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Abstract: Two-dimensional (2D) nanomaterials are an emergent and promising platform
for future photonic and optoelectronic applications. Here, we review recent progress
demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers
for Q-switching and mode-locking fibre lasers. We focus specifically on the family of
few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.
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1. Introduction

Fibre lasers are a mature technology that has become an essential tool facilitating a wide range of
scientific, medical and industrial applications. The flexibility, reliability and compact nature of such
light sources enables them to outperform bulk lasers in many areas: offering alignment-free, turn-key
operation for end-users [1]. Pulsed operation of fibre lasers is of particular importance, leading to a
significant enhancement of the instantaneous power, suitable for driving nonlinear optical processes
while enabling high-resolution, time-resolved applications.

While many schemes for generating pulsed laser emission exist, passive mode-locking
(i.e., phase-locking of many longitudinal cavity modes) or Q-switching (i.e., modulation of the laser
cavity Q-factor) using a saturable absorber (SA) (a material that exhibits an intensity-dependent
transmission) are often preferred, as they enable a wide space of pulse parameters to be accessed without
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employing costly and complex electrically-driven modulators that ultimately impose a lower limit on the
pulse durations achievable directly from the laser source [1,2].

Saturable absorbers can be broadly divided into two categories: real SAs, materials that exhibit
an intrinsic nonlinear decrease in absorption with increasing light intensity; and artificial SAs,
devices that exploit nonlinear effects to mimic the action of a real saturable absorber by inducing an
intensity-dependent transmission. Here, we restrict the focus of our review to real SAs, considering the
role of emergent 2D nanomaterials for this function and highlighting the benefits that they offer in terms
of wideband operation, switching speed and engineerable properties.

Advances in saturable absorber technologies are almost synonymous with the evolution of the laser
itself: the first demonstrations of SA-based pulse generation in 1964 using both a “reversibly bleachable”
dye [3] and a coloured glass filter [4] to Q-switch a ruby laser were reported just four years after
Maiman’s successful demonstration of laser operation [5]. In Figure 1, we highlight the historical
evolution of the salient SA technologies. After these initial demonstrations, reversibly bleachable (or
saturably absorbing) dyes were widely applied to mode-lock lasers, where the gain medium was also a
dye, leading to the first demonstration of continuous-wave (CW) mode-locking [6].
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Figure 1. The evolution of real saturable absorber technologies. Orange dots denote the first
reported application of each technology in a pulsed laser.

With continued development in low-loss optical fibre, mode-locked lasers based on actively-doped
fibre amplifiers emerged, including an early 1983 report of unstable mode-locking of a Nd:fibre laser
using a dye SA [7]. However, the passive generation of stable mode-locked pulses using an SA in
fibre systems remained challenging until the semiconductor saturable absorber mirror (SESAM) was
proposed in the early 1990s [8,9]. SESAMs quickly became, and remain to be, a highly successful
technology for generating ultrafast mode-locked pulses and high-energy Q-switched emission from
fibre lasers. However, they offer only a narrow operating bandwidth, require costly fabrication and
packing, and the relaxation speed is limited to picosecond time scales (unless expensive post-processing
techniques are employed) [2]. These limitations are driving research into novel materials for SA
applications; of particular interest are nanomaterials, where reduced dimensionality leads to strong
quantum confinement, new physical phenomena and remarkable optoelectronic properties [10,11].

While it could be argued that early reports of saturable absorption using coloured glass
filters exploited nanomaterials, since the glasses were doped with semiconductor nanocrystals
(i.e., zero-dimensional quantum dots (QDs)), such as cadmium selenide [4], to modify their colour,
it was not until 1997 that QDs were explicitly engineered for the purpose of pulse generation [12]. After



