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Abstract: In this paper, we propose mathematical optimization models of household energy
units to optimally control the major residential energy loads while preserving the user
preferences. User comfort is modelled in a simple way, which considers appliance class,
user preferences and weather conditions. The wind-driven optimization (WDO) algorithm
with the objective function of comfort maximization along with minimum electricity cost
is defined and implemented. On the other hand, for maximum electricity bill and peak
reduction, min-max regret-based knapsack problem (K-WDO) algorithm is used. To validate
the effectiveness of the proposed algorithms, extensive simulations are conducted for several
scenarios. The simulations show that the proposed algorithms provide with the best optimal
results with a fast convergence rate, as compared to the existing techniques.
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1. Introduction

Recently, the shortage of natural energy resources and growing energy demand in the world have
resulted in dependency on renewable energy resources, such as solar and wind energy. According to [1],
the power sector accounts for 38% of the expected energy demand increase by the year 2020. In Europe,
the energy demand of the residential and building sector is expected to increase by 16%, the industry
by 12% and the power sector by 13%. In order to fulfil extensive energy needs, electricity providers are
thinking of re-organizing their energy production, transmission and distribution schedules. One of the
current solutions is the transformation of the old grid into a smart grid (SG) with advanced information
and communication technologies. As discussed in [2], SG has the ability to incorporate distributed, as
well as renewable energy resources, which can mitigate the effects of a large number of electric vehicles,
peak power plants, etc.

Demand response (DR) can be defined as the set of rules adopted by utilities to manage the end user
energy demand in response to the electricity supply limits [3]. Different strategies have been used to
motivate the end users to take part in DR programs to efficiently utilize energy consumption. The most
widely-used DR programs include: critical peak pricing (CPP), time of use pricing (TOU), day ahead
pricing (DAP), real-time pricing (RTP), flat rate pricing (FRP) and inclining block rate (IBR) [4–6]. The
energy management controller (EMC) is used to take DR signals via a smart meter, which can use both
price information and user inputs to generate schedules. Then, these schedules are transmitted to the
smart appliances via Wi-Fi, ZigBee, infrared, etc. [7,8].

Generally, DR mechanisms work by either shifting the peak load to off-peak hours or reducing the
overall energy consumption. The former encourages the users with incentive-based schemes to avoid
high peaks to stabilize the grid. The latter adopts efficient energy consumption plans [9]. However,
load shifting may be used for bill savings and eventually may disturb the end users comfort. Therefore,
there is a trade-off between user comfort and bill savings. In order to achieve cost-effective energy
usage with minimum user frustration, a mechanism is needed that is able to adopt and incorporate the
advantages of centralized, decentralized and distributed energy management schemes. Population-based
heuristic techniques for global optimization are widely used due to low complexity, fast convergence
and processing time. Usually, users can assign their own energy consumption patterns and preferences,
which do not require high computational power and capabilities. Moreover, users do not need to interact
with other users of the utility directly, which saves time, communication bandwidth and security. Based
on the aforementioned challenges, we use a heuristic-based wind-driven optimization (WDO) technique
to select energy-efficient patterns for driving all appliances. The contributions of the paper are as follows.

• We build a model by classifying electrical appliances into three groups based on power usage
and user comfort requirements. This model incorporates the three proposed classes of appliances
based on hourly electricity prices (TOU) during on-peak and off-peak hours in conjunction with
user preferences.
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• On the proposed model, we devise a binary version of WDO algorithm for minimum electricity
cost and maximum user comfort. Moreover, a knapsack-based WDO (K-WDO) algorithm is also
designed for maximum electricity cost saving that can be used as a benchmark for the performance
evaluation of energy consumption in home area networks. The min-max regret-based knapsack
optimization technique is used to minimize the maximum energy consumption.
• The said optimization techniques are mapped for scheduling electrical appliances. Moreover, we

incorporate a renewable energy resource during critical hours for grid stability, electricity cost
reduction and user comfort (we assume that fixed electric power is stored via a renewable energy
resource that can be utilized in peak or crucial hours).
• Finally, we validate our proposed schemes and analytic framework via extensive simulations and

comparisons of unscheduled and scheduled cases.

The rest of this paper is organized as follows: Sections 2 and 3 discuss the related work and energy
management architecture, respectively. Different pricing schemes are discussed in Section 4. We then
present the appliance energy consumption patterns, system model and appliance types in Sections 5–7,
respectively. Details about the load optimization problem, WDO and PSO algorithms are given in
Section 8. Performance evaluation and simulation results are given in Section 9, and Section 10concludes
this paper.

2. Related Work

SG introduces a new vision of the upcoming future energy systems with advanced communication,
sensing, controlling, transmission and distribution technologies for providing cost-effective and
uninterrupted energy supply in a smart manner [10,11]. Demand-side management (DSM) and DR are
two major components of SG, which provide assistance in the implementation of energy management
programs in different areas, like: electric market energy management, the industrial sector and,
especially, the residential sector. DSM or energy demand management can be defined as the modification
of consumer’s energy consumption profile by using various methods, such as incentive-based DR
mechanisms and improvement in lifestyle through education. Controlling the energy demand and flow
can provide benefits by reducing the peaks to stabilize the grid and increasing the users monetary benefits.

The DSM mechanism plays an important role in the electricity market for energy
management [12,13]. Different DSM algorithms are used in the literature [14–16]. Most of
these techniques are based on specified systems, and others are not practically implementable due to
the large number of independent devices [17]. In [18], the authors use a decision support tool (DST)
for household appliance scheduling in the TOU pricing environment. A dynamic scheduling system
(DSS) is utilized to schedule the appliances and energy consumption based on the historical data
of appliances [19], while in [20], the authors used a separate system to handle the load of a large number
of customers by formulating the problem as a multi-objective optimization problem.

There is also a large number of centralized optimization techniques and algorithms in the literature.
Each technique has been designed for different aims and goals. Heuristic-based particle swarm
optimization (PSO) and stochastic-based robust techniques for optimization are used for DSM [21–23].
In order to maximize the user comfort and cost reduction, the PSO algorithm is used for building energy
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management [24]. Two versions, constant weight PSO and dynamic weight PSO, have been proposed
and tested, which effectively save energy by keeping the maximum comfort level. Generally, centralized
optimization techniques can give the best global optimum solution. However, sometimes, there might be
scalability issues, and great computational power is required while designing for large buildings.

