − ቆ 1ܶ௚௜ቇ ∆ ௚ܲ௜ (3)

The total tie-line power change between area i and the other areas can be calculated as: 

∆ ሶܲ ௧௜௘,௜ = .ߨ2 ێێێۏ
෍ۍ ௜ܶ௝∆ ௜݂ −෍ ௜ܶ௝∆ ௝݂ே

௝ୀଵ௝ஷ௜
ே
௝ୀଵ௝ஷ௜ ۑۑۑے

ې
 (4)

Where	(∆) is a differential operator. 

Also, the frequency deviation is added to the tie-line flow deviation in the supplementary feedback 

control loop to maintain the net interchange power with neighboring areas according to scheduled values. 

The area control error (ACE) represents the linear combination of tie-line power changes and frequency 

for area i, and is known as, ܧܥܣ௜ = ∆௜ܤ ௜݂ + ௧ܲ௜௘,௜ (5)

Equations (1)–(4) represent the frequency response model for ܰ	power system control areas with one 

generator unit in each area, and can be combined in the following state space model: 
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(6)

Where: ∆ ௜݂	: the frequency deviation of area i. ∆ ௚ܲ௜	: the governor output change of area i. ∆ ௠ܲ௜		: the mechanical power change of area i. ∆ ௧ܲ௜௘,௜	: the total tie-line power change between area i and the other areas. ∆ ௅ܲ௜	: the load change of area i. ∆ ௖ܲ௜	: supplementary control action of area i. ݕ௜: the system output of area i. ܪ௜	: equivalent inertia constant of area i. ܦ௜	: equivalent damping coefficient of area i. 

Ri: speed droop characteristic of area i. ܧܥܣ௜: the control error of area i. ௚ܶ௜,	 ௧ܶ௜ 	: governor and turbine time constants of area i. 

Bi: a frequency bias factor of area i. 

Tij: tie-line synchronizing coefficient with area j. ∆ݒ௜: control area interface,	ݒ௜	 = ቈ∑ ௜ܶ௝∆ ௝݂ே௝ୀଵ௝ஷ௜ ቉.
 

3. Coefficient Diagram Method 

The coefficient diagram method (CDM) is an algebraic design method which uses a coefficient 

diagram instead of a Bode diagram, and its theoretical basis is constituted using the condition for stability 

by Lipatov [10]. 

The coefficient diagram gives significant information about the system’s time response, stability, and 

robustness characteristics in one diagram, where the horizontal axis shows the order i values 

corresponding to each coefficient, whereas the logarithmic vertical axis shows stability indices (γi), the 

equivalent time constant (τ), and the characteristic polynomial coefficients (ai). The measure of stability 

can be obtained using the degree of convexity derived from coefficients of the characteristic polynomial, 

while the speed of response can be calculated by the general slope of the curve. The shape of the ai curve 

indicates the measure of robustness [11–13]. 
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Figure 2 shows the block diagram of a single-input single-output (SISO) linear time invariant system 

with CDM control. 

 

Figure 2. A block diagram of a CDM control system. 

where: 

D(s) is the denominator polynomial of the plant transfer function; 

N(s) is the numerator polynomial; 

A(s) is considered as the forward denominator polynomial; 

F(s) and B(s) are considered as the reference numerator and feedback numerator polynomials. 

In this method, d is the external disturbance signal, r is taken as the reference input to the system,  

u as the controller signal, and y is the output of the control system. ݕ = (ݏ)ܲ(ݏ)ܨ(ݏ)ܰ ݎ + (ݏ)ܲ(ݏ)ܰ(ݏ)ܣ ݀ (7)

Where P(s) represents the characteristic polynomial of the closed-loop system and is defined by ܲ(ݏ) = (ݏ)ܦ(ݏ)ܣ + (8) (ݏ)ܰ(ݏ)ܤ

A(s) and B(s) are considered as the control polynomials and are defined as 

(ݏ)ܣ =෍݈௜ݏ௜௉
௜ୀ଴ ܽ݊݀ (ݏ)ܤ =෍݇௜ݏ௜௤

௜ୀ଴  (9)

For practical realization, the condition p ≥ q must be satisfied. To get the characteristic polynomial 

P(s), the controller polynomials from Equation (3) are substituted in Equation (2) and are given as 

(ݏ)ܲ =෍݈௜ݏ௜௉
௜ୀ଴ (ݏ)ܦ +෍݇௜ݏ௜௤

௜ୀ଴ (ݏ)ܰ =෍ܽ௜ݏ௜௡
௜ୀ଴ , ܽ௜ > 0 (10)

