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Abstract: In order to model multi-dimensions and multi-granularities oriented complex 

systems, this paper firstly proposes a kind of multi-relational Fuzzy Cognitive Map (FCM) 

to simulate the multi-relational system and its auto construct algorithm integrating Nonlinear 

Hebbian Learning (NHL) and Real Code Genetic Algorithm (RCGA). The multi-relational 

FCM fits to model the complex system with multi-dimensions and multi-granularities. The 

auto construct algorithm can learn the multi-relational FCM from multi-relational data 

resources to eliminate human intervention. The Multi-Relational Data Mining (MRDM) 

algorithm integrates multi-instance oriented NHL and RCGA of FCM. NHL is extended to 

mine the causal relationships between coarse-granularity concept and its fined-granularity 

concepts driven by multi-instances in the multi-relational system. RCGA is used to establish 

high-quality high-level FCM driven by data. The multi-relational FCM and the integrating 

algorithm have been applied in complex system of Mutagenesis. The experiment 

demonstrates not only that they get better classification accuracy, but it also shows the causal 

relationships among the concepts of the system. 

Keywords: fuzzy cognitive map (FCM); multi-relational data mining (MRDM);  

nonlinear Hebbian learning (NHL); real code genetic algorithm (RCGA); complex system 
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1. Introduction 

The aim of the paper is to auto simulate complex systems with multi-dimensions and multi-granularities 

driven by multi-relational data resources for better classification and causal relationships of a system. 

Multi-Relational Data Mining (MRDM) [1,2] is able to discover knowledge directly from  

multi-relational data tables, not through connection and aggregation of multiple relational data into a single 

data. Multi-relationship data mining can effectively prevent the problems of information loss, statistical 

deviation and low efficiency, etc. These methods [3–5] such as CrossMine, MI-MRNBC and Graph-NB 

are fitting for multi-relational data mining, but cannot obtain causality in a multi-relational system. 

In 1986, FCM [6–8] is introduced by Kosko, suggesting the use of fuzzy causal functions taking 

numbers in [–1, 1] in concept maps. FCM, as a kind of graph model, combines some aspects from fuzzy 

logic, neural networks and other techniques, and is fitting for modeling system from data resources. 

Compared to other techniques, FCM exhibits a number of highly appealing properties. In particular, 

FCM can directly show the multi-relationships between different concepts and the inference is easy and 

intuitive. FCM learning algorithms use learning algorithms to establish models from historical data 

(simulations of concept values), which have been widely used applied to various fields [9–13] of society, 

engineering, medicine, environmental science, etc. However, none of them consider the data 

characteristics of multi-relationships. 

Multi-relational FCM discussed in the paper refers to two-levels FCM. There is one FCM of each 

dimension in low-level. There is only one FCM in high-level. The state value of each concept in  

high-level actually is a summary evaluation of low-level FCM in the dimension, which is inferred based 

on the weight vector, obtained by multi-instances oriented NHL, in low-level FCM. RCGA of  

high-level FCM aims to mine high-level FCM based on summary evaluations of low-level FCMs for 

high-quality classification and causality. Thus, the proposed multi-relational FCM and the integrating 

algorithm seem a rather realistic approach to solve the complex model. 

The remainder of this paper is organized as follows. Section 2 describes FCM, existing learning 

algorithms of FCM, and problems to solve. Then, Section 3 proposes the multi-relational FCM and 

integrating NHL and RCGA based multi-relational FCM learning algorithm. In Section 4, the experiment 

and its results are represented and analyzed. Finally, we briefly conclude this paper in Section 5. 

2. Backgrounds 

2.1. Fuzzy Cognitive Map (FCM) 

A Fuzzy Cognitive Map F in Figure 1 shows a relationship system, which is a 4-tuple (C, W, A, f) 

mathematically, where 

• C = {C1,C2,…,CN} is a set of N concepts forming the nodes of a graph. 

• W: (Ci,Cj)→wij is a function associating wij with a pair of concepts, with wij equal to the weight of 

edge directed from Ci to Cj, where wijϵ[−1, 1]. Thus, W(NN) is a connection matrix. 

If there is positive causality between concepts Ci and Cj, then wij > 0, which means an increase of the 

value of concept Ci will cause an increase of the value of concept Cj and a decrease of the value of Ci 

will lead to a decrease of the value of Cj. 
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If there is inverse causality between the two concepts, then wij < 0, which represents an increase of 

the value of concept Ci will cause a decrease of the value of the second concept and a decrease of the 

value of concept Ci will cause an increase of the value of the concept Cj. 