Decentralized techniques map a large number of distributed systems and multiple agents to obtain
final solution(s) in a natural way. Here, optimization has been done locally, and information exchange
between distributed systems is done via agents. In [25], the authors propose a game-based approach
to balance the overall load and peak-to-average ratio (PAR) in a neighbourhood environment. All of
the players in the game are involved to find the optimal energy consumption schedules and share the
information with other neighbours. A similar Stackelberg game-based approach is used to reduce the
generation, as well as the electricity cost. Here, the game is played with different utility companies and
end users, where each struggles for maximum profit [26]. In [27], a congestion game (non-cooperative
game) is utilized to control electricity demand in a dynamic pricing (DP) environment. The coordination
signal-based decentralized approach is used to solve the decomposed demand response optimization
problem [28]. A combined centralize and decentralized three-step technique is used for the scheduling
of electric vehicle (EV) charging based on the DR signal [29].

A well-known DR approach that considers user comfort for the minimization of electricity cost is
attractive among residential users. In the literature, a load prioritization mechanism has been used, where
a high priority load can be served first [30]. On the other hand, users can also set appliance priorities and
preferences in the form of a matrix to meet their comfort level [31]. For the maximum comfort and cost
of both the utility and end user, the dual decomposition-based approach is used. User’s comfort has been
modelled by using a utility function that maps the total energy consumption up to the satisfaction level
and decreases the energy variations at a desired point [32]. Similarly, in [33], user’s comfort has been
modelled by using a sigmoid function, where comfort is achieved at the cost of extra energy. Another
scheme has been proposed in which users specify their frustration level to change the length of operation
and the start time of the appliance without taking into account the effects on the user’s lifestyle [34].
In [35], thermostatically-controlled appliances are used to enhance the maximum user comfort. Users
only specify their preferred upper and lower temperature limits and the deviation point. Possible
trade-offs between user’s comfort and electricity cost are studied in [36]. An optimization problem
is proposed that adjusts the knob parameter to achieve minimized appliance waiting time or electricity
cost. However, this technique is not precise and does not provide any idea of the obtained trade-offs.
Moreover, the waiting time is associated with electricity cost. Here, waiting time cost increases as
more energy is consumed in the later time slots. On the other hand, if high energy is consumed in
the first hour(s) and very low energy in later hour(s), the waiting time cost would be less as compared
to the former case. To sum up, all of the user’s comfort-based DSM models discussed above have
trade-offs between appliance waiting time and electricity cost. Moreover, these models fail to satisfy the
requirements of middle class and low class users.

The proposed DSM technique based on the WDO algorithm is fully decentralized. Based on the
energy price signal obtained form the utility, the appliance start time and the length of operation time,
EMC performs its own calculations locally and makes energy-efficient schedules. These schedules
are not shared with other users in order to reduce the complexity and communication delay between
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appliances, EMC and the utility. Moreover, in the proposed model, we balance the appliance waiting time
and electricity cost to provide benefits to both end users and the utility company rather, than to provide
benefits to a single party. For more cost reduction, the min-max regret knapsack problem formulation
technique is used and compared to that of simple optimization algorithms.

3. Home Energy Management Architecture

Figure 1 shows the energy management architecture for a smart home in which EMC directly receives
the DR signals from the utility via a smart meter. The main purpose for the deployment of EMC is to
reduce the electricity bill and PAR by rescheduling the home appliances to ensure power system security
and stability. Generally, the smart home consists of advanced metering infrastructure (AMI), smart
meters, EMC, an in-home display (IHD) and renewable energy devices. For communication purposes,
wireless technologies, such as Wi-Fi, ZigBee, Bluetooth, infrared, etc., are used. AMI is treated as a
central nervous system in the SG infrastructure for two-way communication between the utility company
and the smart meter. Moreover, AMI is also responsible for relaying both the energy consumption data
from the distributed smart meters to the utility company and DR signals from the power distribution
company to customer premises, respectively. Generally, smart meters are installed outside the homes
between EMC and AMI.

Figure 1. Energy management architecture in the home.
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4. Price-Based DR

Nowadays, most utility companies still use FRP models for their customers, which charge fixed
prices/kWh all of the time. This is because traditional electromechanical meters have not been fully
replaced yet. However, replacement of old meters with smart meters is in the process, where electricity
consumption readings can be recorded in real time with more accuracy and less effort. Utility companies
are also trying different pricing schemes for residential users to facilitate both the end users and
the utility.

4.1. TOU and DAP

In the TOU pricing model, the whole day is divided into equal time slots, and prices are known
in advance, which are mostly month or season based. The high, mid and low peak hours enable the
customers to schedule their daily electricity load in order to pay a low electricity bill. For example, from
8 a.m.–10 a.m., the electricity prices are high, and customers can turn on the minimum load during this
time interval. In practice, electricity prices vary according to the variable demand and supply, which is
the essence of DR programs. Thus, in TOU models, if consumers have the desire to get a lower electricity
bill, they must reschedule their load accordingly, because prices are fixed for a month or a season. On
the other hand, DAP are fixed only for a single day and, also, known in advance by the customers. For a
better implementation of DR programs, DAP schemes are more suitable than TOU pricing [4–6].

4.2. RTP

The RTP signal is also like TOU, where energy consumption prices vary hourly based on customer
energy demand requirements. The utility then generates price signals by aggregating the total load
requirements of each household. Therefore, during high energy demand hours, the electricity price will
be high and vice versa. Since, electricity prices vary in each hour, which may pose scheduling problems,
especially for the energy management system, adaptive and efficient algorithms are needed to cope with
variable electricity prices.