Some parameters are needed for the design of the CDM, such as the stability indices (γi), the 

equivalent time constant (τ), and the stability limits (γi
*). The relations between these parameters and the 

coefficients of the characteristic polynomial (ai) can be described as follows: ߛ௜ = ܽ௜ଶܽ௜ା௜ܽ௜ିଵ , ݅ ∈ [1, ݊ − 1] , ଴ߛ = ௡ߛ = ∞ (11)
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߬ = ܽଵܽ଴ (12)ߛ௜∗ = ௜ିଵߛ1 + ௜ାଵߛ1 , ݅ ∈ [1, ݊ − 1] (13)

γi values are selected as {2.5, 2, 2 ...2} according to Manabe’s standard form. These values can be 
changed by the designer. The target characteristic polynomial, ௧ܲ௔௥௚௘௧(ݏ), can be framed using the key 

parameters (τ and γi), as in 

௧ܲ௔௥௚௘௧ = ܽ° ቎ቐ෍ቌෑ ௜ି௝௝௜ିଵߛ1
௝ୀଵ ቍ ௜௡(ݏ߬)

௜ୀଶ ቑ + ݏ߬ + 1቏ (14)

where ܲ(ݏ) = ௧ܲ௔௥௚௘௧(ݏ). 
In addition, the reference numerator polynomials F(s) can be calculated from: (ݏ)ܨ = (ݏ)ܰ(௦ୀ଴|(ݏ)ܲ)  (15)

The coefficient diagram can be provided as the following example, when the plant and controller 

polynomials are given as [14]. ܰ(ݏ) = ସݏ0.25 + ଷݏ + ଶݏ2 + (ݏ)ܦ , ݏ0.5 = 1 

(ݏ)ܣ(16) = ݈ଵݏ , (ݏ)ܤ = ݇ଶݏଶ + ݇ଵݏ + ݇଴ ݈ଵ = 1	, ݇ଶ = 1.5 , ݇ଵ = 1 , ݇଴ = 0.2 

The characteristic polynomial is expressed as ܲ(ݏ) = ହݏ0.25 + ସݏ + ଷݏ + ଶݏ2 + ݏ + 0.2 (17)

Then ܽ௜ = [ܽହ …ܽଶ ܽଵ] = [0.25 1 2 2 1 ௜ߛ(18) [0.2 = ସߛ] ଶߛ… [ଵߛ = [2 2 2 2.5] (19)߬ = 5 (20)γ௜∗ = [γସ∗ … γଶ∗ γଵ∗] = [0.5 1 0.9 0.5] (21)

The coefficient diagram is shown as in Figure 3, where the coefficient of the characteristic polynomial 

(ai) is read by the left-side scale, and the stability index (γi), stability limits (γi
*), and equivalent time 

constant (τ) are read by the right-side scale. The degree of convexity, which is obtained from coefficients 

of the characteristic polynomial, gives a measure for stability, while the general inclination of the curve 

gives a measure for the speed of response. If the curvature of ai becomes larger, the system becomes 

more stable, corresponding to a larger γi. If the ai curve is right down the τ, this means that the speed of 

the system response is fast. The variation of the shape of the ai curve due to plant parameter variation is 

a measure of robustness. 
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Figure 3. Coefficient diagram. 

4. LQG 

The name LQG arises from the use of an integral cost function, a linear model, and Gaussian white 

noise processes to noise signals and model disturbances. The Kalman filter and optimal state feedback 

gain "k" are the two main parts of the LQG controller. The optimal feedback gain is calculated such that 

the feedback control law u = −kx minimizes the performance index: ܪ = න (்ܺܳܺ + ஶݐ݀(ݑ்ܴݑ
଴  

Where R and Q are positive definite or semi-definite real symmetric or Hermittian matrices [15].  

The optimal state feedback u = −kx needs full state measurement. In our case, the states are chosen to 
be the frequency deviation	∆݂, mechanical power change	∆P୫୧, the governor output change ∆ ௚ܲ௜, and 

the area tie-line power change ∆ ௧ܲ௜௘,௜ . The frequency deviation ∆ ௜݂ , the area tie-line power change ∆ ௧ܲ௜௘,௜	and the supplementary control action ∆ ௖ܲ௜ are chosen to be the measured signals which are fed to 

the Kalman estimator. The Kalman filter estimator is used to drive the state estimation: ݔො௜ = [∆ መ݂௜∆̂݌௠௜ ௚௜̂݌∆  [௧௜௘,௜̂݌∆
Such that u = −kx remains optimal for the output feedback problem. The state estimation is  

generated from ൫ݔሶ෠൯ = ܣ) − ݇ܤ − ොݔ(ܥܮ + ݕܮ  

Where L is the Kalman gain and can be calculated by knowing the measurement covariance and system 

noise Rn and Qn. The Kalman filter’s parameters and the LQG gains have been calculated off-line. 