If there is no relationship between the two concepts, then wij = 0. 

 

Figure 1. A simple fuzzy cognitive map. 

• A: Ci → Ai(t) is a function that associates each concept Ci with the sequence of its activation 

degrees such as for tϵT, Ai(t)ϵL given its activation degree at the moment t. A(0)ϵLT indicates the 

initial vector and specifies initial values of all concept nodes and A(t)ϵLT is a state vector at certain 

iteration t. 

• f is a transformation or activation function, which includes recurring relationship on t ≥ 0 between 

A(t + 1) and A(t). ܣ௝(ݐ + 1) = (ݐ)௝ܣ)݂ +෍ܣ௜(ݐ)ݓ௜௝௜ஷ௝௜∈ௌ
) 

(1)

The transformation function of FCM is with memory at previous moment shown as Equation (1), 

which is used to infer the state values of concepts in FCM. It limits the weighted sum to the range [0, 1] 

or [−1, 1]. The three most commonly used transformation (bivalent, trivalent, logistic) functions are 

shown below. 

i. Bivalent ݂(ݔ) = ቄ0, ݔ ൑ 01, ݔ ൐ 0 

ii. Trivalent ݂(ݔ) = ൝ −1, ݔ ൑ −0.50,−0.5 ൑ ݔ ൑ 0.51, ݔ ൒ 0.5  

iii. Logistic ݂(ݔ) = 11 + ݁ି஼௫ 

FCM can be used to perform simulation of an interconnected system. The vector A(t) in FCM specifies 

state values of all concepts (nodes) in the t iteration. An FCM has a number of successive state iterations. 
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The state value of a concept is calculated by the preceding iteration of concepts states, which exert 

influence on the given node. 

2.2. FCM Learning Algorithms 

FCM learning algorithm is a kind of automated learning method to establish FCM model from data 

resources. There are two classes of FCM learning algorithms, Hebbian based learning and evolved based 

learning. The former are Hebbian based algorithms [14–16], mainly including NHL (Nonlinear Hebbian 

Learning), DD-NHL (Data-Driven Nonlinear Hebbian Learning) and AHL (Active Hebbian Learning). 

The differences of these algorithms are in the way of adjusting the edge weights. The latter are evolve 

based algorithms [17–20], which are composed of PSO (Particle Swarm Optimization), RCGA (Real 

Coded Genetic Algorithm), etc. 

2.2.1. Nonlinear Hebbian Learning (NHL) 

NHL is on the basis of the well-known Hebb’s learning law, which is a kind of unsupervised learning 

algorithm. Considering the nonlinear output unit, given random pre-synaptic an input vector x, weight 

vector w, and output z = f (wT x). The nonlinear activation function f is a sigmoid function. The criterion 

function J maximized by Hebb’s rule may be written as Equation (2). ܬ = (2) [ଶݖ]ܧ

An additional constraint such as ||w|| = 1 is necessary to stabilize the learning rule. A stochastic 

approximation solution is employed to the following nonlinear Hebbian learning rule as Equation (3). ∆ݓ௝௜ = η௞ݖ ݕ݀ݖ݀ ௝ݔ) − ௜) (3)ݕ௝௜ݓ

Note that the nonlinear learning rules are seeking a set of weight parameters such that the outputs of 

the unit have the largest variance. The nonlinear unit constrains the output, ensuring it remains within a 

bounded range. 

2.2.2. Real-Coded Genetic Algorithm (RCGA) 

RCGA is a real-coded genetic algorithm to develop FCM connection matrix based on data resource. 

RCGA defines each chromosome as a floating-point vector. Each element in the vector is called gene. 

In case of the learning FCM with N node, each chromosome consists of N(N−1) genes, which are floating 

point numbers from the range [−1, 1], defined as follows. 

E = [w12, w13, . . . , w1N, w21, w23, . . . , w2N, . . . , wNN−1]T (4)

where wij is a weight value for an edge from ith to jth concept node. Each chromosome has to be decoded 

back into a candidate FCM. The number of chromosomes in a population is constant for each generation 

and it is specified by the population_size parameter. 

The fitness function is calculated for each chromosome by computing the difference between system 

response generated using a FCM weights and a corresponding system response, which is known directly 



Appl. Sci. 2015, 5 1403 

 

from the data resource. The difference is computed across all M−1 initial vector/system response pairs, 

and for the same initial state vector. The measure of error is shown as Equation (5). 

