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Abstract: A semi-classical electrodynamical model is derived to describe the electrical 

transport along graphene, based on the modified Boltzmann transport equation. The model 

is derived in the typical operating conditions predicted for future integrated circuits  

nano-interconnects, i.e., a low bias condition and an operating frequency up to 1 THz.  

A generalized non-local dispersive Ohm’s law is derived, which can be regarded as the 

constitutive equation for the material. The behavior of the electrical conductivity is  

studied with reference to a 2D case (the infinite graphene layer) and a 1D case  

(the graphene nanoribbons). The modulation effects of the nanoribbons’ size and chirality 

are highlighted, as well as the spatial dispersion introduced in the 2D case by the dyadic 

nature of the conductivity.  
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1. Introduction 

Due to their outstanding physical properties, graphene and its allotropes (carbon nanotubes (CNTs) 

and graphene nanoribbons (GNRs)) are the major candidates to become the silicon of the 21st century 

and open the era of so-called carbon electronics [1,2].  
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Amongst all such applications, the low electrical resistivity, high thermal conductivity, high current 

carrying capability, besides other excellent mechanical properties, make graphene a serious candidate to 

replace conventional materials in realizing VLSI nano-interconnects [3,4]. A carbon-based VLSI 

technology is not yet a pure theoretical wish, since in the last few years, the rapid progress in graphene 

fabrication made possible the first examples of real-world applications. The works [5,6] present high 

frequency CMOS oscillators integrating CNT or GNR interconnects, whereas [7] shows the first example 

of a computer with PMOS transistors entirely made of CNTs. Carbon nanotubes or graphene interconnects 

are also successfully integrated into innovative organic transistors for flexible plastic electronics [8]. 

The increasing interest in carbon nano-interconnects leads to the quest for more and more accurate 

and reliable models, able to include all the quantum effects arising at the nanoscale. This topic has 

been given great attention by the recent literature, which presented several modeling approaches, like 

phenomenological [9] and semi-classical ones [10]. Based on such models, many papers predicted that 

carbon materials could outperform copper for IC on-chip interconnects and vias [11–16]. 

In the typical working conditions of nano-interconnects, namely a frequency up to THz and low 

bias conditions, such nano-structures do not exhibit tunneling transport. Thus, the electrodynamics 

may be studied by using a semi-classical description of the electron transport. This leads to the 

derivation of a constitutive relation between the electrical field and the density of the current in the 

form of a generalization of the classical Ohm’s law, introducing non-local interactions and dispersion. 

By coupling such a relation to Maxwell equations, it is possible to derive a generalized transmission 

line model for such nano-interconnects. This approach has been followed by the authors to model 

isolated metallic CNTs in [16], CNTs with arbitrary radius and chirality in [17,18], multi-walled  

CNTs [19] and GNRs [20]. The semi-classical model gives results consistent with those provided by 

an alternative hydrodynamic model [21].  

In this paper, a comprehensive and self-consistent analysis of the electrical properties of graphene is 

presented, with special emphasis on its application as an innovative material for nano-interconnects. 

The self-consistency is guaranteed by the fact that the used transport model is derived from an 

electrodynamical model described in terms of physically meaningful parameters. This differs from 

what can be obtained by means of heuristics approaches. In particular, a self-consistent model provides 

a clear analytical relation between the model parameters and the physical and geometrical properties of 

the investigated structure. The considered frequency range of applications is limited to values up to 1 THz, 

and the operational conditions fall into the low bias regime (the longitudinal electric field along the 

interconnect should be Ez < 0.54 V/μm). For such cases, interband transitions are absent and non-linear 

effects are negligible, and thus, a simple linear transport of the conducting electrons (π-electrons) may 

be derived based on the tight-binding model and the semi-classical Boltzmann equation. 

Section 2 is devoted to a brief résumé of the main properties of the band structure for a graphene 

sheet and for a graphene nanoribbon. In Section 3, the transport model is presented, derived from a 

semi-classical model based on the linearized Boltzmann transport equation. The model leads to the 

constitutive relation for the graphene, written in terms of a generalized non-local Ohm’s law in the 

frequency and wave-number domain. Section 4 presents a detailed discussion about the properties of 

the electrical conductivity, which, in general, results in being a dyad.  
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2. Band Structure  

In this chapter, we briefly summarize the main features of the band structure, first for an infinite 

graphene layer (a 2D structure) and, then, for the graphene nanoribbon (a 1D structure). 

