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Abstract: Based on the basic concepts of agent and fuzzy T-S model, an agent based
fuzzy T-S multi-model (ABFT-SMM) system is proposed in this paper. Different from the
traditional method, the parameters and the membership value of the agent can be adjusted
along with the process. In this system, each agent can be described as a dynamic equation,
which can be seen as the local part of the multi-model, and it can execute the task alone or
collaborate with other agents to accomplish a fixed goal. It is proved in this paper that the
agent based fuzzy T-S multi-model system can approximate any linear or nonlinear system
at arbitrary accuracy. The applications to the benchmark problem of chaotic time series
prediction, water heater system and waste heat utilizing process illustrate the viability and
the efficiency of the mentioned approach. At the same time, the method can be easily used to
a number of engineering fields, including identification, nonlinear control, fault diagnostics
and performance analysis.
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1. Introduction

Along with the development of sensor technology, electro mechanical system and digital
communication network, both the basis structure and run mode of engineering control system changed
enormously [1,2]. These components of the engineering control systems are more intelligent, they will
never act as the single role of controlled object or controller [3,4], instead an agent integrates sense,
compute, execution and communication together. However, it also brings more uncertainty to the system,
such as time variation and nonlinear characteristics. Therefore, the investigation of agent based fuzzy
T-S multi-model system by the way of data information of the process is studied.
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Many works have mentioned the idea of agent based modelling [5–8]. Different from the traditional
model, the agent based modelling is formed by agents that lie in different layers [9]. There exists the
interaction between the agents, and the input signals for an agent may be affected by the feedback
information of others. Affecting other agents and affected by the others at the same time, the essence
of the cooperation and interaction between different agents is the communication process of data
information [10]. The communication channels between agents form the real time dynamic network.
Within the network, each agent can execute the task alone or collaborate with other agents to
obtain a fixed goal [11,12]. However, the control-oriented models of engineering systems call for
further investigation.

Few attempts have been initiated in the study of the agent based fuzzy T-S multi-model system.
In [13], a multi-agent consensus problem with an active leader and variable interconnection topology
is studied. A neighbor-based local controller together with a neighbor-based state-estimation rule is
given for each autonomous agent to track the leader. Then, a cooperative output regulation problem for
linear uncertain multi-agent problem is studied in [14], and it shows a simple way of cooperation of the
system if all subsystems of the agents have the same nominal dynamics. In [15], the fuzzy modelling and
consensus problem of multi-agent nonlinear systems is analyzed. The T-S fuzzy models are proposed
to express the system with variable structures. However, the agent based fuzzy multi-model strategy
remains preliminary because how to construct the agents and lead all the agents in a multi-model system
to reach a consensus is still a problem. More endeavors should be conducted in order to use the modelling
strategy widely.

Starting from the basic concepts of agent and fuzzy T-S model, the agent based fuzzy T-S multi-model
(ABFT-SMM) system is proposed in this paper. In this system, the agent that is described with a dynamic
equation will be the local part of the multi-model, and the consensus of the agents accomplished by
the center average defuzzifier. Moreover, we proved the ABFT-SMM could approximate any linear or
nonlinear systems at arbitrary accuracy.

The structure of the rest of this paper is as following. In Section 2, several concepts of agents and
fuzzy T-S model are introduced. In Section 3, the method for building agent based fuzzy multi-model
is described in detail. In section 4, the approximation capability of the agent based fuzzy multi-model
system is analyzed. Three different application examples are given in Section 5. Lastly, the conclusion
is drawn in Section 6.