௣ܮ_ݎ݋ݎݎܧ = α෍ ෍|ܣ௡(ݐ) − ෣(ݐ)௡ܣ |௣ே
௡ୀଵ

ெିଵ
௧ୀଵ  (5)

The parameter of α is used to normalize error rate, and p is 1, 2 or ∞. N is the number of concepts in 

FCM, and M is the number of iterations. The error measure can be used as the core of fitness function 

as Equation (6). Fitness	function = 1ܽ × ௣ܮ_ݎ݋ݎݎܧ + 1 (6)

The fitness function is normalized to the (0, 1]. The parameter ܽ can be set different value in different 

p condition. 

The stopping condition of RCGA takes into consideration two possible scenarios of the learning 

process. One is the learning should be terminated when the fitness function value reaches a threshold 

value called max_fitness; the other is a maximum number of generations, named max_generation, has 

been reached. If the stopping conditions have not been reached, evolutionary operators and selection 

strategy need to be applied. 

2.3. Problem Statements 

In real world, a complex system has to have multi-dimensional groups with direct or indirect 

relationships, which generates multi-relational data. Moreover, each dimension maybe contains many 

concepts with different granularity relationships. For example, in a Mutagenesis system, there are three 

dimensions of atom, molecule and another atom, which are coarse-grained concepts; atype and charge 

are fine-grained concepts in the atom dimension; lumo, logp, indl and inda are fine-grained concepts in 

the molecule dimension. In two granularities, fine-grained concepts are on behalf of nodes in low-level 

and coarse-grained concepts represent hyper nodes. The coarse-grained concept of a dimension can be seen 

as a summary expression of its fine-grained concepts with multi-instances in low-level of the dimension. 

Thus, problem to solve are: how to get summary evaluations in a dimension based on  

low-level data with multi-instances and how to mine high-level FCM from summary evaluations in 

dimensions for high-quality classification and causality. 

3. Materials and Methods 

3.1. Multi-Relational FCM 

In order to better model the multi-relationships and coarse-grained concepts in the complex  

system, undoubtedly, a multi-relational FCM (Definition 1), extended from FCM, can represent the 

multi-relationship system. The multi-relational FCM can be divided into different groups and different 

levels. A group means a dimension. A level is a granularity. Coarse-grained concepts are upper-level nodes. 

Fine-grained concepts are low-level nodes. A coarse-grained concept in a dimension represents a FCM 

composed of fine-grained concepts, and is related with other coarse-grained concepts in other dimensions. 
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Definition 1. A multi-relational FCM with two-levels and n-dimensions is Un
2 = (Cn

2, Wn
2, An

2, f). 

• Cn
2: {{C1i}…,{Cji},…{Cni}} is a set of concepts, {Cji} is on behalf of a coarse-grained concept 

in j dimension, and Cji is ith fine-grained concept in bottom-level of jth dimension. 

• Wn
2: {{Wj}, {Wij}}. <{Cji}> → Wj is a function associating Wj among jth dimension, Wj:{wij}; 

(<{C1i}>…, <{Cji}>,…<{Cni}>) → {Wij} is function associating between coarse-grained 

concepts. 

• An
2: Cji → Aji(t), {Cji} → Aj(t). Aj(t) is a function f at iteration t. 

• f is a transformation function, which includes recurring relationship on t ≥ 0 among Aj(t + 1), Aji(t) 

and Ai(t), where Aj(0) is referred out based on the weight vector Wj, got by multi-instances 

oriented NHL, in low-level FCM. 

3.2. Multi-Instances Oriented NHL 

In the multi-relational FCM, each concept represents a useful field name in data resource. In the  

multi-relationship, one field in main table corresponding to another table has some sub fields.  

The field in the main table points to a coarse-grained concept in low-level FCM and the fields in another 

table indicate the fine-grained concepts in the FCM. Thus, the low-level FCM can be used to model the 

multi-relationship. 

One coarse-grained concept (Cj) in jth dimension corresponds to some fine-grained concepts  

(Cj1, Cj2, . . . , Cjn). It becomes the key to the state value of get the weights between the coarse-grained 

concept and some fine-grained concepts in the low-level FCM. The weights express the causality 

relationship between fine-gain concepts and coarse-grained concept. The weights need to be learned 

from multi-instances. NHL can be extended to multi-instances oriented mining for the optimistic of the 

nonlinear units’ weights in Figure 2. In the prerequisite, the state states of coarse-grained concepts in 

high-level FCM can be inferred. 