Appl. Sci. 2015, 5 1442

this demonstration, the field of nanomaterial SAs gained traction as 1D carbon nanotubes [13] (CNTs)
and 2D graphene [14,15] emerged as promising materials exhibiting intensity-dependent absorption and
sub-picosecond relaxation times [16]. Graphene, a single atomic layer of carbon atoms that can be
exfoliated from graphite, attracted particular interest, as its 2D structure and zero bandgap enable
wideband optical operation [10]. However, graphene is only one of a family of 2D materials that can
be extracted as monolayer and few-layer crystals from a variety of bulk materials, including topological
insulators (TIs), transition metal dichalcogenides (TMDs) and black phosphorous (BP). All of these
materials offer distinct, yet complementary properties [10,11,17,18] and, hence, new opportunities for
optical applications in fibre-based systems. The possibility of combining layers of 2D materials to form
van der Waals heterostructures also offers an exciting prospect for a wide range of new engineerable
photonic devices [19], as does the potential to vary nanomaterial properties through their growth
conditions, doping and electronic control [20,21].

In this review, we summarize recent progress in 2D SAs, with an emphasis on few-layer transition
metal dichalcogenides, a sub-class of 2D materials currently receiving particular interest. We discuss
their nonlinear optical properties, which can be tuned through the fabrication procedure, and highlight
recent demonstrations of Q-switched and mode-locked fibre lasers based on the technology. Finally, we
conclude with an outlook exploring the opportunities and avenues for future work in this vibrant field.

2. Few-Layer Transition Metal Dichalcogenides

2.1. Fundamental Materials Science

TMDs are a group of 40+ layered materials, with the chemical structure MX2. The layers consist of a
single plane of hexagonally-arranged transition metal (M) atoms (e.g., molybdenum, Mo, tungsten, W)
covalently bonded between two hexagonal planes of chalcogen (X) atoms (e.g., sulphur, S, selenium,
Se); the layers themselves are weakly bound together by van der Waals forces (Figure 2a) [22].
Semiconducting TMDs (e.g., MoS2, MoSe2, WS2) are currently experiencing renewed interest for
photonic and optoelectronic applications, expanding upon earlier studies conducted in the 1960s [22,23],
with the use of modern fabrication and characterization techniques allowing new insight.

As is characteristic for 2D materials, the properties of few-layer TMDs depend on the number of
layers in the material [11]. For instance, bulk MoS2 has an indirect ∼1.29 eV (961 mm) bandgap, which
increases due to stronger quantum confinement as the number of layers is reduced, eventually becoming
a direct 1.80 eV (689 nm) bandgap semiconductor in isolated monolayer form [24]. Similar behaviour
is observed for other semiconducting TMDs; for example, MoSe2 exhibits a cross-over from an indirect
1.1 eV (1128 nm) gap to a direct 1.55 eV (800 nm) gap [25], and WS2 shows an indirect 1.4 eV (886 nm)
to direct 2.1 eV (590 nm) transition [26]. An additional result of the reduced dimensionality is the
emergence of strong excitonic effects.

In a semiconductor, photoexcitation places an electron into the conduction band, leaving a hole in
the valence band. If the electron-hole interaction is weak (e.g., due to long-distance separation), they
can each be considered as free carriers. However, their proximity can result in an attractive Coulombic
interaction, creating a bound-state quasiparticle known as an exciton [27]. The photon energy required
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to create a bound exciton is less than the threshold for creating free carriers. Therefore, excitons can
be understood as occupying energy levels that lie below the conduction band (Figure 2b, where each
excitonic transition is labelled with a letter, according to standard nomenclature [22]), although this
visualization is not physically correct, as it combines a one-electron and two-particle picture [27], the
hybrid scheme is widely adopted in the literature, as it provides an intuitive interpretation of the level
structure. This leads to two definitions of the bandgap: the electronic bandgap (or transport gap) Eg,
which defines the energy required to inject an electron-hole pair into the material, and the optical bandgap
Eo, which is the lowest absorbed photon energy. The energy difference is known as the exciton binding
energy: Eb = Eg − Eo [28].
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Figure 2. Transition metal dichalcogenide structure: (a) visualization of three-layer crystal;
(b) simplified energy structure at crystal K point for a typical monolayer semiconducting
transition metal dichalcogenide (TMD), showing the relationship between the electronic
bandgap Eg, the excitonic binding energy Eb and the optical bandgap Eo, including a
split valence band from spin-orbit coupling. Excitonic transitions are labelled with letters
according to standard nomenclature [22].

