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Abstract: This paper introduces a confidence measure scheme in a bimodal camera
setup for automatically selecting visible-light or a thermal infrared in response to natural
environmental changes. The purpose of the setup is to robustly detect people in
dynamic outdoor scenarios under very different conditions. For this purpose, two efficient
segmentation algorithms, one dedicated to the visible-light spectrum and another one to the
thermal infrared spectrum, are implemented. The segmentation algorithms are applied to
five different video sequences recorded under very different environmental conditions. The
results of the segmentation in both spectra allow one to establish the best-suited confidence
interval thresholds and to validate the overall approach. Indeed, the confidence measures
take linguistic values LOW , MEDIUM and HIGH , depending on the reliability of the
results obtained in visible-light, as well as in thermal infrared video.
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1. Introduction

Visual monitoring, including people detection, tracking, recognition and activity interpretation [1],
is a key component of intelligent video surveillance systems [2,3]. The contribution of a camera
to the observation of a scene depends on its viewpoint and on the scene configuration. This is a
dynamic property, as the scene content is subject to change over time. There are two major types of
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security cameras when setting up a security system: visual-light (or color) and thermal infrared sensors.
Recently, the robustness of a new thermal infrared pedestrian detection system has been investigated
under different outdoor environmental conditions [4]. This paper offers a step forward towards enhancing
the performance of visual monitoring systems by adding a visual-light sensor.

After studying different visual sensors, it is commonly concluded that the advantages and
disadvantages are complementary in using visual-light and thermal infrared spectra. On the one hand,
although the information obtained from an infrared camera is useful for detecting humans in nocturnal
environments, it presents severe problems in other environments [5]. This is the case for hot or
thermally homogeneous environments. Moreover, visible-light yields good results when conducting
human detection in well-lit environments, but it is problematic in dark environments or in areas of the
scene that present shadows or have low visibility in general. In order to enhance the performance of
people monitoring, some researchers are performing image fusion by using visible and infrared images
together [6]. However, the fusion of thermal infrared and visible images is not trivial [7]. This is why
there has been a growing interest in visual surveillance using multimodal sensors, such as thermal and
visible cameras, in both civilian and military applications [8].

This paper introduces a proposal based on confidence measures in a bimodal visual sensor setup for
automatically selecting visible-light or thermal infrared in response to natural environmental changes.
The purpose of the setup is to robustly detect people in dynamic outdoor ambiences. The rest of the
article is organized as follows. Section 2 describes the work related to robust people detection in
visible-light and thermal infrared video. Then, Section 3 introduces our proposal based on confidence
measures to automatically select between visible-light and thermal infrared sensor. After that, two
efficient segmentation algorithms, one for the visible-light spectrum and another one for the thermal
infrared spectrum, are introduced in Section 4. In Section 5, the segmentation algorithms are applied
to five different video sequences recorded under very different environmental conditions in a bimodal
sensor setup. The results of the segmentation in both spectra allow one to establish the most suited
confidence thresholds and values. Finally, some conclusions are provided in Section 6.

2. Related Work

To date, a widespread approach for detecting pedestrians is the single use of grey scale [9] and color
information [10–12]. In the approach in [13], the scene background is dynamically adapted by filtering
elements, such as shadows, specular reflections, etc., that appear after usual background subtraction
algorithms. Another proposal uses histograms of oriented gradients to perform an initial step in human
detection [14]. These detections are classified by means of support vector machines (SVMs). The most
interesting contribution is the description of opponent color space as a biologically-inspired alternative
to detect humans. The authors demonstrate that their method achieves superior results compared to the
equivalent segmentation using the RGB color space. However, using visible-light information is usually
problematic when facing changes in lighting in a scene or when there are illumination problems in a
scene, such as fog or zones covered by darkness.

Images in the thermal infrared spectrum show a set of differentiating features compared with visible
spectrum camera frames [15–17]. The grey level value of objects in infrared stems from their temperature
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and radiated heat and does not depend on the illumination. When adopting a people detection algorithm
in the thermal infrared spectrum, heat is taken into account, as people appear warmer than other elements
in the scenario. Nonetheless, this is not always true [5]. This is usually faithfully fulfilled in winter and
at night. In addition, due to the technological limitations of infrared cameras, many infrared images have
low spatial resolution and lower sensitivity than images of the visible spectrum. The limitations usually
result in a large number of image noise and low image quality.