4.3. CPP

This pricing scheme uses predefined pricing rates. Usually, this scheme can be implemented along
with any other pricing schemes, such as RTP or TOU. If customers use more energy beyond some
threshold limit imposed by the utility, they are charged according to new rates. The utility informs
the users prior to implementation of the critical pricing plan. One important aspect of this scheme is
restricting the users to consume less energy during peak intervals to balance the energy demand and
supply. A study conducted in California shows that 41% of energy is reduced by imposing a two-hour
threshold limit on hot water with end user control [37]. On the other hand, approximately 13% of energy
is saved for a five-hour threshold limit without providing end user control.
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5. Home Appliance Energy Usage Pattern

Energy consumption optimization and scheduling can be done when EMC receives the DR
information and electricity price signal from the utility. Users usually prefer to operate their appliances
in a certain time interval when there is a low price signal available. For example, a clothes dryer can
start and finish its job at (1→ 6 a.m.), because residents are asleep and the electricity price is low at this
time. In this way, both the electricity bill and user comfort are achieved. Similarly, residents want to
have breakfast as early as possible after waking. Therefore, we schedule the microwave oven at night,
so that it can finish its job on time. It is important for residents to set control parameters, like the start
time Ts, finish time Tf and Tlot for all types of appliances during which they can be feasibly scheduled.
These parameters are set by EMC, and then, optimal schedules are transmitted to all appliances.

5.1. Appliance Waiting Time

Usually, residents have the desire that appliances finish their job as soon as possible within a specified
time. However, due to price uncertainty, extra load, communication delay between the utility and EMC,
appliance priority, etc., there might be some possibilities that users can bear some delay. However,
cost saving is always under consideration for residential users. Therefore, there is a trade-off between
cost saving and appliance waiting time, which ultimately affects user lifestyle. To model the appliance
waiting time, we introduce a waiting parameter called δtw borne by the smart user for n number of
appliances, such that 0 ≤ δtnw ≤ Tmax. For simplicity, the user can specify the deadline Tf that his or her
appliance can finish the assigned job. The waiting time of n number of appliances can be calculated as:

δtnw = Ton−Ts

Tmax−Tlot
(1)

In Figure 2, the appliance waiting time will be zero if the start and on time are equal (Ts = Ton). On
the other hand, the user would bear some delay if the start and on time are not equal (Ts 6= Ton). In order
to maximize the user comfort, the appliance waiting time should be as little as possible. Therefore, the
overall objective function is to minimize the appliance waiting time, which is given below:

Obj = min
tn∑
t=1

( n∑
n=1

δtnw

)
(2)

s.t.:

δtaw ≤ Tmax − Tlot (2a)

T0 ≤ Tf ≤ Tmax, 0 < T ≤ 24 (2b)

In Equation (2), n denotes the total number of appliances, and [t ∈ tn] denotes the total scheduling
time, which is 24 h in our case. Constraint Equation (2a) shows that the maximum waiting time of
appliance a must be within the maximum time limit, and constraint Equation (2b) denotes the appliance
finishing time bounds, which are within the start and end time intervals.
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Figure 2. Appliance waiting time.

In this work, our focus is towards electricity bill minimization, user comfort and peak reduction.
Based on the TOU pricing signal, scheduling algorithms adjust the working cycles of all types of
appliances with respect to the given constraints. For example, at time slot t, appliance n has the schedule
to be on. However, due to the high electricity price and Tlot of all other appliances, the scheduler adjusts
this appliance in time slot (t + δt) or (t − δt) for cost reduction. In Figure 2, positive δtw denotes
that appliance n has initial starting time Ts, and the scheduler adjusts the starting time after its original
scheduled time. Similarly, negative Tw shows that the appliance’s new scheduled time is set before its
original time.

6. System Model

We consider three types of N appliances, which consume energy in a 24-h time period. Each device
is controlled by EMC, which takes energy signals directly from the utility via the smart meter. We divide
the total scheduling time period (e.g., day) into 24 equal time slots. EMC calculates the starting Ts and
finishing Tf time intervals, as well as the energy consumption of each appliance in a given time interval
without exceeding available energy capacity Ct. The energy consumption vector during all time intervals
is written as:

ET = [E1
t1 , E2

t2 , E3
t3 , ....En

T ] (3)

where E1
t1 is the amount of energy consumed by the first appliance in the time interval t1, and so on.

Total time interval is given as:
T = [t1, t2, t3, t4, ....tn] (4)

In a given time interval T , each appliance can be scheduled by considering the time bounds Ts, Tf
and Tlot. Each appliance can have a scheduling time interval between [T0, Tmax]. In addition, we assume
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that each of the n appliances consumes its minimum Emin
con and maximum energy consumption values

Emax
con , respectively, in each time interval T . The energy consumption of any appliance can be written as:

Emin
con ≤ Econ ≤ Emax

con , ∀ T (5)

The scheduling time horizon during which appliances can be scheduled is given as:

Tsch = Tmax − Tlot (6)

The TOU pricing scheme is widely used in the energy management systems (discussed in the
Introduction), so we use this scheme in our proposed work where the Econ price varies in each interval
of time (1 < T ≤ Tmax) and is known in advance by EMC. The Econ price in each time slot t is denoted
by xt. The scheduling algorithm determines the feasible time slots for all appliances in order to reduce
the electricity cost, which ultimately maximizes the end user benefits.

7. Types of Appliances

We consider a home in whichN number of smart appliances operate with different time requirements.
For simplicity, we divide these appliances into three categories based on energy consumption and waiting
time requirements (Table 1).

Table 1. Appliance data.

Sr. No. Appliance Power Rating (kWh) Tlot/(Hours)

1 Stove 3.0 9
2 Tumble Dryer 3.3 15
3 Clothes Dryer 3.4 8
4 Washing Machine 3.0 3
5 Oven 3.0 13
6 Air-conditioner 5.0 7

7.1. Class 1

The energy consumption of these appliances is adjustable in each time interval without storage.
The performance depends on the current energy consumption level required to satisfy the customer
needs. Appliances, such as the air-conditioner and clothes dryer, are included in this class. As we
discussed in Section 5, we consider discrete time slots, and n number of home appliances share common
energy resources. In each time slot t, each n appliance has energy demand Econ(t) (e.g., energy
consumption in each time slot if the appliance is on in time slot t). In this way, the energy unit price
in each time interval is a function of aggregate energy demand. Therefore, each appliance is associated
with a utility function U(Econ(t)) in time slot t, which is concave (non-decreasing function of energy
demand). The energy consumption requirements for all appliances in this class are given as:

Econ =
{ tn∑

t=1

n∑
i=1

(Emr(t,i)λ(t,i) ≥ Eth) ≤ Ct, ∀, n ∈ imr

}
(7)
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where λt,i is a boolean variable, whose value is one if the appliance is on; otherwise, its values is zero.
The energy consumption of Class 1 (must run) appliances in time interval t is denoted by Emr(t,i) . The
above equation shows that the energy consumption of this class of appliances must be greater than
or equal to threshold value Eth. Therefore, we formulate the optimization problem as a 01 multiple
knapsack problem in which the total energy consumption of all types of appliances cannot exceed a
given capacity. To minimize the electricity bill, the objective function for Class 1 appliances is given as:

Obj = min

tn∑
t=1

n∑
i=1

(Emr(t,i)x(t,i)λ(t,i) ≥ Eth) (8)

s.t.:

Ts ≤ t ≤ Tmax (8a)

Tsch = [T0, Tmax] (8b)

Emr ≤ Ct ∀, tn = [t1, t2, t3, ..tn] (8c)

Emax
mr ≤ Emr ≤ Emin

mr (8d)

Emr ≥ Eth ∀, imr (8e)

0 ≤ Eth ≤ Tlot × Emax (8f)

λt,i = [0, 1] (8g)

Equation (8) gives the total electricity cost of all must-run appliances, where the energy unit price for
all appliances will remain the same in the given time interval. Constraint Equation (8a) gives the starting
and maximum time limits. Constraint Equation (8b) describes the scheduling horizon, and constraint
Equation (8c) shows that the total energy consumption of all appliances cannot exceed the total capacity
Ct. Constraint Equation (8d) gives maximum Emax

mr and minimum Emin
mr energy consumption bounds.

The minimum threshold energy required to complete a task is shown in constraint Equation (8f), where
Emax denotes the maximum energy consumption of any appliance whose state is on in time slot t. The
appliance selection parameter (01-knapsack) is given in constraint Equation (8g).

7.2. Class 2

Appliances in this class are scheduled throughout the day to save on the electricity bill. The energy
consumption of such types of appliances is adjustable throughout the day, and its performance can be
measured by total energy consumption, including renewable energy sources. Appliances, such as the
washing machine and tumble dryer, are kept in this category. However, in order to maximize user
comfort, appliance waiting time is also considered. The energy consumption of Class 2 appliances is
given as:

Econ =
{ tn∑

t=1

n∑
i=1

(Ess(t,i)λ(t,i) ≥ Eth) ≤ Ct, ∀, n ∈ iss
}

(9)
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where Ess denotes the energy consumption for all types of appliances using the smart scheduler that are
schedulable throughout the day with some renewable energy (RE) integration (e.g., solar in our case).
The objective function for Class 2 appliances is given as:

Obj = min
tn∑
t=1

n∑
i=1

(Ess(t,i)x(t,i)λ(t,i) ≥ Eth + δtnws
) (10)

s.t.:

Ts ≤ t ≤ Tmax (10a)

Tsch = [T0, Tmax] (10b)

∀, Tlot = [Tlot1 , Tlot2 , Tlot3 , ...Tlotn ] (10c)

Ess ≤ Ct ∀, tn = [t1, t2, t3, ..tn] (10d)

Emax
ss ≤ Ess ≤ Emin

ss (10e)

Essd ≥ Eth ∀, iss (10f)

0 ≤ Eth ≤ Tlot × Emax (10g)

δtnwss
≤ δtnwssmax

(10h)

λss = [0, 1] (10i)

Constraint Equation (10b,c) describes the scheduling horizon of Class 2 appliances, including
appliance waiting time. Appliance maximum and minimum energy consumption limits are given in
constraint Equation (10e). Each of the appliances requires an energy threshold in order to complete
an assigned task as per constraint Equation (10f,g), whereas constraint Equation (10h) indicates that the
appliance waiting time should not exceed the maximum time. Otherwise, users can suffer the maximum
waiting time. Constraint Equation (10d,i) denotes the total energy consumption of schedulable, and
smart interrupted appliances do not exceed the maximum capacity if the appliances are selected for the
scheduling task.

7.3. Class 3

Appliances in this class have fixed energy consumption once they are on. They can be scheduled in
any time slot. However, these appliances have some restrictions for starting at user-specified time slots
for fixed intervals. The remaining operation time will be adjusted by EMC accordingly. Appliances like
the stove, oven, etc., are placed in this class. In order to finish a job, energy consumption should be
greater or equal to the threshold.

Econ =
{ tn∑

t=1

n∑
i=1

(Essd(t,i)λ(t,i) ≥ Eth) ≤ Ct, ∀, n ∈ issd
}

(11)

where Essd denotes the appliances that are schedulable with some starting time delay. Moreover, these
appliances also use an RE source whenever grid energy is limited. The objective function for Class 3
appliances is written as:

Obj = min

tn∑
t=1

n∑
i=1

(Essd(t,i)x(t,i)λ(t,i) ≥ Eth + δtnwssd
) (12)
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s.t.:

Tsch = [T0, Tmax] (12a)

Essd ≤ Ct ∀, tssd = [t1, t2, t3, ..tn] (12b)

Essd ≥ Eth ∀, ssd (12c)

Emax
ssd ≤ Essd ≤ Emin

ssd (12d)

0 ≤ Eth ≤ Tlot × Emax (12e)

λ = [0, 1]. (12f)

Constraint Equation (12a) shows the appliance scheduling horizon with the waiting time bound.
Initially, appliances can be bounded to complete (1 → 3) working cycles consecutively to provide
maximum user comfort. After this, the scheduler adjusts the remaining working cycles in low price
hours to save on the electricity bill. It is clear from constraint Equation (12b) that the total energy
consumption of Class 3 appliances cannot exceed the total capacity Ct limit, which is calculated in each
time slot. Similarly, the appliance minimum energy consumption requirements and maximum energy
consumption are given in constraint Equation (12c–e), while the appliance on/off status is shown in
constraint Equation (12f).