2.1. Graphene Layer  

Figure 1a shows the Bravais lattice of the graphene. The unit cell, Sg, is spanned by the two vectors, 

a1 and a2, and contains two carbon atoms. The basis vectors (a1,a2) have the same length, 

ba 321  aa , and form an angle of π/3, where b = 1.42 Å is the interatomic distance. The 

components of the vectors, a1 and a2, with respect to the rectangular coordinate system, (0,x,y) are, 

respectively, 3a0 / 2,a0 / 2   and 3a0 / 2,a0 / 2  . The area of the unit cell, Sg, is 2/3 2
0aAg  . 

Figure 1. The structure of graphene. (a) Bravais lattice; (b) reciprocal lattice. 

 

In the reciprocal k-space depicted in Figure 1b, the graphene is characterized by the unit cell, ∑g, 
spanned by the two vectors, b1 and b2, which have the same length 0021 34 ab  bb  and form 

an angle of 2π/3. The components of the vectors, b1 and b2, with respect to the rectangular coordinate 
system (Q,Kx,ky) are, respectively, 2 / 3a0,2 / a0   and 2 / 3a0,2 / a0  . The area of the unit cell, 

∑g, is .38 2
0

2 aBg    The basis vectors of the direct space (a1,a2) and the basis vectors of the 

reciprocal space (b1,b2) are related by ai·bj = 2πδij with i,j = 1,2 and the areas, Ag and Bg, are related by 

AgBg = (2π)2. 

The graphene possesses four valence electrons for each carbon atom. Three of these (the so-called 

σ-electrons) form tight bonds with the neighboring atoms in the plane and do not play a part in the 

conduction phenomenon. The fourth electron (the so-called π-electron), instead, may move freely 

between the positive ions of the lattice. 

In the nearest-neighbors tight-binding approximation, the π-electrons energy dispersion relation is  
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where E(±) denotes the energy, the + sign denotes the conduction band, the − sign denotes the valence 

band and γ = 2.7 eV is the carbon-carbon interaction energy. The electronic band structure is depicted 

in Figure 2: the valence and conduction bands touch each other at the six vertices of each unit cell,  

the so-called Fermi points. In the neighborhood of each Fermi point, the energy dispersion relation 

may be approximated as: 

 (2)

where k0 is the wavenumber at a Fermi point, νF ≈ 0.87 × 106 m/s is the Fermi velocity of the  

π-electrons and   is the Planck constant. 

Figure 2. Graphene electronic band structure. Inset: the neighborhood of a Fermi point. 

 

In the ground state, the valence band of the graphene is completely filled by the π-electrons.  

In general, at equilibrium, the energy distribution function of π-electrons is given by the  

Dirac–Fermi function: 
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where kB is the Boltzmann constant and T0 is the graphene absolute temperature, the electrochemical 

potential of the graphene being null valued. The distribution function differs from the ideal distribution 

function F[E(±)] = u[−E(±)], where u = u(x) is the Heaviside function, only in a region of order kBT0 

around the point E(±) = 0; at room temperature, it results eV02.00 TkB . 

2.2. Graphene Nanoribbons 

Let us now discuss the so-called graphene nanoribbons (GNRs), i.e., ribbons obtained by cutting a 

graphene layer, characterized by a high aspect-ratio, namely a transverse width, w, much smaller than 

the longitudinal ribbon length. Figure 3 shows the two basic shapes for GNRs, namely nanoribbons 

with armchair edges and nanoribbons with zigzag edges (e.g., [20]). These edges have a 30° difference 

in their orientation within the graphene sheet. We assume that all dangling bonds at graphene edges are 

terminated by hydrogen atoms and, thus, do not contribute to the electronic states near the Fermi level. 

In the following, we will assume the Fermi energy to be zero. However, this level may move to values 

such as 0.2–0.4 eV, considering the interactions at the GNR/substrate interface. 
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Figure 3. The structure of graphene nanoribbons. (a) Armchair edges; (b) zigzag edges. 

 

As shown in Figure 3, the width, w, of a graphene nanoribbon is directly related to the integer, N, 

indicating the number of dimers (two carbon sites) for the armchair nanoribbons and the number of 

zigzag lines for the zigzag nanoribbons. For armchair GNRs, the unit cell has a length aT 3  and a 

width w = Na/2, whereas for zigzag ones, it is T = a and 2/3Naw  . 

Given the number N and, thus, the GNR width, w, the energy spectrum of the π-electrons can be 

obtained by slicing the band structure of graphene in Figure 2 (e.g., [20,22,23]). Figure 4 shows the 

band structure for an armchair GNR, assuming N = 5 and N = 6. For N =3q – 1 (q = 1,2,…), there 

exists a sub-band, µ, for which the direct bandgap is zero; hence, the GNR behaves as a metal. For 

other values, the armchair GNRs is semiconducting. However, the direct bandgap decreases with w 

increasing and approaches zero in the limit of very large w, consistent with the behavior of the 

graphene layer reported in Section 2.1. Therefore, the value of the width (hence, the number, N) 

determines whether the nanoribbon is metallic or semiconducting.  