Many approaches combine the properties of appearance and shape in this spectrum. Indeed, humans
are initially segmented from their appearance (they generally look brighter than other objects in the
scene) and filtered and sorted on a shape basis. For instance, in [16], human candidates are initially
detected by a thresholding procedure, using the previously described idea. The candidates found are
decomposed into a series of layers using wavelets. Their features are then extracted through the use
of high-frequency bands. Finally, human regions are classified by an SVM. Even so, there remains
some problems to solve at the time of performing an accurate segmentation of humans, such as, for
instance, the appearance of halos that decrease accuracy when defining the outlines of the silhouettes or
problems that arise in situations where the temperature of objects and persons present in the scene are
quite homogeneous. In [18], these problems are addressed using a histogram-based segmentation, where
vertical and horizontal adjustments are realized in human candidate regions. Two different alternatives
are established for winter and summer conditions. While grey value levels are used in the former to
delimit humans, intensity changes in the human limits are searched for in the latter.

In order to take advantage of the strengths of both visible-light and thermal infrared sensors,
some image fusion techniques are arising. In this sense, a background-subtraction technique that
fuses contours from thermal and visible imagery for persistent object detection in urban settings
is presented [19]. Statistical background subtraction in the thermal domain is used to identify the
initial regions-of-interest. Color and intensity information are used within these areas to obtain the
corresponding regions-of-interest in the visible domain. The objective of another work is to authenticate
individuals based on the appearance of their faces [20]. The main novelty is an algorithm for the
decision-level fusion of two types of imagery: one acquired in the visual and one acquired in the infrared
electromagnetic spectrum. Very recently, a new method based on a nonsubsampled contourlet transform,
has been proposed to fuse the infrared image and the visible light image [21]. Furthermore, an adaptively
weighted infrared and visual image fusion algorithm has been developed based on the multiscale top-hat
selection transform [22].

Some other proposals do not use image fusion, but use multimodal camera setups. The problem turns
now into a camera selection process, as recently described in [23]. The advantages of jointly using a
thermal camera and a visible camera without fusion have been studied and discussed extensively in a
few works, such as [24]. The two main benefits of the joint use of thermal and visible sensors are first
the complementary nature of different modalities that provides the thermal and visible-light information
of the scene and, second, the redundancy of information captured by the different modalities, which
increases the reliability and robustness of a surveillance system. Moreover, the joint use of multiple
imaging modalities is one means of improving some of the quality measures of the input data, in hopes
of ultimately improving overall system performance [24]. Furthermore, a selection method based on a
partially observable Markov decision process model has been introduced [8]. Additionally, an innovative
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evaluation function identifies the most informative of several multi-view video streams by extracting
and scoring features related to global motion, the attributes of moving objects and special events, such
as the appearance of new objects. In another paper, also a multi-camera video surveillance system
with automatic camera selection is presented [25]. A confidence measure, quality-of-view, is defined to
automatically evaluate the camera’s view performance for each time instant.

By leveraging the relative strengths of reflective and emissive modalities, bimodal sensor systems are
capable of operating throughout any known environmental conditions.

3. Visible-Light and Thermal Infrared Confidence Measures

Our aim is to detect people robustly under dynamic circumstances through automatically choosing
between a visible-light and a thermal infrared sensor in a bimodal camera setup. To accomplish this
purpose, we introduce a series of so-called confidence measures. The confidence measures are set for
each spectrum based on some relevant features of the frames acquired by each kind of camera. The
frame features used are the mean illumination and the standard image deviation in the thermal infrared
spectrum, while the average grey level value is the main cue in the visible-light spectrum.

A scheme for how the confidence measures are set up in both spectra is shown in Figure 1. The top
of Figure 1 shows a division into three different zones (intervals) separated by two thresholds, ζV L and
ζV H , which establish the confidence measures in the visible-light spectrum. CV is the confidence value
in the visible spectrum and takes the linguistic values HIGH and LOW . Notice that a MEDIUM

confidence value is not used in the visible-light spectrum. IG is the average grey level value of the input
frame in the visible spectrum.

Figure 1. Set up of the confidence measures.
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The bottom of Figure 1 offers three possibilities for assigning confidence intervals in the thermal
infrared spectrum. Notice that the confidence value in the thermal infrared, CIR, is directly affected by
the confidence value established in the visible-light spectrum. Firstly, for CV = LOW (there is a low
reliability on the results obtained by the visible camera), CIR takes the two different values, HIGH
and MEDIUM . The reason is the following. When the confidence value of the visible-light spectrum
is set to LOW , it is clear that the visible-light sensor is almost unable to distinguish humans. This is
why the infrared spectrum is always forced with a confidence value above LOW . Indeed, under this
circumstance, the infrared sensor always works better than the visible-light one. On the other hand,
when CV = HIGH , CIR takes the three possible values, HIGH , MEDIUM and LOW . This means
that, when the detection in visible-light offers good results, the detection in thermal infrared can be very
worse or worse, but sometimes equal or even better.