In a typical inorganic semiconductor, the exciton binding energy is small (<10 meV) [28].
Therefore, generated excitons can rapidly ionize via collisions with optical phonons (lattice vibrations);
hence, their influence is negligible at room temperature [27,28]. However, for few-layer TMDs,
increased quantum confinement and reduced dielectric screening results in large excitonic binding
energies (>100 meV) and strong excitonic effects [11]. In photonics, it is common to use the term
bandgap to describe the optical gap. Additionally, in few-layer TMDs, spin-orbit coupling leads to a
splitting of the valence band, as shown in Figure 2b, which offers potential for spintronic devices [11].

2.2. Fabrication Techniques

Many fabrication procedures exist for obtaining few-layer TMDs, which have evolved from
graphene processing strategies [11,29]. These can be divided into exfoliation and growth techniques.
Exfoliation involves cleaving monolayer or few-layer flakes from a bulk crystal, typically achieved
mechanically (e.g., using Scotch tape), chemically (e.g., lithium-based intercalation) or through dispersal
in solvents (known as liquid-phase exfoliation (LPE)). Alternatively, growth techniques, such as
chemical vapour deposition (CVD), can produce high-quality, single layers of the material from carefully
controlled chemical reactions between solid precursors [11].
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Both LPE and CVD approaches have the potential for large-scale production, which is desirable for
developing saturable absorbers and photonic devices commercially. CVD typically has a higher yield
of large-area monolayer flakes of TMDs, while LPE produces smaller area, few-layer flakes. The flake
size is an important parameter in determining the optical properties of a single TMD device. In fact, this
flake-size-dependence of the optical properties offers a convenient method for engineering the materials
inexpensively using LPE [30]. An example of an LPE-produced MoS2 dispersion (or “ink” [31])
is shown in Figure 3a, following the processing technique presented in [32]. The MoS2 dispersion
contained a distribution of flake thicknesses (measured using atomic force microscopy (AFM), as shown
in Figure 3b,c), and notably, ∼50% of flakes had a 2–4-nm thickness, which corresponds to 4–5 layers,
with lateral flake dimensions typically <200 nm [32].
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Figure 3. Fabrication of few-layer MoS2 flakes by liquid-phase exfoliation (LPE), after [32]:
(a) liquid dispersion of flakes; (b) AFM image; (c) distribution of flake heights from AFM.

To develop practical saturable absorber devices, the processed few-layer nano flakes can be integrated
using a variety of optically-compatible strategies [30]. For fibre lasers applications, few-layer TMDs
can be directly deposited on fibre ferrules using optical deposition or transferred to the tip of a fibre as a
post-processing step [33–36]. Alternatively, they can be embedded in transparent polymer films to form
compact and flexible SA devices [32,37–43]. Another attractive prospect is depositing TMD nano flakes
along microfibres or D-shaped (side-polished) fibres [44–46], where the evanescent field mediates the
strength of the light-matter interaction. While the light intensity on the TMD material is weaker in this
case, the device interaction length can be significantly increased, which can enhance the nonlinearity,
affording a higher power tolerance [44].

2.3. Nonlinear Optical Properties

2.3.1. Saturable Absorption

Effective candidate materials for SAs possess a strong intensity-dependent loss, which can be
described by a two-level model:

α(I) =
αsat

1 + I/Isat
+ αnon−sat (1)

where αsat is the modulation depth (saturable loss), αnon−sat is the non-saturable loss and Isat is the
saturation intensity (required intensity to reduce the absorption by 0.5αsat).

Many studies have measured the nonlinear absorption of few-layer TMD materials (e.g., using
Z-scan and balanced twin-detector setups) [30]. Saturable absorption in TMDs was first revealed
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by Wang et al., using few-layer MoS2 LPE dispersions containing a majority of 6–7 layer flakes:
under intense 800 nm excitation, the sample transmission increased by 75%, showing a stronger
nonlinear response than graphene [47]. The intraband relaxation time was also shown to be ∼30 fs,
confirming that few-layer MoS2 can behave as an ultrafast saturable absorber [47]. These liquid
dispersions were impractical for applications in fibre lasers, but inspired further nonlinear studies on
fibre-compatible integration schemes.