5. Case Study 

The three-area power system shown in Figure 4 is used to check the system performance with the 

proposed control method. As shown in Figure 5, each area has its own controller. The frequency 

deviation is used as a feedback for the closed-loop control system. The main control action can be 

calculated by adding the area control error ACEi to the CDM controller. In addition, the supplementary 

control action ∆ ௖ܲ௜, frequency deviation ∆ ௜݂, and the tie-line power change have been applied to the 
input of the Kalman filter to estimate the system states xො୧ 	= [∆ መ݂௜	∆̂݌௠௜ ௚௜̂݌∆  ௧௜௘,௜], and thesê݌∆

estimated states have been multiplied by optimal state feedback gain "k" to give the optimal control 
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signal which, added to the main control signal to give supplementary control action	∆ ௖ܲ௜, add to the 

negative frequency feedback signal. In addition, the area control error ACEi can be calculated by 

summing the tie-line flow deviation to the frequency deviation. 

 

Figure 4. Three-control-area power system. 

 

Figure 5. The block diagram of multi-area power system including the proposed  

CDM + LQG controllers. 

6. Results and Discussions 

The Matlab/Simulink software package has been used to check the effectiveness of the proposed 

scheme, and the system under study is three identical interconnected control areas, as shown in  

Figure 4, where the simulation parameters [2] are given in Table 1. 
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Table 1. Parameters and data of a practical three-control-area power system ((Pe)Base = 800 MVA). 

Area K (s) 2 (ܢ۶/ܝܘ)ࡰH (pu/s) R (Hz/pu) ܏ࢀ  Tij (s)	ܜࢀ (ܛ)

Area-1 −0.3/s 0.015 0.1667 3.00 0.08 0.40 
T12 = 0.20 
T13 = 0.25 

Area-2 −0.2/s 0.016 0.2017 2.73 0.06 0.44 
T21 = 0.20 
T23 = 0.15 

Area-3 −0.4/s 0.015 0.1247 2.82 0.07 0.3 
T31 = 0.25 
T32 = 0.15 

The parameters of the CDM controller of each area are detailed in [10], ܽ݊݀	݂ݎ݋	ܩܳܮ: 
K1 = [−0.0638 0.2795 0.0482 −0.3229] 

K2 = [−0.0997 0.6735 0.1128 −0.7211] 

K3 = [0.0120 0.6133 0.0978 −0.6458] 

The maximum value of the dead band for the governor is specified as 0.05 pu, and the generation rate 

constraint (GRC) of 10% per minute is applied for each area considered in the simulation [2]. 

6.1. Case 1 

The system performances with the proposed CDM + LQG controller, only CDM, and the conventional 

integral controller are tested at nominal parameters and load change in area-1 (∆P୐ଵ assumed to be  

0.02 pu at t = 30 s). Figure 6 shows the simulation results in this case. Figure 6a illustrates the frequency 

deviation for each area, and Figure 6b shows the tie-line power change for each area. It is obtained that 

the systems with both CDM + LQG and only CDM controllers are more stable and fast when compared 

to the system with a traditional integrator. 

 
(a) 

Figure 6. Cont. 
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(b) 

Figure 6. System response to the first case: (a) frequency deviations; (b) tie-line powers. 

CDM + LQG (solid line), CDM (dashed line), and conventional integrator (solid and  

thin line). 

6.2. Case 2 

The robustness of the proposed CDM + LQG controller in the face of a wide range of parameter 

uncertainties is validated, where the turbine and governor time constants of each area are increased to  

Tt1 = 0.785 s (≅95% change), and Tg1 = 0.105 s (≅31% change), Tt2 = 0.6 s (≅38% change), and  

Tg2 = 0.105 s (≅66% change), Tt3 = 0.7 s (≅100% change), and Tg3 = 0.15 s (≅100% change), respectively. 

Figure 7 depicts the responses of the three controllers in the presence of the above uncertainty, at load 

change in area-1 (∆P୐ଵ assumed to be 0.02 pu at t = 30 s). It has been indicated that compared with only 

the CDM controller, a desirable performance response has been achieved using the proposed CDM + LQG, 

while with the conventional integrator the case was unstable. In addition, Figure 8 illustrates the actual 
and estimated	∆P୥୧ and ∆P୫୧ for each area, as shown in the figure, and the good effort of the Kalman 

filter led to a positive impact on the performance of LQG. 

 
(a) 

Figure 7. Cont. 
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(b) 

Figure 7. System response to the second case: (a) frequency deviations; (b) tie-line powers. 

CDM + LQG (solid line), CDM (dashed line), and conventional integrator (solid and  

thin line). 

 

Figure 8. Estimated and actual ∆ ௠ܲଵ	, ∆ ௚ܲଵ. 

7. Conclusions 

A robust distributed LFC design using both CDM and LQG has been proposed for an interconnected 

power system and has been presented in this paper. A three-area power system is used to check the 

effectiveness of all of the proposed control strategies, the conventional integrator and CDM alone,  

under load change and parameter change cases. 