Next, the setup of the confidence measures is explained in more detail.

3.1. Visible-Light Confidence Measures

The average or mean grey level value of visible-light image IV is the basis for establishing the
confidence intervals in the visible-light spectrum. In order to improve the invariability from the camera
settings, the color image IV is transformed into a grey level image IG.

Let us firstly consider the left confidence interval at the top of Figure 1. A low average of IG means
that the image is captured under poor lighting conditions, making any object (including humans) hard
to distinguish from the rest of the scene, just as shown in Figure 2a. The thermal infrared equivalent of
this frame is shown in Figure 3b. On the other hand, consider the right confidence interval at the top
of Figure 1. A very high grey level mean value denotes that it is snowing or the environment is under
fog conditions (as depicted in Figure 2c). Regardless, we can be in a situation where a lighting source
directly pointing toward the camera is blinding it. Therefore, the visible camera is unable to distinguish
anything in the scene. Lastly, an intermediate grey level mean indicates that the lighting conditions in the
scene are adequate and that humans are easily distinguished. This is depicted as the central confidence
interval at the top of Figure 1. An example of this situation is shown in Figure 2b.

Figure 2. Different confidence values for the visible spectrum. (a) Visible-light image with
a low confidence value in night conditions; (b) visible-light image with a high confidence
value; (c) visible-light image with a low confidence value in fog conditions.
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Figure 3. Different confidence values for the thermal infrared spectrum. (a) Thermal
infrared image with a low confidence value; (b) thermal infrared image with a medium
confidence value; (c) thermal infrared image with a high confidence value.

Equation (1) shows how the reliability is established in the visible spectrum (denoted as CV ), with
thresholds ζV L and ζV H fixed experimentally, since the grey level values of the elements in the scene
determine the conditions where the visual spectrum is trustworthy and also where it is not reliable.

CV =


HIGH, if ζV L < IG < ζV H

LOW, otherwise
(1)

3.2. Thermal Infrared Confidence Measures

The illumination mean and the standard deviation provide very useful information about the contrast
of an image in the thermal infrared spectrum. Since infrared sensors are designed to distinguish humans
from the background, supposing that they usually appear warmer, this information is key to establishing
the sensors’ reliability in environmental conditions that satisfy this condition, i.e., in sequences where
the human’s temperature is higher than the environment’s.

Let us define the contrast υIR as the coefficient between the average grey level value IIR of infrared
image IIR and its standard deviation σIIR , just as shown in Equation (2).

υIR =
IIR
σIIR

(2)

An image with a high grey level mean and a low standard deviation denotes that a large number
of pixels have similar values, making humans hard to distinguish from the background. An example
of a frame with these features is shown in Figure 3a (with the equivalent visible-light frame shown in
Figure 2b). On the other hand, an image with a great standard deviation and a low mean value has a small
number of pixels with high grey level values and the rest of them with low values. The high value pixels
usually correspond to humans. An example of a frame with this situation is shown in Figure 3c. The
intermediate case where humans are distinguished from the background not as clearly as in the previous
situation can be appreciated in Figure 3b.

As mentioned before, we are in front of two possibilities when considering the confidence intervals
in the thermal infrared spectrum. Firstly, we consider the case when the confidence in the visible-light
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spectrum is HIGH . Here, the equation for establishing the reliability of the frames in the infrared
spectrum (denoted as CIR) is shown in Equation (3), where thresholds ζIRH and ζIRL are experimentally
established, since they are dependent on the particular heat distribution of the test scenario.

CIR =



HIGH, if (CV = HIGH AND υIR < ζIRL)

MEDIUM, if (CV = HIGH AND ζIRL < υIR < ζIRH)

LOW, if (CV = HIGH AND υIR > ζIRH)

(3)

As previously mentioned, the thermal infrared confidence measures take on great importance when
the confidence value in the visible-light spectrum is LOW . An example of this situation is seen in
Figure 2a for the visible-light camera and in Figure 3b for the infrared camera, where it can be
appreciated that the human is still hard to distinguish, but more easily than in the visible spectrum. Thus,
the thermal infrared confidence values at night (and also under bad atmospheric conditions) are restricted
to MEDIUM and HIGH , with a new threshold ζIRN used to separate both values, as shown in
Equation (4).