Few-layer TMD-polymer composites have received particular attention. Using MoS2, such
devices have been fabricated and characterized at ∼1 µm [32,44], ∼1.5 µm [34–37,39–42,45,48]
and ∼2 µm [49] (corresponding to the gain bands for the principal active ions used in fibre lasers:
ytterbium (Yb), erbium (Er) and thulium (Tm)), and a wide range of SA properties have been
reported [30]. Saturable loss values have been reported from ∼1% [40] to ∼11% [37] with saturation
intensities varying from ∼1 MW/cm2–130 MW/cm2 [42]. A persistent concern, however, is the high
non-saturable losses exhibited by TMD SAs to date (often >10% [30]). While the high gain of fibre
lasers can often tolerate such loss, it is desirable to reduce this value to improve device efficiency and
the operation performance of pulsed fibre lasers [1].

Strong saturable absorption has also been observed in other MoS2-based devices, such as
MoS2-coated fibre tips, where modulation depths up to 35% and saturation intensities of 0.35 MW/cm2

have been reported, although this was accompanied by very high non-saturable losses of ∼35% [34,35].
A small, but growing number of studies have produced and characterized SAs using other TMD

materials, including WS2 [42,50–54], MoSe2 [42,55,56] and WSe2 [42]; all have reported similar optical
properties to MoS2, including values of modulation depth and saturation intensity. Figure 4 presents the
optical characterization of a polymer composite including 6–7 MoSe2 flakes. The linear absorption
profile (Figure 4a) reveals the characteristic excitonic features (labelled A and B [22]), which are a
well-known feature of TMDs and can be used to identify such materials. The absorption is relatively flat,
but finite, throughout the near-infrared (the origin of which is discussed later). Z-scan experiments were
used to measure the intensity-dependent absorption (Figure 4b), which is well-fitted by Equation (1)
to reveal the device parameters: 4.7% modulation depth, 3.4 MW/cm2 saturation intensity and 6.5%
non-saturable loss.
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Figure 4. Characterization of MoSe2-PVAcomposite, after [55]: (a) linear
absorption; (b) Z-scan measurement, fitted with a two-level saturable absorber (SA) model
(solid red line) to determine device performance parameters. Labels A and B refer to
excitonic transitions, as described in Section 2.1.
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Due to differences in fabrication procedures and the concentrations of nano flakes in the reported
SA devices to date, it is difficult to directly compare the performance from literature values; however,
Chen et al. recently performed a comparative study under controlled fabrication conditions, showing that
their MoSe2 SA possessed a stronger modulation depth (6.7%) compared to MoS2 (2.2%), WS2 (2.5%)
and WSe2 (3.0%), in addition to lower non-saturable loss [42]. Further studies are required to critically
evaluate the many emerging TMDs for fibre laser SA applications.

2.3.2. Origin of Sub-Bandgap Saturable Absorption

Surprisingly, many of the reports to date observing saturable absorption in few-layer TMDs have been
demonstrated at near-infrared wavelengths, which corresponds to photon energies less than the expected
material bandgap for most TMDs. In a perfect crystalline semiconductor, incident photons with energy
lower than the bandgap would not be absorbed [27]. However, crystallographic defects, including edges
and vacancies, have been proposed to explain this phenomena [32].

For the wide body of work reporting SAs based on LPE-processed TMD flakes, the flake size is
often on a sub-wavelength scale, and as such, they cannot be considered as infinite crystal structures.
Broken symmetry at the edges of atomic planes and unsatisfied bonds of M and X atoms at edges
can modify the electronic structure, leading to the creation of edge-states in the bandgap. Given the
large edge to surface area ratio of nano flakes, the contribution of edges is significant, as verified by
photothermal deflection spectroscopy measurements of sub-bandgap absorption [57]. More recently,
the role of defects in TMDs has been verified by theoretical studies of the band structure, showing that
edges result in a finite local density of states within the bandgap of MoS2 crystals [58]. Absorption of
photons with sub-bandgap energies is thus permitted by electron transitions from the valence band to
these mid-gap states, which can be saturated at high intensity by Pauli blocking [32].