8. Load Optimization and Scheduling

In this section, we discuss the TOU pricing model in which EMC receives the price signal from
the electricity provider (utility). The main objective is to design and simulate an optimization model to
reduce the electricity bill of residential users. To model user comfort, we have considered three types of
appliances, including must run, schedulable having RE storage and schedulable with appliance waiting
time limits. Users can select any appliance type according to comfort and energy requirements. However,
during low price time intervals, users cannot use more electricity than the given threshold. Therefore,
total energy consumption and maximum waiting time for all types of appliances are given as:

Et =
tn∑
t=1

( n∑
i=1

Emr(t,i)λ(t,i) +
n∑

i=1

Ess(t,i)λ(t,i)+

n∑
i=1

Essd(t,i)λ(t,i)

)
≥ Eth +

n∑
i=1

δtnwmax
λ(t,i)

(13)

The daily electricity cost for all types of appliances can be written as:

C =
tn∑
t=1

n∑
i=1

Cclass1 + Cclass2 + Cclass3 − CRE (14)

where C denotes the daily electricity cost of all types of appliances and Cclass1 , Cclass2 and Cclass3

show the electricity cost of each class, respectively. Electricity cost with a renewable energy source is
denoted by CRE . In our proposed scheme, solar plates are used as a renewable energy source, whose
capacity is assumed to be 30 kW. It is clear from Equation 14 that the master problem is decomposed into
sub-problems. It is also noted that all of the sub-problems discussed in Section 4 are convex in nature,
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and we can solve these by using any standard optimization technique (heuristic, non-linear, mixed integer
non-linear). In order to reduce the electrically bill, energy consumption should also be minimized by
considering and satisfying all of the constraints. These types of problems have been a focus of research
during the last decade [38,39]. Generally, based on the above model, the cost saving of any number of
appliances can be unknown and can take any value within the range [costmin

sav , cost
max
sav ]. Here, we assume

that the prudent consumer could desire minimizing the regret of the selected appliances based on the
given cost saving scenario. This problem can be formulated by using the robust generalization of the
knapsack problem [38]. It is assumed that costsav can take any value within the specified limits of each
appliance. Let s be the set of all electricity cost savings costssavn that satisfy the given conditions.

costssavn ∈ [costmin
sav , cost

max
sav ] ∀ n = [t1, t2, t3, ....tn] (15)

Let S be the set of all possible solutions, i.e.,

S =

{
S = (s1, s2, s3, ...sn) :

tn∑
t=1

n∑
i=1

[(E(t,i)x(t,i)λ(t,i) ≥ Eth + δtnw)]

}
∀ E ≤ Ct.

(16)

We denote zs(in) the solution given for scenario s from solution space s ∈ S.

zs(in) =
tn∑
t=1

n∑
i=1

[
(Es

(t,i)x(t,i)λ(t,i) ≥ Eth + δtnw)

]
(17)

where Es
(t,i) denotes the energy consumption solution set s of i appliances, such that [s ∈ S]; similarly,

the energy consumption of all possible solution sets s, where [s ∈ S] can be obtained. Let z∗s(in) be
the optimal solution of the given set of appliances. The regret rs associated with a solution zs(in) by
comparing the optimal solution with the given solution is given as:

rs = z∗s(in)− zs(in) (18)

Let S0 be the set of all possible sets of solutions, and the maximum regret rmax is equal to the sum
over all possible scenarios. Therefore, to provide the user with the maximum possible benefits, maximum
regret must be minimized. The interval min-max regret knapsack problem (K-WDO) is used to find and
minimize the maximum associated regret, given as:

Obj = min max
s∈So

rs(s) (19)

s.t.:

tn∑
t=1

n∑
i=1

E(t,i)λ(t,i) ≤ Ct ∀, t = [t1, t2, t3, ..tn] (19a)

λ(t,i) = [0, 1] (19b)
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8.1. Scheduling Algorithm

For researchers, nature is a wonderful source of imagination and inspiration for solving complex
scientific problems in every domain. There have been different nature-inspired heuristic optimization
algorithms proposed, such as genetic algorithm (GA) [40], differential evolution (DE) [41], particle
swarm optimization (PSO) [42], ant colony algorithm (ACO) [43], cuckoo search (CS) [44], etc.
These algorithms are successfully implemented, and satisfactory results are obtained. However, every
algorithm has some pros and cons, and it is impossible that each algorithm from the nature-inspired
family best solves all types of problems [45].

The WDO is a novel and nature-inspired global optimization algorithm based on the atmospheric
motion of wind particles. Moreover, it is a population-based iterative and heuristic optimization
technique, in which constraints can be implemented in search domains, as compared to other heuristic
algorithms (GA, PSO, etc.). Infinitely small air particles move in an n-dimensional domain using
Newton’s second law of motion, which can also be used to analyse the motion of air particles in the
Earth’s atmosphere. Another major difference between WDO and other heuristic algorithms is additional
velocity update parameters (gravitation and Coriolis forces), which lead to fast convergence [46,47]. Due
to the three-dimensional coordinate system of our atmosphere, gravitational force Fg is a vertical force
acting on the air particles to confine them to the centre.

FG = ρ δV g (20)

The Coriolis force is included in the WDO algorithm due to the fact that the movement of air particles
in the x-direction has a direct effect on the y-direction. Therefore, in the n-dimensional search space,
this phenomenon is randomized. Mathematically, Coriolis force FC can be defined as:

FC = −2(Ω× v) (21)

where Ω and v denote the Earth rotation and velocity vector of the air particles, respectively. Now, it is
clear that during the movement of air particles, the current position and v are updated using Newton’s
second law of motion. In WDO, the position and v of all air particles are updated with every movement
of time. The velocity update equation can be written as:

vnew =
(
(1− α)× vold

)︸ ︷︷ ︸
1

− gxold︸︷︷︸
2

+

[∣∣∣∣Pmax

Pold

− 1

∣∣∣∣RT (xmax − xold)
]

︸ ︷︷ ︸
3

−
[
c× vold
Pold

]
︸ ︷︷ ︸

4

(22)

where the details of Equation (27) are given as follows:

1. The first term shows that the air particles continue their movements to the previous path with some
opposition of frictional force.

2. The second term is gravitational force, which attracts the air particles to the centre (in the
coordinate system).

3. The third term describes the force exerted on air particles to move them towards the highest
pressure location, which is the global best position in the WDO optimization problem.
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4. The fourth term shows the Coriolis force, which is a deflecting force, because the movement of air
particles in one direction is affected by the movement in the second direction. Similarly, in PSO,
weights w1 and w2 are used to control the movement of air particles in order to find the global
best position.

