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Abstract: This review focuses on intra- and interlayer (IL) electron-phonon interactions
and phonon self-energy renormalizations in twisted and AB-stacked bilayer graphene (2LG)
composed either only of 12C or a mixing of 12C and 13C isotopes. A simple way to imagine
a 2LG is by placing one monolayer graphene (1LG) on top of another 1LG. The orientation
of one of the layers with relation to the other may originate a twisted 2LG system (known as
turbostratic) as well as a AB-stacked system, also known as Bernal stacking. By rotating the
layers of a 2LG one can departure from a fully misoriented system to achieve the AB-stacked
configuration and their IL interactions can be dramatically different being close to zero in a
fully misoriented system and maximum in an AB-stacked system. Interlayer interactions
are expected to slightly perturb the intralayer phonons and they also govern the low-energy
electronic and vibrational properties, which are of primary importance to phenomena such
as transport, infrared (IR) optics and telecommunication bands in the IR range. Therefore,
a comprehensive discussion combining intra- and interlayer phenomena is necessary and
addressed throughout the text.
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1. Introduction

Why do electron-phonon (e-ph) interactions matter? This question is undoubtedly the start-point to
understand many fundamental phenomena in solids. Usually, the states of matter are principally studied
in terms of electronic degrees of freedom in materials. However, the coupling of the electronic degrees
of freedom to lattice degrees of freedom is crucial to understanding materials properties. This coupling
is usually described by interactions between the electronic excitations and phonons, and is responsible
for many interesting effects in a crystal, such as the formation of polarons, formation of Cooper pairs
and the superconductivity, the Peierls transition and the Kohn anomaly, an abrupt softening of phonon
energies [1].

Electron-phonon interactions can be observed in a diversity of materials. This review focuses on the
study of intra- and interlayer e-ph interactions, as well as their consequences, in bilayer graphene (2LG)
systems, which have been shown as ideal platforms to observe, for example, the Kohn anomaly effect
mentioned above [1]. Graphene is a special material due to its fascinating electrical, mechanical, optical
and thermal properties [2–5]. This strictly two-dimensional material exhibits exceptionally high crystal
and electronic quality, in which charge carriers can travel thousands of interatomic distances without
scattering [5,6], and has revealed a great deal of new physics and potential technological applications.
Particular interest has been turned to single layer graphene (1LG) due to the unique nature of its charge
carriers, that make it a promisor material for photonics, optoelectronics and organic electronics such
as in solar cells, light-emitting, touch screen and photodetctors devices [2,7,8]. Here, the authors will
discuss mostly 2LG, which is also a zero gap semiconductor and it is a highly desired material for the
development of graphene-based electronics such as field effect transistor [5,6], since it becomes a tunable
band gap semiconductor under the application of an electric field perpendicular to the layers composing
system [9,10]. Recently, advances in chemical vapor deposition (CVD) allowed the realization of twisted
and AB-stacked 2LG in which top and bottom layers are compose solely of either 13C or 12C. This opens
up a completely new route to combine phonons and electrons in this layered systems. Because 13C and
12C are isotopes, these hybrid bilayer systems keep the same electronic behavior observed for 12/12C
2LG although the phonons can behave quite differently [11].

The 2LG systems are bound together by means of weak interlayer (IL) interactions mediated
by van-der-Waals (vdW) forces. These IL interactions are sensitive to the number of layers and
stacking order and are important to technological applications of these systems [12–18]. Namely,
the IL interactions govern the low-energy electronic and vibrational properties, which are of primary
importance to phenomena such as transport, infrared optics and telecommunication bands in the infrared
(IR) range [12–14]. In 2LG, although the effects of the IL interactions on the electronic properties are
well understood [19,20], it was only recently that the understanding of IL-related vibrational properties,
electron-electron (e-e), phonon-phonon (ph-ph), and electron-phonon (e-ph) interactions started being
developed [21–25]. Such development has already impact this research field, by opening a route to
understanding IL interactions in similar, but more complex 2D-layered materials, such as MoS2, WSe2,
oxides and hydroxides [26–29].

In this manuscript, the use of gate-modulated Raman spectroscopy to characterize 2LG and to have
information about their IL interactions is discussed. Traditionally, e-ph interactions are investigated
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through chemical doping, in which the charge carrier density is varied by the introduction of
impurities [30]. However, the appliance of electrical fields to control carriers in materials (so-called
the electrical field effect) is an alternative method for effectively changing the charge carrier density
in low dimensional systems. Here, it is discussed the combination of both, the electric field effect
and Raman spectroscopy to study the e-ph coupling in graphene-like systems. In Section 2 we
describe how the electronic and vibrational properties of graphene are influenced by IL interactions; in
Section 3 we present the theoretical formalism for e-ph coupling; Section 4 describes how the inversion
symmetry affects the electronic and vibrational structure of graphene; in Section 5 we discuss relevant
experimental results.