CIR =


HIGH, if (CV = LOW AND υIR < ζIRN)

MEDIUM, if (CV = LOW AND υIR > ζIRN)

(4)

4. People Segmentation

The main features of each spectrum, exploiting their properties, are used to develop robust human
segmentation algorithms. Thus, the thermal difference between the humans and their environment is
a cue used in the thermal infrared spectrum, and the information provided by the color in the scene is
exploited in the visible-light spectrum. Next, two segmentation algorithms are described. The first one,
designed for thermal infrared video, is based on frame subtraction, whereas the second one, to be used
in the visible-light spectrum, is based on background subtraction.

4.1. People Detection in Thermal Infrared Based on Frame Subtraction

We implemented a single-frame-based human detection system similar to what was described in [26].
First, a set of human candidates are extracted from the scene, using the thermal information contained
in the frame. The size and location of these initial candidates is then refined. Lastly, potential false
positives that may have appeared in the algorithm are eliminated.

However, there are some environmental conditions that may adversely affect the visual contrast in
the infrared spectrum. For instance, people are very difficult to detect in hot environments, where the
ambient temperature is similar to the human one. An illustration of this fact is shown in Figure 4. The
human being that is hard to see stands out manually. However, if the motion information is used from the
video, humans are easily detected, since they do not remain still over long periods of time. Therefore,
an extension for the human detection based on a single frame is developed using the motion information
in the scene.
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Figure 4. An example of a human being hard to detect in the thermal infrared spectrum.

While the list LSF of humans obtained from detection based on a single frame is used, information
from two new stages is added to the previous list. A new phase, called frame subtraction analysis, is
introduced in this extension in order to take advantage of the motion information in the scene. The
results LMOV from this new stage are later refined into a new list LS , which will be joined with the list
LSF in order to reduce the number of false negatives in the scene.

4.1.1. Frame Subtraction Analysis

The previous image IIR(x, y, t − ∆t) and the current one IIR(x, y, t) are used. Image subtraction
and thresholding are performed on these frames, as shown in Equation (6), where θsub is experimentally
fixed as 16% of the maximum value of a 256 grey level image. This binarized image is combined
with the image Ic (obtained during the stage based on a single frame after an initial thresholding
and morphological filter of IIR) by an “AND” operation, obtaining binary image Isc. This way, false
positives due to small illumination changes are discarded, by ensuring that the zones with motion have
also warm heat concentrations similar to humans. Regions-of-interest (ROIs) with an area superior to
Amin (calculated as shown in Equation (5)) and with a percentage of pixels set to MAX greater than a
rate threshold ψ (experimentally fixed at a 5% of the area of the ROI) are extracted from Isc in the list of
blobs LMOV . Notice that AIc is the area of image Ic.

Amin =
AIc

400
(5)

Is(x, y) =

 max, if |IIR(x, y, t)− IIR(x, y, t−∆t)| > θsub

min, otherwise
(6)

4.1.2. Refinement of Human Candidate Blobs

In the next stage, ROIs obtained from the blobs in LMOV are vertically and horizontally delimited in
the same way as the ROIs are refined in the human detection based on a single frame. Human candidates
are then enlisted in a list Ls. This list is finally checked along with Lc (obtained from human detection
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based on a single frame) to remove redundancies encountered in both lists. This way, humans that can
only be found through motion information are added to the initial algorithm. These humans are enlisted
into the final list LSUB .

4.2. People Detection in Visible-Light Based on Background Subtraction

A human detection system using a classic background subtraction approach is also implemented and
tested, adapted from [27]. After performing an adaptive Gaussian background subtraction, the resulting
image is binarized and filtered with a series of morphological operations. Finally, blobs with human
shapes are extracted from the binarized image.

4.2.1. Gaussian Background Subtraction

An adaptive Gaussian background subtraction is performed on input image IV obtained from the
visible-light camera, as shown in Figure 5a. The subtraction is based on a well-known algorithm [28].
The algorithm builds an adaptive model of the scene background based on the probabilities of a pixel
having a given color level. The authors begin their estimation of the Gaussian mixture model of the
background by expected sufficient statistics update equations with a learning rate ϱ, then switch to
L-recent window version when the first L samples are processed. The expected sufficient statistics
update equations provide a good estimate at the beginning before all N samples can be collected. This
initial estimate improves the accuracy of the estimate and also the performance of the tracker, allowing
fast convergence on a stable background model. The N -recent window update equations give priority
over recent data; therefore, the tracker can adapt to changes in the environment.