2. Concept Formulation

There are three main problems that need to be solved for establishing the ABFT-SMM system.
Firstly, how a single agent can be built; Second, how the cooperation works among different agents;
Third, how to combine the multi-model theory and the agent theory together. To solve these problems,
here we will first introduce several basic but crucial concepts.
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2.1. Dynamic Network of Agents

Defined G = (ν, ς) is a weighted directed diagram, where ν is the set of node, ς is the frontier set.
The nodes of the diagram are different agents whose state can be described with xi, the process of the
change of xi along with time can be expressed in a dynamic equation, and its time continuous form is

ẋi(t) = fi(xi(t), ui(t)) (1)

where t ≥ 0, i = 1, ..., N . In addition, for discrete time form, the dynamic equation of each agent is

xi(t+ 1) = fi(xi(t), ui(t)) (2)

where t = 0, 1, ..., i = 1, ..., N . Mark x = (x1, x2, ..., xN)T , then the two-tuple G = (ν, ς) is combined
together with x to construct a dynamic network. The directed diagram G is called the communication
topology or information flow diagram of the dynamic network.

2.2. Consensus Protocol

Definition 1: Let {xi ∈ R, t ∈ T , i = 1, ..., N} be N processes, where T is time index set, and
in the time continue situation T = [0,∞) , in discrete time situation T = {t0, t1, ..., tj, ...}, where
tj(j = 0, 1, ...) is monotone increasing of discrete time. If,

lim
T 3t→∞

|xi(t)− xj(t)| = 0 (3)

where i, j = 1, ..., N , then the dynamic network (G,x) is weak consensus.
Definition 2: Let {xi ∈ R, t ∈ T , i = 1, ..., N} be N processes, if there exists x∗ ∈ R, lead

lim
T 3t→∞

xi(t) = x∗ (4)

where i = 1, ..., N , then the dynamic network (G,x) is strong consensus.
Definition 3: Let h : RN → R be a function with N variables, and {xi ∈ R, t ∈ T , i = 1, ..., N} are

N processes, if for arbitrary xi(0)(i = 1, ..., N), there will be

lim
T 3t→∞

xi(t) = h(x1(0), x2(0), ..., xN(0)) (5)

where i = 1, ..., N , then the dynamic network (G,x) is h-consensus. h(x1(0), x2(0), ..., xN(0)) is

called the group decision value—especially, when h(x1(0), x2(0), ..., xN(0)) = 1
N

N∑
j=1

xj(0), is called as

average consensus.
If the dynamic network (G, x) is weak consensus (strong consensus, h-consensus), and ν is called a

weak consensus (strong consensus, h-consensus) protocol.
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2.3. Fuzzy T-S Model

Fuzzy T-S model can be described as (6), it also be called the second kind of fuzzy T-S model [16],

Rl : if x1 is A
l
1 and x2 is A

l
2 and ... and xn is A

l
n

then yl = al1x1 + al2x2 + ...+ alnxn (6)

where Rl is the lth fuzzy rule, l = 1, ..., N , N is the number of fuzzy rule, Ali(i = 1, ..., n) is called
the fuzzy subset, x = (x1, x2, ..., xn)T and yl are the input and the output variables respectively, ai is
the consequent parameter of local linear part. Compare with the first fuzzy T-S model, it brings many
conveniences in computing process [17].

The output functions of the model can be described as following when the center average defuzzifier
is adopted

y =

N∑
l=1

λlyl

N∑
l=1

λl
(7)

where yl is the output of the lth fuzzy set, λl is the corresponding weight value.
Compared with the traditional modeling method, fuzzy rules based modeling method is a kind of

multi-model way of modeling. Each rule of the fuzzy model can be seen as a local model, it means that
the process of fuzzy modeling is the process of describing the action of the whole system by combining
the local models [18,19].