Multi-instances oriented NHL has two constraints. First constraint is that it maximizes the 
mathematical expectation of ܣ௝ଶ of all multi-instances as Equation (7). 

maxmize ܬ = ௝ଶ௥ܣ෍]ܧ ] (7)subject to ||࢝|| = 1 (8)

 

Figure 2. Nonlinear unit in Fuzzy Cognitive Map (FCM). 
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Second constraint is that the weight vector w has to be limited to stabilize the learning rule as  

Equation (8), which generates the following nonlinear Hebbian learning rule as Equation (9). ∆ݓ௜௝(ݐ + 1) = ௝௜ܣ)௝ܣߟ − ௝) (9)ܣ(ݐ)௜௝ݓ

Accordingly, multi-instances oriented NHL is presented in the function of M_NHL. The execution 

phase of multi-instances oriented NHL (M_NHL) is consisted of the following steps: 

Step 1: Random initialize the weight vector wj(t), t = 0, p = 0 and input all instance {Aji} 

Step 2: Calculate the mathematical expectation of Aj
2 of all {Aji} 

Step 3: Set t = t + 1, repeat for each iteration step t: 

3.1 Set p = p + 1, to the pth instance: 

3.1.1 Adjust wj(t) matrix to {Aji}p by Equation (9) 

3.2 Calculate the Aj
2 to all {Aji} by Equation (10) 

3.3 Determine whether Aj
2 is maximum or not at present 

3.4 If Aj
2 is maximum, output the optimal wj(t) 

Step 4: Return the final weight vector wj(t) 

According to the literature [21], whether NHL clusters better or not is closely related to the activation 

function f. It means that if cumulative normal distribution function or approximate cumulative logic 

distribution function is chosen as activation function, output results will show a U-distribution and easily 

achieve better NHL clustering. In order to avoid integral calculation, the cumulative logic distribution, 

shown as Equation (11), is selected. The output values (nonlinear unit outputs) can be inferred by 

Equation (10), where Aij is the input and wji is mined by M_NHL algorithm. 

A୨(t) = ݂(෍ܣ௜௝(t − ௝௜(tݓ(1 − 1))୧ஷ୨  (10)

(ݔ)݂ = 1 − ݁ି௫1 + ݁ି௫ (11)

3.3. NHL and RCGA Based Integrated Algorithm 

RCGA is used to get the weight matrix of high-level FCM for high-quality classification and causality 

based on initial state values of coarse-grained concepts, which are got by M_NHL in Section 3.2. 

W = [W12, W13,…,W1M,...,WM1,…,WM(M−1)] (12)

Each chromosome consists of M(M−1) genes (see Equation (12)). M is the total number of hyper 

concepts or dimensions. The gene is a floating point number from the range [−1, 1]. Wij specifies the 

weight between coarse-grained concept in ith dimension and it in jth dimension. Each chromosome can 

be decoded back into a high-level FCM. 

When the fitness is more than max_fitness specified or the generation is more than max_generation 

specified, the procedure ends. The fitness function of RCGA is as follows (see Equation (13)). ݂݅ݏݏ݁݊ݐ = 1ܽ ∑ ∑ ൫ܣ௝(ݐ) − ఫ෡ܣ ൯ଶ + 1ெ௝ୀଵ௧்ୀ଴  (13)
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where T is the number of iterations, ܣఫ෡  is the actual output of jth concept of system, Aj(t) is simulated 

output at t iteration by computing. 

In the procedure, the algorithm needs to call function M_NHL. Moreover, if the fitness and the number 

of iterations are not satisfied with the max, the next chromosome is created by select method, mutation 

method and recombination method. In our experiments, a simple one-point crossover, random mutation 

and roulette wheel selection are applied. The parameters are chosen and set as Table 1. 

Table 1. The parameters in the integrated algorithm. 

Parameters Values Meanings 

probability of recombination 0.9 probability of single-point crossover 
probability of mutation 0.5 probability of random mutation 

population_size 50 the number of chromosomes 
max_generation 500,000 a maximum number of generations 

max_fitness [0.6, 0.9] fitness thresholds 
a 1000 a parameter in Equation (13) 

The execution procedure of the algorithm integrating RCGA and NHL consisted of the following steps: 

Step 1: Initialize the parameters by the Table 1 

Step 2: Randomly initialize population_size chromosomes, g = 0, t = 0 

Step 3: Repeat for each dimension j: 

3.1 Calculate Aj(t) by Equation (11) and wj based on M_NHL 

Step 4: Repeat for each chromosome: 

4.1 Calculate the fitness by Aj(t) and Equation (13) 

Step 5: Get max of the fitness and the W 

Step 6: if max of fitness not more than max_fitness and g not more than max_generation 

6.1 Select chromosomes by roulette wheel selection 

6.2 Recombination the chromosomes by single-point crossover 

6.3 Random mutation to the chromosomes by the probability 

6.4 Set t = i + 1, Repeat for each chromosome: 

6.4.1 Calculate Aj(t) by Equation (1) 

6.5 Set g = g + 1, go to Step 5 

Step 7: The W is the optimal chromosome. 