Shadow removal is performed by the comparison of a non-background pixel against the current
background components. If the difference in both chromatic and brightness components are within
some thresholds, the pixel is considered as a shadow. With this objective, an effective computational
color model similar to the one proposed by [29] is used. An example of the background model is
shown in Figure 5b. A shadow detection algorithm, based on the computational color space used in the
background model, is also used. After the background segmentation is performed, an initial background
segmentation image (IB is obtained, as shown in Figure 5c).

4.2.2. Removal of Image Noise

However, the resulting image contains some noise, which must be eliminated. Thus, an initial
threshold θ0 is applied, as shown in Equation (7), where min is fixed to zero (since we are obtaining
binary images) and max is the maximum grey level value that a pixel can have in IB (e.g., 255 for an
eight-bit image). The value of this threshold will be experimentally fixed according to the features of the
image. The result is shown in Figure 5d.

ITh(x, y) =

 min, if IB(x, y) ≤ θ0

max, otherwise
(7)

After this operation, two morphological operations, namely opening and closing, are performed to
eliminate the remaining noise of the image, obtaining IS .
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Figure 5. Stages of the background segmentation algorithm. (a) Original input frame;
(b) background model calculated; (c) foreground image calculated; (d) foreground image
after binarization; (e) ROI extracted from the original image; (f) final result.

4.2.3. Detection of Human Candidate Blobs

Now, human candidates must be extracted from IS . Blobs with an area AR (see Equation (10)) lower
than an areaAminBS are discarded, while a series of restrictions similar to the human detection based on a
single frame in the thermal infrared spectrum are imposed on the remaining ones, establishing an ROI for
each blob detected. Let us remind ourselves that an ROI is defined by its coordinates (xstart, ystart) and
(xend, yend). Since background subtraction usually extracts the humans in their entirety (like the human
detection based on a single frame), similar restrictions are used, using height/width ratios, as shown in
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Equation (11). An ROI that satisfies the criteria is shown in Figure 5e, while the final result is shown
in Figure 5f.

hR = xend − xstart (8)

wR = yend − ystart (9)

AR = hR × wR (10)

hwR =
hR
wR

(11)

5. Data and Results

A test environment has been selected, and a bimodal sensor setup has been put into practice. Five
different video sequences have been recorded under very different environmental conditions. The two
segmentation algorithms described previously have been performed on the five video sequences in the
visible-light and the thermal infrared spectra. In accordance with the evaluation criteria used during
the experimentation, the confidence intervals have been tuned to select the best sensor (visible-light vs.
thermal infrared) segmentation output.

The complete process is explained next in full detail.

5.1. Test Environment and Multimodal Sensor Setup

Both sensors (visible-light and thermal infrared camera) are placed in parallel and focused to a
common point of the same scenario, since the objective is to obtain two similar views of the same
scene. Back and front views of our installation can be observed in Figure 6a,b.

Figure 6. Installation for simultaneous acquisition on the thermal infrared and visible-light
spectra. (a) Back view; (b) front view.

Simultaneous and synchronized acquisition from both cameras is possible thanks to a video encoder
capable of grabbing frames from two cameras in the same instant. The frames acquired by the cameras
connected to the encoder are separated into channels (one channel for each video input) and added to a
buffer, which streams the video.
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The chosen test environment is an outdoor environment. The two cameras are placed in a window
of a building, 6 m in height, looking down at an angle of about 45 degrees. It was decided to work in
an outdoor environment, since such an environment shows a high variety of temperatures (over a year)
and lighting conditions (over one day, for example). Instead, an indoor environment does not usually
admit such a large range of changes. The scene has no defined entrance area for humans. In the lower
part of the scene is a concrete platform, which easily stores the environmental heat. This same property
exists in the buildings surrounding the scene. The detection of humans in the thermal infrared spectrum
will be problematic in the building in the background of the scene, since the infrared thermal camera
automatically performs a thermal attenuation, resulting in a lack of precision in obtaining the temperature
of humans near the building. Specifically, attenuation makes humans merge with the building.

5.2. Test Sequences

We have worked in this scenario with five different sequences in order to validate the proposal. In
sequence −2◦Fog, we find a single human being performing different activities in the environment. The
human is walking almost all of the time, but also runs, crouches and sits in the central concrete platform.
The sequence was recorded when fog partially covered the scene. In this sequence, it is difficult to
distinguish the human in the visible light spectrum. However, the pedestrian can be recognized with
relative ease in the visible-light spectrum. However, it is not simple to detect the human when he/she
is close to the building. The 8◦Night sequence was recorded in order to evaluate the performance of
our proposal at night (in the darkness). Visibility is almost zero in the color spectrum, and the infrared
spectrum also presents problems. We see in this sequence that buildings remain hot, due to the heat
that they have accumulated during daylight hours. Therefore, buildings are sometimes confused with
humans walking around them. In this second sequence, there are two people walking in the scene. Both
pedestrians occasionally cross each other’s path.