3. Agent Based Fuzzy T-S Multi-Model System

It has been proved that the fuzzy T-S model can approximate any nonlinear systems at arbitrary
accuracy in [17] and [20], At the same time, it has been proved that the second kind of fuzzy T-S
model has the similar approximation capability with the first kind of fuzzy T-S model [21]. Here we
use the linearized consequent of the fuzzy T-S model to express the dynamical equation of the agent.
Combine formula (2) with (6), the agent based fuzzy model can be written as:

Ri : if xi(t) is Ai1, xi(t− 1) is Ai2, ...

xi(t− n+ 1) is Ain, ui(k − td) isAin+1, ...,

ui(k − td −m) is Ain+m+1 (8)

then xi(t+ 1) = ai1xi(t) + ai2xi(t− 1) + ...+

ainxi(t− n+ 1) + ain+1ui(t− td) + ...+

ain+m+1ui(t− td −m)

where Ri is the rule of agent i , and Ak(k = i1, ..., in+m+ 1) is the fuzzy subset, aik is the consequent
parameter of linear sub model.
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The center average defuzzifier is adopted to the agent based fuzzy model, and then the agent based
fuzzy T-S multi-model will be described as:

y = x(t+ 1) =

N∑
i=1

λi(ϕ(k))xi(t+ 1)

N∑
i=1

λi(ϕ(k))

(9)

where y is the system action which affected by the agents that instead the different work conditions,
N is the number of the agents, xi(t + 1) = fi(xi(t), ui(t)) is the dynamical equation of agent i and
its linearized expression is like the output of (8), the expression of λi(ϕ(k)) is corresponding to the
membership value of agent i and it can be calculated from Gaussian bells function as (10) .

λi(ϕ(k)) = exp[−(ϕ(k)− c̄i)T (ϕ(k)− c̄i)
s2
i

] (10)

where ϕT (k) = [−xi(t), ...,−xi(t−n+1), ui(k−td), ..., ui(k−td−m)] is (n+m+1) dimensional row
vector, n is the number of the agent states, m is the number of the past input states that relevant to current
agent output, c̄i ∈ Rnϕ is the central variable of the Gaussian function, and si is used to determine the
width of the Gaussian function. Moreover, si can be gotten in the following way

si = ks
1

n

n∑
j=1

|c̄i − c̄ij| (11)

where c̄ij is the jth neighbor center of the current center c̄i, and constant ks is used to determine the
impact between deferent agents. Usually, the variation range of si is not significant, and the value of si
can be chosen offline with the prior knowledge.

As analysed, in the modeling process, agents are h-consensus to the system output. A single
agent is equivalent to a local network model. The cooperation among agents is accomplished by their
membership value.

4. Universal Approximation Characteristics of Agent Based Fuzzy T-S Mutil-Model Systems

In this section, the approximation characteristic of ABFT-SMM system will be discussed.
Without loss of generality, the continuous system of ABFT-SMM will be discussed first.

With (1), (9), the expression of the continuous system of ABFT-SMM can be expressed as follows:

ẋ(t) =

N∑
i=1

λi(xi(t))fi(xi(t), ui(t))

N∑
i=1

λi(xi(t))

(12)

where λi(xi(t)) =
in+m+1∏
l=1

exp(−(
zl−z̄il

sli
)2), zl is the lth variable that effect agent i, here l = 1, ...,

(in+m+ 1) . Now we can get the following theorem:
Theorem 1: An ABFT-SMM system with product inference engine, singleton fuzzifier, center average

defuzzifier, and Gaussian membership functions can uniformly approximate any linear or nonlinear
continuous function on a compact set at arbitrary accuracy.
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To prove this theorem, the famous Stone-Weierstrass theorem will be used.
Stone-Weierstrass Theorem [22]: Let Z be a set of real continuous functions on a compact set U . If,

(i) Z is an algebra, that is, the set Z is closed under addition, multiplication, and scalar multiplication;
(ii) Z separates points on U , that is, for every x, y ∈ U, x 6= y, there exists f ∈ Z such that f(x) 6= f(y);
(iii) Z vanishes at no point of U , that is, for each x ∈ U there exists f ∈ Z such that f(x) 6= 0; then for
any real continuous function g(x) onU and arbitrary ε, there exists f ∈ Z such that sup

x∈U
|f(x)−g(x)| < ε.