A distribution of edge states within the bandgap could explain the recent experimental reports of
wideband saturable absorption, although the density of states is not expected to be constant throughout
the bandgap, as shown in [58], and will depend on the geometry and edge termination (whether M or
X sites). Defects may also explain observations of SA at sub-bandgap photon energies in TMD flakes
grown using CVD [30,34]; however, the role of edges may be less significant due to typically larger
flake sizes. Other crystallographic defects, such as vacancies and grain boundaries, could contribute to
sub-bandgap absorption, as verified by numerical simulations in both MoS2 [58,59] and WS2 [53].

2.3.3. Other Nonlinear Effects

Nonlinear optical phenomena beyond SA have also been observed in 2D TMDs. Indeed, for many
nonlinear absorption studies on TMD materials, the effect was not monotonic: under sufficiently
high intensity, the material exhibited an increase in absorption for increasing intensity (i.e., reverse
saturable absorption, RSA, or optical limiting) [33,42,54,56,60]. This RSA effect has been attributed to
two-photon absorption (TPA), where under intense illumination, two photons can transfer their energy
to excite a single electron over the bandgap, explaining why this effect has been observed for excitation
wavelengths corresponding to photon energies less than the material bandgap, but greater than half the
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gap energy. For SAs in fibre lasers, this transition from SA to RSA can influence the intra-cavity pulse
dynamics and affect the transition between Q-switching and mode-locking regimes [61].

Studies have also demonstrated a dependence of the nonlinearity on the flake sizes. For example,
Wang et al. showed that if the incident photon energy lies between the bulk bandgap and the bandgap of
a monolayer for a given TMD, the flake thickness will determine whether the sample exhibits SA or TPA
behaviour, since the layer count defines the energy of the bandgap [62]. Zhou et al. compared flakes
of >100 nm, with ∼50 nm lateral size (of constant thickness), and showed that excited state absorption
(ESA) occurred in the smaller flakes. They proposed that a greater number of edge-states existed in
the bandgap for smaller flakes, which were quenched at high incident intensities [60]. The ratio of
edge to surface area has also been attributed to sub-bandgap saturable absorption [32]. Additionally, it
was shown that thermal effects under nanosecond or longer optical pulse excitation can lead to effects,
including the formation of micro-bubbles, which cause nonlinear scattering. Nonlinear scattering
manifests as an optical limiting behaviour similar to RSA [33,60].

Work is ongoing to understand how the fabrication procedure and flake geometry affect the nonlinear
optical properties, although it is promising that such a wide parameter space can be achieved using 2D
TMDs, suggesting that SAs can be engineered to meet a wide range of requirements for different lasers.

3. Pulsed Fibre Lasers Using 2D Materials

The inclusion of a SA into a fibre laser can initiate pulsation by Q-switching or mode-locking, where
the output properties depend on the cavity design and saturable absorber properties.

3.1. Q-Switched Fibre Lasers

Q-switching results from the SA modulating the cavity Q factor to periodically emit light as a pulse
train, typically with a kHz repetition rate, ns–µs pulse durations and high pulse energies (nJ–mJ level).
Such lasers have become important tools in machining and materials processing [1]. Q-switched fibre
lasers have been demonstrated using a variety of 2D materials, initially with graphene in 2011 [63]
and subsequently with the topological insulator (TI) Bi2Se3 [64], TMD MoS2 [38] and, most recently,
BP [65].

Focusing on TMDs, greatest progress has been demonstrated with MoS2. The first MoS2 Q-switched
fibre laser was a Yb-doped fibre ring cavity, producing ∼2.7 µs pulses at 1068 nm with a repetition
rate of 67 kHz and 0.5 mW of output power [38]. Since this initial report, further MoS2-based lasers
have been demonstrated utilizing Yb active fibre at ∼1 µm [32,38,40], in addition to using Er fibre at
∼1.5 µm [35,36,40,41,48] and Tm fibre for ∼2 µm operation [40]. These results, in addition to reports of
continuously tunable operation from 1030–1070 nm [32] and 1520–1568 nm [41], confirm the promising
wideband saturable absorption of the material. The highest output power from MoS2 Q-switched lasers
to date is 47 mW [40], corresponding to a pulse energy of 1.2 µJ.