The criterion in Equation (14) is defined as a normalized average error between corresponding concept 

values at each iteration between the two states. The error is used to define the accuracy of the algorithm 

simulating FCM. 

ݎ݋ݎݎ݁ = ܯ1 × ܶ෍෍|ܣ௝(ݐ) − መ௝|ெܣ
௝ୀଵ

்
௧ୀ଴  (14)
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4. Results and Discussion 

Experiments have been carried out using Mutagenesis describing molecular structure, which is a 

multi-relational dataset. The multi-relational system consists of five tables (relationships). They are 

Atom, Bond, Atom_1, Molatm and Mole, where Bond and Molatm play associations among other three 

tables. The class label is in Mole table. The Mutagenesis data describes 188 molecules falling in two 

classes, mutagenic (active) and non-mutagenic (inactive); 125 of these molecules are mutagenic. 

A molecule is associated with multi-atoms through Molatm. An atom is associated with several atoms 

through Bond. So Mutagenesis can be expressed as a multi-relationship of three dimensions: Atom, 

Atom_1, and Mole. Each dimension has many fine-grained concepts, such as indl, inda, lumo, logp of 

molecular dimension. 

There are three backgrounds of Mutagenesis shown in Table 2. The three multi-relational FCM 

structures as shown in Figures 3–5 are different in three different backgrounds. The dotted lines show 

high-level FCMs. 

 

Atom Atom_1

 

atype charg
e 

atype

charg
e 

btype

 

Figure 3. FCM structure of Mutagenesis in BK0. 

 

Atom 

Mole

Atom_1

atype charg
e 

indl

inda

atype

charg
e 

btype

 

Figure 4. FCM structure of Mutagenesis in BK1. 
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Figure 5. FCM structure of Mutagenesis in BK2. 

Table 2. Three kinds of background of Mutagenesis. 

Background Description 

BK0 Each compound includes the attributes of bond types, atom types, and partial charges on atoms
BK1 Each compound includes indl and inda of mole besides those in BK0 
BK2 Each compound includes all attributes that are logp and lumo of mole besides those in BK1

The experiment is implemented for the class of molecular and the association weights among the 

three concepts (Atom, Atom_1 and Molecular) in the Mutagenesis. 

For better operation efficiency in shorter runtime, an experiment, based on multi-relationship FCM 

and the integrated algorithm, has been carried out in the different fitness thresholds under three kinds of 

background. The learning runtimes are shown in the fitness thresholds from 0.6 to 0.9. From Figure 6, 

we can see that the changes of the runtime are not big under three kinds of background. The runtimes 

spent is changed. When the fitness threshold is at the interval of (0.65, 0.76], the operation takes less time. 

 

Figure 6. The learning runtime under the different fitness thresholds. 
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The classification results are compared in the max_fitness = 0.7 under three backgrounds. From the 

Table 3, the classification runtime of the integrated method is longer. The main reason for this is the 

costs in database access and FCM inference. The integrated method has better classification accuracy 

according to the label in Mole in three kinds of background knowledge; in particular, the accuracy rate 

is best in BK1. 

Table 3. Classification efficiency in different backgrounds. 

Backgrounds Runtime(s)  Accuracy (%)

BK0 0.78 82.3% 
BK1 0.8 82.9% 
BK2 0.8 82.7% 

And the method not only gets better classification, but also the association weights or causality for 

causal analysis of system, which is more than other methods. For example, the association matrix of 

high-level FCM of Mutagenesis in BK2 is shown in Figure 7. 

















04758.02127.0

1801.00526.0

6308.0294.00

 

Figure 7. Association matrix of high-level FCM of Mutagenesis in BK2. 

5. Conclusions 

We construct a kind of multi-levels and multi-dimensions FCM to automatic model complex systems 

directly from multi-relational data resources. The multi-relational FCM include two levels and some 

dimensions. In the FCM, one concept in high-level has a summary evaluation in a dimension, which is 

inferred by the transformation function of low-level FCM. It has been solved that the weight vector in 

low-level FCM is learned by extended NHL from multi-instances for the inference. For getting better 

classification and causality, RCGA has been used in learning the association weights in high-level FCM. 

Moreover, the integrating algorithm of NHL and RCGA has been applied in the compounds of molecular 

of Mutagenesis, which obtains better accuracy and knowledge for causal analysis. 
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