In sequence 3◦Sunny, initially, we have a human being who is walking in the environment.
Sometimes, he performs different actions, like crouching. Later, a second man appears, walking on
different paths. Finally, the two humans cross their paths and meet in the concrete deck. The following
sequence, 15◦Cloudy, presents a number of more complex actions. These actions are performed by
a single human being. Let us highlight the action of sitting on the concrete deck core. The increase
in temperature causes the appearance of human shadows on the platform. There is no doubt that in
this way, complexity increases for human segmentation in the infrared spectrum. The last sequence
is called 28◦Sunny and is the most complex for detecting people in the thermal infrared spectrum. In
this sequence, we have three pedestrians walking in the scene and carrying out actions, such as sitting,
crossing their paths and meeting. The high temperature makes it very difficult to distinguish humans in
the infrared spectrum, especially in the concrete deck.
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5.3. Evaluation Criteria

Recall, precision and F-score (F ) were considered to evaluate the performance of the previously
described segmentation algorithms. These are some measures widely used by the computer vision
community. The definitions of the previous measures are provided in Equations (12)–(14), respectively.

recall =
TP

TP + FN
(12)

precision =
TP

TP + FP
(13)

F =
2× precision× recall

precision+ recall
(14)

where TP (true positives) are the correct detections in the sequence, FP (false positives) are the mistaken
detections and FN (false negatives) are the humans that are not detected, but are really present in
the scene.

Precision is the ratio of true positives with respect to the total number of detections, i.e., the ratio of
detections that really correspond to a human. Moreover, recall is the ratio of a human on the scene to
be really detected or not. Lastly, the F-score considers precision and recall, in this way providing an
overall vision of the system performance. The F-score is a weighted average; an ideal system will show
an F-score of one.

5.4. Confidence Threshold Setup

The results from the segmentation of the different sequences are analyzed in order to experimentally
set the confidence interval thresholds in both spectra. Let us highlight that a setting up of all of the
system parameters is necessary for each different environment and sensor setup. Although this paper
does not describe a learning phase, this is obviously performed.

5.4.1. Confidence Thresholds in the Visible-Light Spectrum

The evaluation measures after segmenting the five video sequences from the visible-light sensor are
shown in Table 1. For each sequence, in the first place, the table shows its average grey level value IG
and its segmentation statistics (recall, precision and F-score). Based on these input and output data, the
last column of the table offers the confidence value that was experimentally assigned.

Table 1. Confidence values CV for each sequence in the visible-light spectrum.

Sequence IG Recall Precision F CV

8◦Night 49 0.08 1.00 0.15 LOW

3◦Sunny 133 0.93 0.96 0.95
HIGH

15◦Cloudy 125 0.97 0.98 0.97
28◦Sunny 116 0.81 0.97 0.88
−2◦Fog 147 0.52 1.00 0.68 LOW
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When examining the results depicted in Table 1, a significant difference is observed between the
sequences recorded under adverse lighting conditions (such as fog or darkness) and those recorded with
more suitable conditions for the visible-light camera. These results confirm our initial assumption that a
low or high average grey level value of the image would produce bad segmentation results, whereas an
intermediate mean value would offer good or excellent results.

Indeed, in the sequences where the average grey level value IG of the frames is between 95 and
135, the results are usually excellent, with F-score values always close to or greater than 90%. Their
sensitivities are also usually very close to 100% of detected humans in the scene. On the other hand,
the evaluation values are always remarkably lower in sequences with frames with an average grey level
value outside of the established intermediate range. Thus, confidence threshold ζV L is set to the average
grey level value of 95, while confidence threshold ζV H is assigned a value of 135.

5.4.2. Confidence Thresholds for Human Detection in the Thermal Infrared Spectrum

Since the confidence value for human detection in the thermal infrared spectrum CIR for a sequence is
based on confidence value CV for that sequence, experimental results for the thermal infrared spectrum
have been divided into two different tables, regarding the value of CV . Results for values HIGH and
LOW of CV are shown in Tables 2 and 3, respectively. Both tables are organized in a similar manner as
Table 1. The difference is that the new tables include the standard deviation of the average illumination
of the sequence, as well as the the contrast υIR.