Q-switched lasers using other TMD materials are also emerging. For example, WS2 [42,50,66,67]
and WSe2 [42] have been demonstrated in passively Q-switched Er:fibre lasers. Additionally, a single
MoSe2 SA was used to Q-switch Yb, Er and Tm-doped fibre lasers [55]. These MoSe2 Q-switched lasers
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all employed ring-cavity designs and generated self-starting stable pulse trains at 1060 nm, 1566 nm and
1924 nm, respectively, as shown in Figure 5.
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Figure 5. Q-switched fibre lasers with MoSe2-PVA saturable absorber, after [55]:
(a–c) cavity schematics; (d–f) output pulse trains showing the repetition rate f and pulse
duration τ ; (g–i) spectra. The columns (left to right) show Yb, Er and Tm laser results.

3.2. Mode-Locked Fibre Lasers

Mode-locking can arise when a SA modulates the loss once per cavity round-trip, thus phase-locking
the oscillating longitudinal modes, leading to the generation of a train of ultrashort (ps–fs duration)
pulses at a defined repetition rate corresponding to the free spectral range of the cavity (typically MHz
for few meter-long fibre lasers). Mode-locked pulse sources have a wide range of applications, notably
for metrology, frequency comb generation and biophotonic imaging [1].

Typically, fibre lasers incorporating an SA can exhibit both Q-switching and mode-locking.
The transition between the two regimes is mediated by a balance between gain and loss and can be
controlled by the pump power; for example, the threshold for CW mode-locking is higher than that for
Q-switching. However, the duration of the circulating pulse in the mode-locking regime is typically
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on the order of a few ps or even hundreds of fs, such that effects arising from cavity nonlinearity and
dispersion influence pulse formation. Thus, a Q-switched fibre laser may not be able to access the
mode-locking regime, even at higher pump powers, without management of the cavity dispersion map
and careful design of the SA device, e.g., modulation depth and reduction of the αnon−sat [1,68].

As with Q-switching, mode-locking has been demonstrated using a variety of 2D material
SAs [16,30,69], with the first report in 2009 employing graphene [14,15], followed by the TIs Bi2Te3 [70]
and Sb2Te3 [71], the TMD MoS2 [33] and, recently, utilizing BP [65,72].

The first TMD mode-locked laser was reported by Zhang et al., where MoS2 was deposited on a
fibre ferrule and integrated into a Yb:fibre ring cavity [33]. The laser produced 800 ps pulses at a
6.6 MHz pulse repetition frequency, with an average output power of 9.3 mW [33]. Further work
through cavity dispersion engineering resulted in sub-picosecond pulse generation [39,45,66,73], down
to 637 fs [45]. These ultrafast lasers operated in the net anomalous dispersion regime, generating
solitons. However, recent work has shown that all-normal and net-normal dispersion maps, producing
dissipative solitons, can enable higher pulse energies [1,74]. Such designs have also been exploited for
TMD-based mode-locked fibre lasers [33,44,45,53].

For accessing higher repetition rates, harmonic mode-locking has been demonstrated. The highest
result to date has been 2.5 GHz, mode-locking up to the 369th harmonic of a ∼30 m cavity [46]. In terms
of wavelength coverage, Yb:fibre lasers have been mode-locked using MoS2 [33,44] and WS2 [53],
Er:fibre lasers with MoS2 [34,39,45,46,75,76], WS2 [52–54,66], MoSe2 [56] and Tm:fibre lasers with
MoS2 [49] and WS2 [51]. Continuously tunable mode-locking in the erbium gain band has also been
demonstrated with a single MoS2-PVA composite device [37]. The laser and output characteristics shown
in Figure 6 confirm the generation of stable trains of ultrashort pulses, tunable from 1535–1565 nm.
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Figure 6. Tunable mode-locked Er:fibre laser using MoS2-PVA saturable absorber,
after [37]: (a) cavity schematic; (b) examples of optical spectra from the continuous tuning
range of 1535–1565 nm; (c) autocorrelation trace at 1552 nm (assuming sech2-shaped pulses,
the deconvolution factor is 1.55).