Proof of theorem 1: Let Y be the set of all fuzzy systems in the form of (12). We now show that Y
is an algebra, Y separates points on the compact set U , and Y vanishes at no point of U . Firstly, we will
prove Y is an algebra. Let f1, f2 ∈ Y , and then f1, f2 ∈ Y can be written as:

f1 =

N1∑
i=1

λ1i(ϕ(k))f1i(x1i(t), u1i(t))

N1∑
i=1

λ1i(ϕ(k))

(13)

f2 =

N2∑
i=1

λ2i(ϕ(k))f2i(x2i(t), u2i(t))

N2∑
i=1

λ2i(ϕ(k))

(14)

Then, f1(x) + f2(x) can be expressed as the form of (15),

f1 + f2 =

N1∑
l1=1

N2∑
l2=1

2λ1iλ2i(f1i + f2i)

N1∑
l1=1

N2∑
l2=1

2λ1iλ2i

(15)

where, 2λ1iλ2i can be seen as the input Gaussian membership function, f1i+f2i is the dynamic equation
of the agent. Obversely, (15) own the same structure with (12), it means that f1(x) + f2(x) ∈ Y .
Similarly,

f1f2 =

N1∑
l1=1

N2∑
l2=1

λ1iλ2i(f1if2i)

N1∑
l1=1

N2∑
l2=1

λ1iλ2i

(16)

It is easy to know that f1f2 ∈ Y . At the same time, when c ∈ R

cf1 =

N1∑
l=1

cλ1if1i

N1∑
l=1

cλ1i

(17)

which is also in the same form with (12), so cf1(x) ∈ Y . Then, we said that Y is an algebra.
Secondly, we prove that Y separates points on U . Construct a required fuzzy system f(x), let z0,

k0 ∈ U be two arbitrary points and z0 6= k0. The parameters of f(x) = ẋ(t) in the form of (12) are
chosen as N = 2, f1 = 0, f2 = 1, sli = 1, z∗1i = z0

i , z
∗2
i = k0

i (i = 1, 2, l = 1, 2, ..., n). The established
fuzzy system is as follows:

f(x) =
exp(−‖z− k0‖2

2)

exp(−‖z− z0‖2
2) + exp(−‖z− k0‖2

2)
(18)
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and we can get (19) and (20) from (18)

f(z0) =
exp(−‖z0 − k0‖2

2)

1 + exp(−‖z0 − k0‖2
2)

(19)

f(k0) =
1

1 + exp(−‖z0 − k0‖2
2)

(20)

Since z0 6= k0, then we can know exp(−‖z0 − k0‖2
2) 6= 1, then it is easy to get that f(z0) 6= f(k0).

Therefore, Y separates points on U .
At last, we prove that Y vanishes at no point of U . It can be known from (12) that there always be

f(x) > 0(∀x ∈ U)when fi(xi(t), ui(t) > 0), hence

f(x) = ẋ(t) =

N∑
i=1

λi(ẋi(t))fi(xi(t), ui(t))

N∑
i=1

λi(ẋi(t))

6= 0 (21)

Combining the proof and Stone-Weierstrass theorem, the conclusion of theorem 1 can be obtained.
While it is just the continuous time condition, the approximate ability will be discussed for the discrete
system following:

Corollary 1: An ABFT-SMM system with product inference engine, singleton fuzzifier, center
average defuzzifier, and Gaussian membership functions can uniformly approximate any linear or
nonlinear discrete function on a compact set at arbitrary accuracy.

Proof of Corollary 1: Assume h(x) is a square integrable function in compact set U ∈ Rn, and
g(x) ∈ L2(U) = {g(x) : U → R|

∫
U
|g(x)|2dx < ∞, combine with theorem 1, the following equation

can be gotten { ∫
U
dx <∞

(
∫
U
|g(x)− h(x)|2dx)1/2 < ε

2

(22)

Then, it is easy to know that (
∫
U
|g(x)− h(x)|2dx)1/2 < ε.