The variables used in the velocity update equation and WDO algorithm are given in Table 2. The
pressure term used in the WDO algorithm is similar to the fitness term used in GA or PSO. However, the
WDO algorithm consists of infinitely small air particles moving towards the highest pressure point in
the n-dimensional search space. The new position of the air particles can be obtained after the velocity
update (Equation (27)).

xnew = xold + (vnew ×∆t) (23)

Table 2. Symbols used in the wind-driven optimization (WDO) and PSO algorithms.

Symbol Description Symbol Description

vnew new velocity v velocity vector of air particles
vold current velocity Fc Coriolis force
xcurr current position Ω Earth rotation
xopt optimal position ρ density of air particles
Pold pressure at current location Vg vertical force on air particles
Popt optimal pressure Fsig sigmoid function
Ω× v Coriolis force pgb local best position
α constant in update position δV volume of air
R universal gas constant Fsphere sphere function
v velocity of air particles ω inertia factor
Fg gravitational force of the Earth n total No. of air particles (Equation (23))
g gravitational acceleration T temperature
∆t unit step time vi,n velocity of the i-th particle in n-dimensions
c1andc2 weights for local and global positions plb local best position

Table 3. Convergence comparison of the WDO and PSO algorithms.

Algorithm Evaluation Function No. of Iterations Global Pressure/pgb Converge

WDO Sphere 204 0 Yes
WDO Step 500 0.6616 No
PSO Sphere 500 9.069−6 No
PSO Step 370 0 Yes

8.1.1. Population Evaluation Functions

To evaluate the performance of the WDO algorithm, different population evaluation functions
(e.g., sphere, Ackley, Rastrigin, rotated hyper ellipsoid, step function) can be used and are defined
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in [47,48]. Each function has different properties and parameter ranges based on which performance
is measured. In our proposed scheme, we use a modified sphere function as defined in [47] for the
evaluation of initial random population generation. Moreover, the convergence time of the WDO
algorithm using sphere and step functions is evaluated and compared to the PSO algorithm (Table 3).
The sphere function given in [47] is:

Fsphere =
tn∑
t=1

n∑
i=1

[
(x(t,i) − 2)

]2
, ∀ xi ∈ [−1,+1] (24)

The function used in our algorithm can be written as:

Fsphere =
tn∑
t=1

n∑
i=1

x(t,i))
2, ∀ xi ∈ [−1,+1] (25)

The step function can be defined as:

Fstep =
tn∑
t=1

n∑
i=1

[
(x(t,i) + 0.5)2

]
, ∀ xi ∈ [−1,+1] (26)

where Fsphere and xi denote the global optimal value and position of the air particle, respectively. These
two functions are evaluated under the parameter values given in Tables 4 and 5. Alternatively, PSO
is also a widely-used heuristic algorithm, because of its low complexity and ease of implementation,
as compared to WDO. One of the major reasons for the low complexity is due to the lesser number
of variables involved, as shown in Table 5. In PSO, population is initialized randomly, which
moves in the n-dimensional search space X(i,t) = [x(i1,t1), x(i2,t2), x(i3,t3).....x(in,tn)] with velocity
Vi,t = [v(i1,t1), v(i2,t2), v(i3,t3).....v(in,tn)]. After initialization, particles move with some randomness in
order to avoid premature convergence, as shown in Equation (32). The velocity v(i,n) of each particle is
updated using the following equation [47].

v(i,n) = ωvt(i,n) +
(
c1rand(1)× (ptlb(i,n)

− xt(i,n))
)

+
(
c2rand(1)× (ptgb(i,n)

− xt(i,n))
)

(27)

where c1 and c2 are weights for local plb(i,n)
and global best pgb(i,n)

positions, rand(1) is a random variable
whose range is [0, 1] and the ω is the inertia factor. The value of the ω is calculated as:

ω = ωi + (ωf − ωi)×
(
i− thiter
maxiter

)
(28)

The position xi,n of the particles is updated using the following equation.

x
(t+1)
(i,n) = xt((i,n)) + v

(t+1)
(i,n) (29)

In our case, we are using the binary version of WDO and PSO; we first convert the V into binary form
using a sigmoid function.

Fsig(v(i,n)) =
1

1 + e−v(i,n)
(30)
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where v(i,n) is the velocity of the i-th particle in n-dimensions. The final binary value of zero or one
is generated after comparing the values obtained from the sigmoid function and a random variable, as
given below.

X t+1
(i,n) =

 1; if F(sig) v
t+1
(i,n) ≥ rand(i,n)

0; otherwise

It is clear from the above expression that binary conversion is probabilistic, because every v(i,n) value
is compared to a random number, which can create disturbance in the optimal value or convergence
as shown in Table 3. On the other hand, in Equation 27, random term involvement is completely
neglected, which provides more accurate results. The control variables involved in the PSO algorithm
are given in Table 5. Figure 3 shows the convergence comparison of the WDO algorithm with sphere
and step functions. It is clear from Figure 3 that the WDO algorithm converges after 204 iterations,
resulting in zero pressure; while the WDO algorithm diverges even after 500 iterations, which shows the
effectiveness of WDO algorithms using the sphere function. In Figure 4, the PSO algorithm converges
after 370 iterations when using the sphere function. On the other hand, the PSO algorithm is unable
to achieve convergence, even after 500 iterations. Thus, due to the fast convergence, we use the WDO
algorithm with the sphere function for initial population evaluation in our proposed technique.
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Figure 3. Convergence comparison of the WDO algorithm using sphere and step functions.
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Table 4. Control parameters for the WDO algorithm.

Parameter Value Parameter Value

Particle Size 10 RT-coefficient 3
No. of Iterations 500 Gravitational const 0.2

Max-V 0.4 Coriolis effect 0.4
Dimensions [−1, +1] α 0.4

Table 5. Control parameters for the PSO algorithm.