Figure 4. Energy band structure of an armchair nanoribbon versus the normalized 

wavenumber k' = kl/π. (a) N = 5; (b) N = 6. 
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Figure 5 refers to a zigzag GNR, assuming N = 5 and N = 20: such nanoribbons have partially  

flat bands owing to the edge states; hence, their bandgap is always zero, and their behavior is  

always metallic. 

Figure 5. The energy band structure of a zigzag nanoribbon versus the normalized 

wavenumber k' = kl/π. (a) N = 5; (b) N = 20. 

 

3. Transport Model 

We model the propagation of an electromagnetic wave along a graphene nanoribbon in the low 

frequency regime, where only intraband transitions of π-electrons with unchanged transverse quasi 

momentum are allowed. These transitions contribute to the axial conductivity, but not to the transverse 

conductivity. For typical dimensions of the nano-interconnects for the 14 nm technology node and 

below, this assumption limits the model to a frequency up to some THz. Following the stream of what 

is done in [18,19,24], in such a condition, the electrodynamics of the π-electrons may be described by 

the quasi-classical Boltzmann equation. In the following, we start from the 2D case (graphene infinite 

layer) and then particularize the results to the 1D case (GNRs). 

3.1. Transport Model for the Graphene Layer 

The π-electrons in an infinite graphene layer behave as a two-dimensional electron gas moving on 

the surface under the action of the electric field. We disregard the Lorentz force term due to the 

magnetic field, because it does not contribute to the linear response of the electron gas. 

The electron gases are described by the distribution functions f(±) = f(±)(r,k,t), where r is the vector 

position in the direct space with the origin at O, k is the electron wave-vector restricted to the first 

Brillouin zone and ∑BZ and t represents the time variable. Here, the + sign denotes the conduction 

band, the − sign denotes the valence band. 

Each of these distribution functions satisfies the quasi-classic Boltzmann kinetic equation, 
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where e is the electron charge, Et = Et(r,t) represents the tangential component of the electric field at 

the graphene surface, ν is the relaxation frequency (  5 1011s1) and v(±) = v(±)(k) is the velocity of the 

π-electrons in the conduction/valence band given by: 

 
v   k   1


E  

k
 (5)

The symbols, / r  and / k , denote the gradients with respect to the variables, r and k, 

respectively. The distribution functions of the π-electrons at equilibrium are: 
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Let us consider a time-harmonic field, in the form , where β is the 

wave-vector defined in the two-dimensional space. Let us set f(±) = f0
(±)(k) + δf(±)(r,k,t) and consider a 

time-harmonic perturbation , where δf1
(±) is a small 

quantity to be found: using Equation (4) and retaining only the first order terms, we obtain:  

 (7)

Let us now introduce the time harmonic surface current density : 

its amplitude, , can be computed by summing the contributions from all the sub-bands in the first 

Brillouin zone: 

 (8)

Here, the first term is related to the valence bands and the second one to the conduction bands.  

By combining Equations (7) and (8) we get the constitutive relation of the medium: 

 (9)

This can be regarded as a generalized Ohm’s law, for which the conductivity is a symmetric dyad, 

given by: 

 (10)

The function:  

)2/(cosh

1

4

1
)(

0
2

0 TkETkdE

dF
E

BB
  

(11)

is an even function. As a consequence of this property and of the right-left symmetry of the energy 

dispersion curves with respect to the point k = 0, the sum in the r.h.s. of Equation (10) is twice the 

contribution of the conduction bands, hence: 

 (12)
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Note that the function, Δ, behaves as an impulsive function centered at  E  0 ; hence, only the 
neighbors of the Fermi points with radius keff  4kBT0 / vF  and belonging to the first Brillouin zone 

give a meaningful contribution: let us indicate with CF the circumference of radius keff centered at the 
Fermi point with electron wave vector K. In addition, assuming v k   vF k̂ , where Kkk ' , we get 

the final expression: 

 (13)

3.2. Transport Model for a Graphene Nanoribbon 

Along a graphene nanoribbon, in the operating conditions assumed here, the π-electrons mainly 

move along the longitudinal axis, i.e., the transverse components may be neglected. Therefore, the 

transport model is derived from that exposed in Section 3.1, assuming a 1D case: the electrons are 

quantum confined laterally and, thus, occupy quantized energy levels, whereas along the longitudinal 

axis, the wave-vector, k, is assumed to be almost continuous. 