To date, only modest output powers have been achieved in TMD-based mode-locked lasers.
Typical output powers are<10 mW [30], although notably, the highest output power reported is 150 mW
from a few-layer MoS2 mode-locked Tm:fibre laser operating in the dissipative soliton regime [49].
Amplification and power scaling will enable such laser systems to access higher powers.
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4. Outlook

Significant progress has been made in the understanding of 2D materials, and their unique optical
properties promise to shape the future of photonic and optoelectronic technologies [10]. In this review,
we have highlighted how wideband operation and ultrafast relaxation dynamics offered by a broad array
of 2D materials could play a role in enabling practical, low-cost and flexible saturable absorber devices
for integrated pulsed fibre lasers.

Few-layer semiconducting TMDs are of particular interest due to their engineerable optical properties
mediated by a layer-count dependent bandgap covering the visible region that transitions from indirect to
direct gap behaviour for monolayers [11,24]. After initial successes demonstrating the effectiveness of
MoS2 [30] as a saturable absorber in pulsed fibre lasers, recent studies have considered other members
of the TMD family of 2D materials, including MoSe2, WS2and WSe2, revealing complementary optical
properties and suitability as a high-potential photonic platform. Strong intensity-dependent absorption
has been measured, with the magnitude of the nonlinear optical response being found to depend on
flake size and thickness, suggesting that few-layer TMD-based devices could be engineered for specific
applications [60,62].

Consequently, passively Q-switched and mode-locked fibre lasers realized using TMDs have been
reported throughout the near-infrared region. To date, the majority of TMD-based short-pulse laser
demonstrations have operated at near-infrared wavelengths, corresponding to photon energies lower
than the material bandgap for few-layer TMDs. The observed wideband saturable absorption behaviour
has been explained by considering the role of crystal defects, including edge states [32]. Sources
have been developed generating pulses at repetition rates from kHz–GHz, with durations from fs–µs.
The maximum output powers to date have been limited to 150 mW, although this value and the parameter
space of accessible pulse properties is expected to increase in the future by exploiting emerging fibre laser
designs [1,77,78] and using TMD-based pulse sources to seed master-oscillator power fibre amplifier
schemes [1].

One particularly promising avenue for exploiting TMD-based SAs is for the development of
visible fibre lasers, where emission wavelengths can coincide with the fundamental resonances of the
material; compared to graphene, this approach could offer significantly reduced saturation intensities
and improved system performance. Preliminary reports have emerged using MoSe2-based devices to
Q-switch a Pr:ZBLAN fibre laser at 635 nm [79], but further work is needed to improve lasers at this
wavelength and to explore the role of excitonic effects in the materials.

Beyond TMDs, few-layer TIs, with metallic edge-states, also offer potential wideband operation for
photonic systems [70,71]. In addition, BP has been shown to exhibit a layer-dependent bandgap, tunable
from 0.3 eV (bulk) to 2.0 eV (monolayer) [80], that could be widely exploited for both photonic and
optoelectronic applications.

With the broad and increasing catalogue of available 2D materials, further studies to critically
compare their performance as SAs under controlled conditions are required. An additional exciting
opportunity lies in the engineering of hybrid-systems by stacking multiple single-layers to form
van der Waals heterostructures [19]. Very recently, a graphene-Bi2Te3 heterostructure was demonstrated
as a successful SA [81], prompting further work to understand the origin and scale of the nonlinear
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optical response. The transfer of 2D material-based SA devices from the research laboratory to a
commercially-viable technology will depend on long-term reliability and the large-scale manufacturing
potential. If successful, this new platform could leverage benefits in short-pulse fibre laser technology.
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