Parameter Value Parameter Value

Particle Size 10 c1 2
No. of Iterations 500 c2 2

Max-V 0.3 wi 1.0
Dimensions [−1, +1] wf 0.4

The WDO creates random solutions of n number of populations (air parcels). Each population
consists of a set of different numbers of variables. After evaluating the fitness function, constraint
validations and the velocity update, we can obtain the new population that includes both the new and
old air parcels. In the next phase, the fitness of the new population will be evaluated and compared to
the previous one. Finally, we obtain the final optimal appliance scheduling pattern. Then, in the next
step, after obtaining the energy consumption requirements of each appliance, the WDO algorithm first
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checks the appliance class. If the first appliance class is selected, the scheduling algorithm performs the
appliance scheduling without considering appliance waiting time and renewable energy. In this way, the
electricity bill is minimized with less user comfort. Alternatively, if appliance Class 2 is selected, the
WDO algorithm performs the scheduling by incorporating renewable energy. Lastly, if appliance Class 3
is selected, scheduling is performed to increase the user comfort along with electricity bill cost reduction.
After this step, the algorithm checks the current time slot, so that scheduling can be performed for the
next time slot. Otherwise, the next cycle for all types of appliances will start. In the proceeding step, if
the energy consumption is within the threshold limits, the results are stored for graphical representation.
Otherwise, the whole process will be repeated to achieve the cost-effective results. In order to best
describe the working of the proposed algorithm, optimization and scheduling steps are given in Figure 5.

Figure 5. Scheduling algorithm.
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9. Peak-to-Average Ratio

The energy consumption of a single smart appliance at different time intervals can be written
as follows:

E =
n∑

i=1

(Eixiλi) (31)

The daily energy consumption for 24 time slots is given as:

E =
tn∑
t=1

n∑
i=1

E(t,i)x(t,i)λ(t,i) (32)

Now, for a single user, PAR can be calculated by dividing the maximum energy consumption by the
average energy consumption in a specific time slot as:

PAR = maxload

averageload
(33)

For n number of users, the overall objective function is to minimize the PAR:

Obj minPAR =

∑n
n=1maxload

1
T

∑n
n=1 averageload

(34)

10. Simulation Results and Discussion

In this section, we describe the simulation results and the discussion for the validation of our
proposed energy management algorithms in the TOU pricing environment. We consider a single
household with various types of appliances having variable energy consumption requirements. EMC
is installed inside the home, which directly takes energy price signals from the utility company via the
smart meter. Based on appliance energy consumption and user comfort requirements, EMC transmits
the energy-efficient schedules to all types of appliances via the two-way communication module.
Widely-used communication protocols, such as ZigBee, Wi-Fi, Bluetooth, etc., are used for this purpose.
For the sake of simplicity, we assume six appliances that are mainly used in a normal household. All
appliances are controlled and operated automatically. Each appliance has different lengths of operation
time and starting time bounds. We consider scheduling time horizon T = 24 h, so that the user can solve
the optimization problem to calculate the overall electricity bill. We simulate different scenarios for
electricity cost saving and user comfort perspectives. For the WDO algorithm, the initial population size,
the number of bits, etc., are shown in Table 4. Simulations are conducted in MATLAB. Some appliances
can be used more than once by the residential users during 24 h. However, these appliances are shiftable
throughout the time slots of a day. Table 1 shows the total appliances, energy consumption and operation
intervals. Initially, we simulate WDO for all types of appliances without taking into account the capacity
constraints and then simulate K-WDO. As discussed earlier, the TOU pricing signal is used, which is
shown in Figure 6, and obtained from the New York ISOwebsite. Appliance energy consumption data
are obtained from [49].
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Figure 6. Time of use (TOU) signal.

10.1. Electricity Cost vs. Appliance Waiting Time

To achieve a lower electricity bill, smart users must operate all appliances according to the optimal
schedules given by EMC. During the scheduling horizon, the start time of any appliance cannot be
fixed due to the price variation in each hour. Therefore, the scheduling algorithm adjusts the starting
time of those appliances that are categorized from the maximum cost saving perspective. However, this
mechanism can save electricity cost, but can eventually disturb the end user lifestyle. Alternatively,
the appliance scheduling algorithm can be designed to maximize the user comfort, but at maximum
electricity cost. Therefore, these two objectives are contradictory and difficult to achieve simultaneously.
The WDO algorithm is designed for those customers who are more conscious about electricity bill saving
and can compromise on comfort. In Figure 7c,f, the clothes dryer and air-conditioner are scheduled for
maximum electricity cost saving. In Figure 7c, the working of almost every appliance is rescheduled
to the time slots having low electricity price. Bars with a greater width denote the user-specified time
slots, while, bars with a smaller width show the rescheduled time slots and total number of operating
hours. It is clear from Figure 7b that the air-conditioner does not start working immediately due to the
high electricity price, and its working is rescheduled by EMC. Alternatively, starting the air-conditioner
immediately can add high electricity cost. Therefore, we cannot start the working of all of the appliances
immediately due to the capacity constraint to avoid high peaks on the grid side. In Figure 7b,d,
appliances are scheduled along with starting time bounds and the RE source to increase the user comfort.
Appliances turn on immediately after the scheduling process starts and after one hour of working, EMC
reschedules the remaining working hours when the electricity prices are low. It is clear that the average
appliance waiting time of the tumble dryer is low compared to the clothes dryer and air-conditioner.
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Figure 7a,e has starting time limits and shows scheduling without an RE source. The working of
the microwave oven is rescheduled after completing the first three hours consecutively in order to
provide user comfort, while the electric stove completes only the first hour, with the remaining hours
rescheduled by EMC. Equation (1) gives the average waiting time of an appliance where the waiting time
is inversely proportional to the electricity cost. If the price increases, the waiting time decreases, and vice
versa. Therefore, we design the scheduling algorithms having minimum electricity cost and appliance
waiting time.
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Figure 7. (a) Appliance I starting time; (b) Appliance II starting time; (c) Appliance III
starting time; (d) Appliance IV starting time; (e) Appliance V starting time; (f) Appliance
Istarting time; appliance staring time of the unscheduled and scheduled cases.