If T is the translational length of the unit cell (see Figure 3), the first Brillouin zone is given by the 

interval (−π/T,π/T) and the longitudinal conductivity in the spatial and wavenumber domain obtained 

from Equation (13) is given by the sum of the contribution of the N conduction sub-bands in the 

circumference CF: 
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Using the above results, the generalized Ohm’s law Equation (9) may be expressed for a GNR  

as follows: 
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R0 = 12.9 kΩ being the quantum resistance, and:  
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The quantity M in Equation (19) is the equivalent number of conducting channels, a measure of the 

number of sub-bands that effectively contribute to the electric conduction, i.e., those that cross or are 

closer to the Fermi level. A detailed discussion on the behavior of such a number M for CNTs and 

GNRs may be found in [18–20], where it is clearly shown how such a quantity strongly depends on the 

chirality, size and temperature of such carbon nanostructures. 

4. Discussion 

4.1. Electrical Conductivity in the Long Wavelength Limit 

Let us first assume the case of a graphene layer in the long wavelength limit β = 0, for which 

Equation (13) reduces to: 

 (20)

In the reference system indicated in Figure 1, the four components, σxx(ω,0), σyy(ω,0), σxy(ω,0) and 

σyx(ω,0) of the dyad, σ(ω,0), reduce to the following expressions: 
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In the same condition, the generalized Ohm’s law for a graphene nanoribbon Equation (16) would 

reduce to:  

 
(23)

Figure 6. Equivalent number of conducting channels for metallic and semiconducting 

armchair graphene nanoribbons (GNRs) at 300 K. 
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The conductivity, σc, in Expression (22) is consistent with σ0 in Equation (23): σc may be obtained 

from σ0 by taking the limit W , i.e., when the transverse size of the GNR tends to infinity. To 

explain this behavior, Figure 6 shows the computed value of the number of conducting channels, M, in 

Equation (18), for a metallic and semiconducting armchair GNR vs. the GNR width. For smaller 

values of W, the contribution to the conductivity given from the semiconducting GNRs is negligible, 

but it becomes non-negligible as W increases. Figure 7, instead, shows the behavior of the ratio, σ0/σc, 

as a function of W, which proves the consistency stated above. 

Figure 7. The ratio, σ0/σc, for metallic and semiconducting armchair GNRs at 300 K. 

 

As a conclusion, in the case of a long wavelength limit, the conductivity of graphene does not show 

spatial dispersion, but only frequency dispersion, according to Equation (22). For a GNR (as in Figure 3), 

the conductivity may be assumed to have only the longitudinal component σxx(ω,0) = σ(ω).  

4.2. Electrical Conductivity in the General Case: Spatial Dispersion 

In the general case, we must take into account the dyadic nature of the conductivity. For the sake of 

simplicity, let us refer to the components of any vector to the parallel and orthogonal directions with 

respect to the vector, β, denoting them with the symbols “||” and “”, respectively. In this system, the 
four components, ),( ),,(),,( |||||| βββ    and ),( || β , of the dyad, σ(ω,β), reduce to the 

following expressions: 
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From such components, it is possible to derive the x-y components, by the simple transformation: 
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Figure 8. Real (a) and imaginary (b) parts of ),(|||| β  and ),( β , normalized to σc, 

vs. (νF/ω)β for ν/ω = 0.1. 

 

By using Equation (27), it is easy to show that there are off-diagonal terms of the dyad; hence, in 

general, σxy(ω,β) = σyx(ω,β) ≠ 0. The dyadic nature of the conductivity introduces a spatial dispersion, 

which may be easily observed from Figures 8 and 9, which show the real and imaginary parts of 
),(|||| β  and ),( β , normalized to σc, versus (νF/ω)β for ν/ω = 0.1 and ν/ω = 1, respectively. It is 

evident that a resonance still arises at   vF  in both cases.  

Figure 9. Real (a) and imaginary (b) parts of ),(|||| β  and ),( β , normalized to σc, 

vs. (νF/ω)β for ν/ω = 1. 
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The relation between the dyadic nature of the conductivity and the spatial dispersion is consistent 

with the result obtained in [25], where the graphene conductivity dyad is derived from the Kubo 

formula and numerically evaluated with an integral formulation.  

5. Conclusions 

In the operating conditions predicted for future electronic nano-interconnects, the low bias and the 

low frequency allows the modeling of the electrical transport with a linearized semi-classical 

electrodynamical model, which does not include interband transitions. This leads to a generalized  

non-local dispersive Ohm’s law, which is regarded as the constitutive equation for the material. In the 

2D case (graphene layer), the conductivity is dyadic and shows a spatial dispersion as an effect of the 

coupling between the components. This coupling is absent in the long-wavelength limit. In the 1D case 

(graphene nanoribbon), the transverse components of the currents are negligible, and the conductivity 

reduces to a scalar quantity, modulated by the size and chirality, which strongly affect the number of 

conducting channels. 
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