Table 2. Confidence values CIR for each sequence in the visible spectrum with CV set
to HIGH .

Sequence IIR σIIR υIR Recall Precision F CIR

3◦Sunny 62 52 1.19 0.98 0.91 0.94 HIGH

15◦Cloudy 86 44 1.96 0.91 0.97 0.94 MEDIUM

28◦Sunny 113 46 2.46 0.39 0.96 0.55 LOW

Table 3. Confidence values CIR for each sequence in the visible spectrum with CV set
to LOW .

Sequence IIR σIIR υIR Recall Precision F CIR

−2◦Fog 50 26 1.93 0.95 0.95 0.95 HIGH

8◦Night 93 42 2.22 0.81 0.86 0.83 MEDIUM

Let us examine the results depicted in Table 3. Remember that this case corresponds to conditions
where the visible-light results are poor. At first glance, a remarkable difference is appreciated between
both sequences, where the night sequence has an F-score lower than 90%. The standard deviation of the
grey level value σIIR of the frames of this sequence has a low value with respect to their average grey
level value IIR, determining that humans are difficult to distinguish from the background in many cases.
Therefore, confidence threshold ζIRN has been experimentally set to 2.0 based on the tested sequences.
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Let us now consider the case where the visible-light spectrum offers good or excellent results. Under
these conditions, less significant differences are observed in Table 2, except for the last sequence,
where the environment temperature is greater than 20◦ and the results are drastically worse. Hence,
the threshold ζIRH is experimentally set at a value of 2.2. It has been proven, as well, that precision
suffers an abrupt decrease with environmental temperatures greater than 10◦, when the parametrization
is not set to more restrictive values than at lower temperatures. Since coefficient υIR is always above 1.9
for high temperatures, 1.9 is the value assigned to confidence threshold ζIRL.

5.5. Final Results

Once the confidence intervals for both visible-light and thermal infrared spectra have been fixed
through the experimental assignment of the confidence threshold values (see Figure 1), we summarize
the segmentation results in Table 4 with the objective of highlighting which spectrum is suited better
for the environmental conditions of the recorded sequences. The −2◦Fog and 8◦Night sequences show
better performance in the thermal infrared spectrum, whilst the 15◦Cloudy and 28◦Sunny sequences work
better in the visible-light spectrum. Lastly, sequence 3◦Sunny shows similar results for both spectra.

Table 4. Final results achieved for each sequence in both spectra.

Sequence Spectrum Recall Precision F Confidence Value

−2◦Fog
Visible 0.52 1.00 0.68 LOW

Infrared 0.95 0.95 0.95 HIGH

8◦Night
Visible 0.08 1.00 0.15 LOW

Infrared 0.81 0.86 0.83 MEDIUM

3◦Sunny
Visible 0.93 0.96 0.95 HIGH
Infrared 0.98 0.91 0.94 HIGH

15◦Cloudy
Visible 0.97 0.98 0.97 HIGH
Infrared 0.91 0.97 0.94 MEDIUM

28◦Sunny
Visible 0.81 0.97 0.88 HIGH
Infrared 0.39 0.96 0.55 LOW

Now, we are going to explain the results obtained for each sequence by providing some qualitative
examples shown in Figure 7. Results for the sequence −2◦Fog show problems in the visible spectrum
when humans are close to the building in the scene background. There is a greater fog concentration in
that zone, as shown in Figure 7a. At the same time, humans close to the camera are not easy to detect,
because scene colors appear more attenuated, due to the fog, and humans are harder to detect. These
problems were predictable due to the illumination features of the frames composing this sequence. On
the other hand, human detection in the infrared spectrum barely has any problems, and false negatives
only appear on a few occasions. In Figure 7a, it can be appreciated that the human is detected without
any problem in the infrared spectrum. The results confirm the confidence value HIGH in the thermal
infrared spectrum.
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Figure 7. Results obtained on both spectra for the analyzed sequences.
(a) Sequence −2◦Fog; (b) sequence 8◦Night; (c) sequence 3◦Sunny; (d) sequence 15◦Cloudy;
(e) sequence 23◦Sunny.

Sequence 8◦Night is especially difficult for the different algorithms, because it was recorded in the
early night hours. At that time, buildings have not yet cooled, and their thermal readings are still high
compared to the environment, causing them to appear at almost the same temperature as the humans
in the scene. However, human detection in the thermal infrared spectrum works well when people are
far from the background, as shown in Figure 7b. Though, problems can appear when people approach
the buildings and the human body temperature is similar to the thermal readings of the building in the
background. These factors cause the confidence on the infrared spectrum to be set as MEDIUM . On
the other hand, the visible-light camera is blinded, since the scene was recorded in night conditions. An
example of this situation in the visible spectrum is shown in Figure 7b. Humans can only be detected
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when they are near the lamp post lighting the scene in one of the scenario sides. Because of this, the
confidence of the visible spectrum is set as LOW .