10.2. Electricity Cost vs. Electricity Price

Figure 8 shows the electricity cost comparison of the WDO and PSO algorithms in the scheduled and
unscheduled cases, respectively. It is clear form Figure 8 that EMC optimizes the energy consumption of
home appliances by scheduling in low pricing time slots. During hours (0→ 6), the scheduled electricity
costs of both the PSO and WDO algorithms are comparatively the same, because EMC schedules the
appliances according to the low pricing slots without taking into consideration the maximum capacity
limit. During high price hours (6 → 10), the electricity cost of the PSO algorithm is high, as compared
to the WDO algorithm, because EMC schedules a greater number of appliances during these time slots.
During mid-peak hours (11 → 15), a greater number of appliances are turned on by the PSO algorithm
as compared to WDO, so the electricity bill is higher. The remaining working cycles of all of the
appliances are completed during low price hours (15 → 25). It is clear that almost the electricity bill
is the same during these hours. In Figure 9, the K-PSO algorithm schedules all appliances from hours
(0→ 24). During high peak hours (7→ 10), a greater number of appliances are turned on as compared
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to the WDO algorithm, which does not turn on any appliances in these hours in order to save on the
electricity bill. The remaining working cycles of appliances in the K-WDO case are completed during
(15 → 24) h. This is because during hours (6 → 10), electricity prices are high, and the scheduler
adjusts the working of all appliances to other time slots to save electricity cost. To sum up, we conclude
that by using the K-WDO algorithm, electricity cost and high peaks are effectively reduced, which are
useful in stabilizing the electric grid with user benefits.
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Figure 8. Electricity cost comparison of using the WDO and PSO algorithms.
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Figure 9. Electricity cost comparison of using the knapsack WDO (K-WDO) and
K-PSO algorithms.

10.3. Energy Consumption

In Figure 10, the energy consumption of appliances in the WDO algorithm is low during (0 → 3) h,
while, appliances consume more energy with the PSO algorithms. During high peak hours (7 → 10),
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appliance energy consumption in the PSO case is comparatively low with respect to the WDO algorithm.
During hours (10→ 24), the average energy consumption of both the scheduled and unscheduled cases
is the same. While, Figure 11 shows some variations in energy consumption during high and low peak
hours, during low peak hours (0 → 7) and (11 → 25), the K-WDO algorithm schedules most of its
appliances for a low electricity bill; while electricity prices during (6 → 10) h are high and the K-PSO
algorithm schedules a greater number of appliances in these time slots. On the other hand, the K-WDO
algorithm does not turn on any appliance during high peak hours and utilizes the low peak time slots
to complete working cycles. In conclusion, we observed that the K-WDO algorithm more effectively
reduces the energy consumption by optimally scheduling the appliances in low and mid-peak hours.
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Figure 10. Energy consumption comparison of the PSO and WDO algorithms.
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10.4. PAR Reduction

We start by discussing the resulting PAR reduction in the total residential load when we use our
proposed energy management algorithm. Generally, residents want to reduce their total electricity
bill, while the utility is interested in providing balanced energy supply. Figure 12 clearly shows that
our proposed algorithm is helpful in reducing total PAR and balancing the energy consumption by
considering capacity constraint Ct. It is also clear from Figure 12 that the K-WDO algorithm reduces
the PAR by8.3% due to the optimal scheduling of home appliances in low price hours without creating
congestion, while the K-PSO algorithm reduces the PAR by 6.97%.

8.37 %

3.96%

6.97%

3.64%

Figure 12. Total peak-to-average ratio (PAR) reduction comparison of the WDO and PSO
algorithms for a simple household based on the TOU price signals adopted from NYISO.

Figure 13. Electricity cost comparison of the WDO and PSO algorithms.
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10.5. Electricity Cost with Renewable Sources

Figure 13 shows the electricity cost comparison of both the WDO and PSO algorithms and their
variants with the RE source. In our proposed work, we assume that we have RE storage, and EMC can
use either RE or grid energy. During each time interval, if the RE is greater than the aggregated energy
required to complete a task, the scheduler utilizes RE energy only. Otherwise, if the required energy is
greater than the available RE capacity, EMC will use both the RE, as well as the grid’s energy. Therefore,
the electricity cost using the RE source is comparatively less.

11. Conclusions

In this paper, we have proposed an energy demand management model based on the WDO and PSO
algorithms to reduce the electricity bill and high peaks by preserving the user comfort within acceptable
limits. As compared to other DSM algorithms, the WDO-based algorithms have a modified appliance
scheduling mechanism, which considers electricity cost, high peaks and user comfort requirements.
Moreover, different classes of appliances are taken into account having different comfort constraints.
Based on extensive simulations, it is clear that the WDO algorithm is efficient in terms of appliance
waiting time and electricity bill reduction as compared to the PSO algorithm, which has high convergence
time. On the other hand, the K-WDO algorithm is useful in reducing the electricity bill by optimal
scheduling of the home appliances. We have analysed the performance of the proposed algorithms in
different scenarios where appliance types Ts, Tf and Tlot are changed. Finally, the results of WDO
algorithms are compared to PSO, and the achievements for electricity costs are given in Table 6.

In the future, we plan to apply and compare the performance of these algorithms by considering user
activities and solar energy forecasting in a particular region. Different user activity models using raw
sensor data will be constructed, based on which working cycles of different appliances will be scheduled.

Table 6. Electricity cost comparison.

Algorithms
Unscheduled
Cost (Cents)

Scheduled
Cost (Cents)

Saving
% Age

Scheduled Cost
+ RE (Cents)

Saving
% Age

K-WDO 2390 1629 31.85 1457 39.04
WDO 2390 1842 22.93 1620 32.22

K-PSO 2390 1867 21.89 1756 26.16
PSO 2390 2003 16.20 1753 26.66
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Nomenclature

Symbol Description Symbol Description

Tf appliance finishing time Ton appliance scheduled on time
T0 initial appliance starting time δtnw appliance waiting time
Tlot length of operation time T total time horizon
Econ energy consumption of appliance Eth energy consumption threshold
Emin

con minimum energy consumption Ess energy consumption using scheduler
Emax

con maximum energy consumption Essd energy consumption with delay
Emr energy consumption of must run appliances Emax

con maximum energy consumption
Tsch scheduling horizon Ts unscheduled appliance starting time
Et total energy consumption λa boolean variable for on/off status
Costssavn

set of electricity cost saving for appliance n Costmin
sav minimum electricity cost saving

Costmax
sav maximum electricity cost saving S set of all possible scenario

S0 set of all possible solutions zs(in) given solution
z∗s(in) optimal solution rsmax maximum regret
Ct total energy capacity C electricity cost
CRE electricity cost with renewable energy source rs associated regret of solution s
maxload maximum electricity load averageload average electricity load
x(t,i) energy unit price δt small change in time
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