More details about the approximate characteristic of the fuzzy model can be found in [20], while it
mentioned the traditional fuzzy system. Here, we draw the collusion form theorem 1 and corollary 1 that
ABFT-SMM can approximate any linear or nonlinear system at arbitrary accuracy, and it means that the
ABFT-SMM system is a universal approximator. Thus, the proposed method could be widely used in a
number of fields, such as behavior modeling, adaptive nonlinear control, fault detection and diagnostics.
This paper could be a theoretical foundation for the implementation of ABFT-SMM systems in
practical applications.

5. Applications and Discussions

To demonstrate the accuracy of ABFT-SMM to approximate the nonlinear system, the method
is applied to a benchmark problem named chaotic Mackey-Glass time series prediction, a case
of identification of the electrical water heater system and the modeling of waste heat utilizing
process, respectively.
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5.1. Chaotic Time Series Prediction

5.1.1. Description of the Equation

The benchmark problem of model identification, predicting the time series generated by the chaotic
Mackey-Glass differential delay equation, can be expressed as follows [23–29]:

ẋ(t) =
ax(t− τ)

1 + x10(t− τ)
− bx(t) (23)

The task of this example is to predict the output of some fixed steps later with past states of x, the
value of the signal 24 steps ahead x(t+ 24) is predicted based on the current signal value. Consider the
Mackey-Glass problem as a process plant, parameters a, b and τ will vary in different working condition
points. Assume there are three working conditions for the process, the parameter values of the plant are
outlined in Table 1, where x(0) is the initial value of the nonlinear system.

Table 1. Parameters of Mackey-Glass example under three different working conditions.

Conditions a b τ x(0)

1 0.2 0.1 17 1.2

2 0.2 0.09 19 1.0

3 0.2 0.12 16 0.7

5.1.2. Simulation Tests

As analyzed in Section 3, agents corresponding to the models of different working conditions.
Therefore, the models of Mackey-Glass problem under different working conditions can be approached
with the agent based fuzzy T-S models (sort by ABFT-SM). In this example, 600 data samples from
t = 101 to t = 700 are used to illustrate the method. The output signal values of the six steps ahead are
shown in Figure 1.

Figure 1a–c are corresponding to the working condition 1 to 3 respectively. The outputs of
ABFT-SM 1 to ABFT-SM 3 matched the fixed condition curves smoothly, which means that the agents
can run effectively in fixed working conditions. The main initial values and indexes of the prediction
systems of different conditions are listed in Table 2, where ra is the cluster radius of the agents, both
ra and si are the initial values of the method, centers are the structure index and root mean square error
(RMSE) is the performance index of the system.

Figure 1d shows the tracking result of the ABFT-SMM, where the 600 data samples are consisted
with three different conditions. The first 200 data samples come from condition 1, the second 200 data
samples from condition 2, and the third 200 data samples from condition 3. The centers for the agents
are calculated in different conditions, so here the number of the centers for the fuzzy T-S multi-model
is 19. The RMSE of the ABFT-SMM in this time is 0.0056, it is very close to the accuracy of the single
condition, and the computation complexity is proper.
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(a) (b)

(c) (d)

Figure 1. Comparison of the ABFT-SM identification results with Mackey-Glass time series
outputs. (a) is the tracking result for condition 1, (b) is the tracking result for condition 2,
(c) is the tracking result for condition 3, and (d) is the varied condition situation.

Table 2. Initial values and the indexes of the prediction systems.

Conditions ra si Centers RMSE

1 0.14 0.1 7 0.0037

2 0.1 0.1 6 0.0044

3 0.19 0.1 6 0.0040

5.1.3. Comparison and Discussion

Above all, both the tracking curve and the RMSE index indicate that the ABFT-SMM method runs
efficiently in the working condition changed situation. It proves that the predictive outputs followed the
process very well. At the same time, the modeling error, with respect to the data of condition 1, is listed
in Table 3 along with the results from other methods as reported in [23,26–29]. Comparison between
various methods shows that the ABFT-SMM can reach a better degree of accuracy. That is because
different agents can collaborate to describe the nonlinear process, moreover, the membership values of
the agents can be adjusted online when new data comes to the system.
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Table 3. Comparison of results from different existed methods.