Results for both spectra are great in the sequence 3◦Sunny. Due to the contrast and lighting conditions,
both confidence values are set as HIGH , and both sensors usually detect humans in the scene. The
thermal infrared spectrum only shows problems when the human is close to the building’s wall, while
the human detection in the visible spectrum shows false negatives when humans are close to each other
(as shown in Figure 7c) and when a human is covered in shadows far away from the camera.

In the sequence 15◦Cloudy, temperatures of the humans are similar to the thermal readings of the
elements in the scene and only motion information prevents the results of human detection in the thermal
infrared spectrum from being lower. For example, Figure 7d shows how the human could not be detected
in thermal infrared, since the thermal readings of his/her clothes are similar to the temperature of the
concrete platform where he/she is sitting. Because of this fact, the contrast value υIR of the frames
composing this sequence is usually intermediate, making the confidence CIR on the infrared spectrum
to be set as MEDIUM . However, the performance of the human detection in the visible spectrum
is excellent, due to the illumination conditions of the scene, as shown in Figure 7d. These conditions
confirm the confidence value on the visible spectrum to be assigned as HIGH .

Finally, sequence 28◦Sunny shows a poor performance of the human detection in the thermal infrared
spectrum, since the thermal readings of the human are very similar to the temperature of the remaining
elements in the scene. An example of this situation is shown in Figure 7e. A hint to this problem is
shown by the high value of contrast υIR in the frames composing this sequence, which results in the
confidence value CIR of the thermal infrared spectrum being set to LOW . This confirms the difficulty
for distinguishing humans with the thermal infrared camera under these conditions. On the other hand,
a lot of groups appear in this video. This circumstance causes the performance of the human detection
in the visible spectrum to worsen. However, when individuals walk alone, they are detected without
any problem, as shown in Figure 7e. The lighting conditions of the scene confirm these results, and the
confidence value CV is set to HIGH .

6. Conclusions

This paper has introduced a confidence measure scheme in a bimodal camera setup for automatically
selecting visible-light or thermal infrared in response to natural environmental changes. The purpose of
the setup is to robustly detect people in dynamic outdoor scenarios under very different conditions.

Visual-light and thermal infrared sensors possess advantages and disadvantages that are
complementary. On the one hand, thermal infrared cameras are useful for detecting humans under
adverse illumination conditions. On the other side, visible-light cameras yield good results when
conducting human detection in well lit environments, but it is problematic in dark environments or
in areas of the scene that present shadows or have low visibility in general. In order to take advantage
of both spectra, some researchers have decided to perform image fusion by using visible and infrared
images together. However, as the fusion of thermal infrared and visible images is difficult, we have
opted for using a selection-based approach that switches from one sensor to another depending on the
environmental conditions of the scene.
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The approach is based on confidence measures that are set for each spectrum using the mean
illumination, the standard image deviation in thermal infrared, and the average grey level value in
visible-light. In the visible-light spectrum, there are three different confidence intervals separated by
two confidence threshold values. The confidence value in the visible spectrum takes the linguistic
values HIGH and LOW , corresponding to favorable and adverse illumination conditions, respectively.
A MEDIUM confidence value is not used in the visible-light spectrum.

In the thermal infrared spectrum, there are three possibilities for assigning the confidence intervals,
as the confidence value in thermal infrared is directly related to the value in visible-light. When the
confidence value of the visible-light spectrum is set to LOW , it is clear that the visible-light sensor
is almost unable to distinguish humans. This is why the infrared spectrum is always forced with a
confidence value above LOW (that is, MEDIUM or HIGH). Indeed, under this circumstance, the
infrared sensor always works better than the visible-light one. On the other hand, when the detection in
visible-light offers good results (HIGH confidence value), the confidence value in the thermal infrared
spectrum can take values LOW , MEDIUM or HIGH .

In order to evaluate the proposal, two efficient segmentation algorithms, one dedicated to the
visible-light spectrum and another one to the thermal infrared spectrum, were implemented and five
different video sequences were recorded under very different environmental conditions. The results
of the segmentation in both spectra permitted setting up the best-suited confidence interval thresholds.
Moreover, the results obtained confirmed the accuracy of the approach.
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