From the results, it was shown that the power system with both CDM + LQG and CDM controllers 

is robust in face of load change and parameter perturbation, and the system has a more desirable 

performance as compared to the classical integral controller design. Also, it is indicated that the proposed 

CDM + LQG can give a desirable and smooth response. 
  

0 10 20 30 40 50 60 70 80 90 100
-0.01

0

0.01

0.02

0.03

0.04

ΔP
m

1 (
pu

)

 

 

0 10 20 30 40 50 60 70 80 90 100

-0.01

0

0.01

0.02

0.03

0.04

Time, s

ΔP
g1

 (
pu

)

 

 

Actual

Estimated

Actual

Estimated



Appl. Sci. 2015, 5 1614 

 

 

Author Contributions 

Tarek Hasan Mohamed, performed the design of CDM and analyzed the data, Ahmed A. Zaki Diab 

performed the design of Kalman filter and analyzed the data, Mahmoud M. Hussein performed the design 

of LQG and analyzed the data. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Kundur, P. Power System Stability and Control, 1st ed.; Balu, N.J., Lauby, M.G., Ed.;  

McGraw-Hill: New York, NY, USA, 1194; pp. 40–88. 

2. Bevrani, H. Robust Power System Frequency Control (Power Electronics and Power System), 1st ed.; 

Pai, M.A., Stankovic, A., Ed.; Springer Science + Business Media, LLC: New York, NY, USA, 

2009; pp. 11–65. 

3. Masiala, M.; Ghribi, M.; Kaddouri, A. An adaptive fuzzy controller gain scheduling for power 

system load-frequency control. In Proceedings of the IEEE International Conference on Industrial 

Technology (ICIT), Hammamet, Tunisia, 8–10 December 2004; Volume 3, pp. 1515–1520. 

4. Lee, H.J.; Park, J.B.; Joo, Y.H. Robust Load Frequency Control for Uncertain nonlinear power 

systems: A fuzzy logic approach. Inf. Sci. 2006, 176, 3520–3537. 

5. Cam, E.; Kocaarslan, I. Load frequency control in two area power systems using fuzzy logic 

controller. Energy Convers. Manag. 2005, 46, 233–243. 

6. Sabahi, K.; Nekoui, M.A.; Teshnehlab, M.; Teshnhlab, M.; Aliyari, M. Load Frequency Control in 

Interconnected Power System Using Modified Dynamic Neural Networks. In Proceedings of the 

Mediterranean Conference on Control & Automation, Athens, Greece, 27–29 July 2007; pp. 1–5. 

7. Al-Hamouz, Z.M.; Al-Duwaish, H.N. A new load frequency variable structure controller using 

genetic algorithm. Electr. Power Syst. Res. 2000, 55, 1–6. 

8. Mohamed, T.H.; Bevrani, H.; Hassan, A.A.E.; Hiyama, T. Decentralized model predictive based 

load frequency control in an interconnected power system. Energy Convers. Manag. 2011, 52, 

1208–1241. 

9. Mohamed, T.H.; Morel, J.; Bevrani, H.; Hiyama, T. Model predictive based load frequency control 

design concerning wind turbines. Electr. Power Energy Syst. 2012, 43, 859–867. 

10. Bernard, M.Z.; Mohamed, T.H.; Qudaih, Y.S.; Mitani, Y. Decentralized load frequency control in 

an interconnected power system using Coefficient Diagram Method. Int. J. Electr. Power Energy 

Syst. 2014, 63, 165–172. 

11. Manabe, S. Importance of Coefficient Diagram in Polynomial Method. In Proceedings of the 42nd 

IEEE Conference on Decision and Control, Maui, HI, USA, 9–12 December 2003; Volume 4;  

pp. 3489–3494. 

12. Manabe, S. Coefficient Diagram Method. In Proceedings of the 14th IFAC Symposium on 

Automatic Control in Aerospace, Seoul, Korea, 24–28 August 1998. 



Appl. Sci. 2015, 5 1615 

 

 

13. Rinu Raj R.R.; Vijay Anand, L.D. Design and Implementation of a CDM-PI Controller for a 

Spherical Tank Level System. Int. J. Theor. Appl. Res. Mech. Eng. 2013, 2, 49–52. 

14. Manabe, S. Case studies of coefficieant diagram method—Practical polynomial design approaches. 

In Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, 4–8 July 2005; Volume 16, 

No. 1. 

15. Hassan, A.A.E.; Mohamed, Y.S.; Mohamed, T.H. Robust Control of a Field Oriented Linear 

Induction Motor Drive. In Proceedings of 11th International Middle East Power Systems 

Conference, El-Minia, Egypt, 19–21 December 2006; Volume 1, pp. 41–47. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