Methods Data RMSE

ABFT-SMM 600 0.0037

Cluster Estimation-Based [23] 500 0.014

ANFIS [26] 500 0.007

eTS [28] 300 0.0925

IT2FNN [29] 500 0.0053

Linear Predictive Method [27] 2000 0.55

5.2. Identification of Electrical Water Heater

5.2.1. Description of the System

The schematic diagram of the water heater system is shown in Figure 2. The flow rate
of cold water, F , which comes from the pipeline is controlled by the valve CV. Next, the
cold water flows through a pair of metal pipes containing a cartridge heater. The outlet
temperature, Tout, of the water can be varied by adjusting the heating signal, u , of the cartridge
heater [30]. To physical modeling, there are four parts in the circle: the cartridge-heater
(subscript h), the streaming water (subscript w), the pipe wall (subscript p) and the environment
(subscript e). The following three heat balances in the form of partial differential equations can
be established:

VhρhCph
∂Th
∂t

(t, z) = Q(u)− α1A1(Th − Tw)

VwρwCpw
∂Tw
∂t

(t, z) + (FρCp)w
∂Tw
∂z

(t, z) = α1A1(Th − Tw)− α2A2(Tw − Tp)
VpρpCpp

∂Tp
∂t

(t, z) = α2A2(Tw − Tp)− αeAe(Tp − Te)
(24)

where, V is volume, ρ is density, C is specific heat, Q is the heat power, α is heat transfer coefficient,
A is area, T is temperature, and F is flow rate. Here, z ∈ [1, L] with L being the length of the pipe.
Additional, Q is nonlinear with the manipulated heating signal, while it can be approximated with a
generalized linear dynamics function described as:

G(z) =
b1z
−1 + b2z

−2

1− a1z−1 − a2z−2
+ ν0 (25)

where a and b are the coefficients of the model, ν0 is the initial value. Two different conditions mentioned
in [30] are listed in Table 4, and the parameters will change with the process.
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Figure 2. Schematic diagram of water heater system.

Table 4. Parameters of water heater example under different working conditions.

Conditions a1 a2 b1 b2 ν0

1 −1.8 0.8112 0.0093 0.0019 20.83

2 −1.817 0.8302 0.0032 0.0086 21.35

5.2.2. Simulation and Discussion

In this example, 700 data samples from t = 101 to t = 800 are used to test the method. The results of
the identification are shown in Figure 3. It shows that the agents can run effectively in a fixed working
condition. The main initial values and indexes of the identification systems under different conditions
are list in Table 5. The 700 data samples of Figure 3c are consisted with two different conditions, The
first 350 data samples come from condition 1, the second 350 data samples from condition 2. The
RMSE of the ABFT-SMM in this time is 0.0107. It is very close to the RMSE value of condition 1 or
condition 2, which means the ABFT-SMM method runs efficiently in the condition-changed situation,
while more complex systems need to be used to test the approach.

Table 5. Initial values and indexes of the identification systems.

Conditions ra si Centers RMSE

1 0.18 1 21 0.01

2 0.2 1 17 0.0096
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(a) (b)

(c)

Figure 3. Comparison of the ABFT-SM identification results with heater system outputs.
(a,b) are corresponding to the working condition 1 and 2 respectively; (c) is the varied
condition situation.

5.3. Waste Heat Utilizing System Modeling

5.3.1. System Description

An application of modeling the 11 kW waste heat utilizing system is studied in this section, and the
conceptual diagram of the power generate process is shown in Figure 4. In the system, R123 whose
critical properties listed in Table 6 is selected as the working fluid. The energy of the waste heat source
is transferred to the working fluid in the evaporator, and then the vaporized R123 enters the turbine and
drives it to generate power. The working fluid vapor from the expander is next used to preheat the cold
working fluid in a regenerator before it enters the evaporator. The vapor from the regenerator is then
condensed back into liquid state in a water-cooled condenser. The liquid stored in a receiver then is
pumped into the regenerator again.

The physical model of the waste heat utilizing system can be drawn from the partial differential
equations of the mass balance and the energy balance, while there are many strong nonlinear components
in the circle, such as evaporator, condenser and some electrical valves. The system evolved by physical
modeling and traditional identification modeling strategy usually cannot match the needs of the control
system when the work condition varies; therefore, the agent based fuzzy identification method for waste
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heat utilizing system is investigated in this paper. In general, the nonlinear expression of this process is
as follows:

yk = f(yk−1, ..., y(k − nA), uk, uk−1, ..., uk−nB
, ξk) (26)

where, yk is the output of the system, uk is the input, and ξk is the random disturb.

Figure 4. Conceptual diagram of the waste heat utilizing system.

Table 6. Critical properties of R123.

Molecular Formula CHCl2CF3

Molecular weight 152.931 g/mol

Critical pressure 3.662 MPa

Critical temperature 456.681 K

Critical density 550.004 kg/m3

5.3.2. Simulation Tests

Consider the whole system, the evaporating pressure and the superheating temperature are the
main variables that should be regulated to improve the efficiency of the system and keep safety of
the components. After running, we find that the evaporating pressure is mainly adjusted by the expander
speed and the superheating by the fluid pump speed, and the channel of evaporating pressure is studied
here. The zero mean write noise is adopted as the identification signal, and 1000 data samples are chosen
in 1 s sampling interval when the pump speed runs from 500 rad/min to 550 rad/min. The comparison
curve of the ABFT-SMM outputs with the actual system outputs are shown in Figure 5.
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(a) (b)

Figure 5. Comparison of the ABFT-SMM outputs with the actual system outputs. (a) is the
tracking curve of the identification model; (b) is the tracking error.

5.3.3. Comparison and Discussion of System Performances

The parameters of the identified model and its performance index are shown in Table 7. It can be
known from the modeling curve and the performance index that the agent based online multi-model
method can model the nonlinear waste heat utilizing process efficiently. In order to test the performance
of the mentioned approach, an recursive least square (RLS) method simulation result is shown in
Figure 6. It is clear that all the performances of the ABFT-SMM system are better (have the smaller
criteria values) than those of the RLS system. These superiorities benefited from the multi-model based
structure and the parameter adjust characteristics of the agents. The application result shows an accurate
and stable performance, it provides a good foundation for detection and control of the system.

(a) (b)

Figure 6. Comparison of the RLS outputs with the actual system outputs.

Table 7. Parameters and the indexes of the identification model.

a1 a2 a3 a4 a5 a6 Centers RMSE

−0.4641 −0.2905 −0.2148 5.299× 10−5 3.954× 10−5 2.440× 10−5 8 1.783× 10−4
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6. Conclusions

In this paper, an ABFT-SMM system is established, and the approximation characteristic of the system
is discussed. The concepts of agent and fuzzy T-S model are first addressed to describe the structure of
the ABFT-SMM system. Different from the traditional method, the parameters and the membership
value of the agent can be adjusted along with the process, which lead to application results better than
the existing studies. Then, both the approximation capability of continuous and discrete systems are
analyzed with the famous Stone-Weierstrass theorem. Finally, chaotic time series prediction, water
heater identification and waste heat utilizing process modeling are presented to illustrate the viability
and efficiency of the mentioned approach.

The following conclusions can be drawn:

(1) The ABFT-SMM system is an h-consensus network.
(2) The structure of the model can be adjusted by the number of the agents and their

corresponding weights.
(3) The proposed modelling method can approximate any linear or nonlinear system at

arbitrary accuracy.
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