2. Interlayer Interactions

In condensed matter physics, most materials are ruled by the Schrödinger equation, this usually being
sufficient to describe their electronic properties. Single layer graphene (1LG) is an exception and its
charge carriers mimic relativistic particles and are more easily and naturally described by the Dirac
equation [31]. The electronic structure of 1LG has a linear dispersion around the K point of the Brillouin
zone and it is a zero gap semiconductor (see Figure 1).

Figure 1. The electronic structure of 1LG, which is a linear dispersion around the K point of
the Brillouin zone. Note that the valence and the conduction bands touch each other, which
makes 1LG a zero gap semiconductor.
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The atomic orbitals in graphene are in a sp2 hybridization, in which the carbon atoms are bounded
covalently to each other forming a 120◦ angle. There are three in-plane σ orbitals and one out-of-plane
π orbital. The electronic structure of 1LG can be described by tight-binding calculations considering
in-plane interactions with just first neighbors (γ0) [32]. 1LG is a zero gap semiconductor, where the
valence π and conduction π* bands touch each other at the K point, and this is where the Fermi level is
located. Close to the K point of the Brillouin zone, the electronic dispersion of 1LG can be described as
a linear dispersion with massless Dirac fermions and is given by [32]:

E(k) = ~vFk (1)
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where vF =
√

3γ0a/2~ is the Fermi velocity of the electrons near the Dirac point and is close to
1× 106 m/s, and γ0 = 3.0 eV [5].

Since 1LG has two carbon atoms per unit cell, its vibrational structure is composed of six
phonon branches, three of them optical (one in-plane longitudinal mode-LO, one in-plane transverse
mode-TO and one out-of-plane transverse mode-ZO) and three of them acoustic (one in-plane
longitudinal mode-LA, one-in plane transverse mode-TA and one out-of-plane transverse mode-ZA).
The LO and TO modes are degenerated at the Γ point and give rise to the famous G band and the TO
mode at the K point gives rise to the G′ band. Figure 2a shows the phonon dispersion for 1LG [33,34]
and Figure 3 shows the Raman spectra for both (a) 12C and (b) 13C 1LG.

Figure 2. (a) The phonon dispersion for 1LG and (b) 2LG. LO stands for in-plane optical
longitudinal mode, TO stand for in-plane transverse optical mode, ZO stands for out-of-plane
transverse mode, LA stands for in-plane longitudinal acoustic mode, TA stands for transverse
acoustic mode and ZA stands for out-of-plane transverse. In (b), ZO′ is layer breathing mode
(LBM), in which the layers of the 2LG vibrates up and down out of phase [33].
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Figure 3. Raman spectra showing the G band and the G′ band of 12C 1LG and 13C 1LG
(black), 12/12C turbostratic 2LG (dotted blue), 12/12C AB-stacked 2LG (solid blue), 12/13C
turbostratic 2LG (dotted red) and 12/13C AB-stacked 2LG (solid red) [11].
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2.1. AB Stacked Bilayer Graphene

Since the unit cell of Bernal AB stacked 2LG is the same as that of graphite (four atoms per unit cell),
we can model the 2LG electronic structure using the tight-binding model for graphite [35]
by adapting the Slonczewski-Weiss-McClure (SWM) parametrization [36,37], using γ0 and the
interlayer (IL) nearest-neighbor hopping parameters, γ1, γ3 and γ4 (shown in Figure 4c). After solving
the 4 × 4 tight-binding Hamiltonian [38], we find that the electronic structure of 2LG has two valence
bands (π1 and π2) and two conduction bands π1* and π2*, as can be seen in Figure 4a. One valence
band touch one conduction band at the K point and the other two bands have a gap of 2γ1. 2LG is also
a zero gap semiconductor but the electronic dispersion is no longer linear around the K point, but it
has a hyperbolic dependence with k [38]. The IL interaction in 2LG with regular AB stacking modifies
the linear dispersion of 1LG into the quadratic dispersion, where an electron behaves now as a massive
particle [39].

Figure 4. Electronic structure of 2LG around the K point using (a) γ3 and γ4 equal to zero
and (b) γ3 = 0.3 eV and γ4 = 0.15 eV [40]; (c)The intra- (γ0) and inter-layer (γ1, γ3 and
γ4) tight-binding hoping parameters in 2LG.
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The γ3 and γ4 IL parameters have interesting consequences in the electronic structure. γ3 gives rise
to a trigonal warping effect in the low energy spectrum, where the equienergies curves have triangular
shape, while γ4 is related to the electron-hole asymmetry in 2LG [38]. Figure 4a,b show, respectively,
the 2LG band structure near to the K point with γ3 and γ4 equal to zero and with γ3 = 0.3 eV and
γ4 = 0.15 eV.

Regarding the vibrational structure, the micro-mechanical cleavage of bulk graphite (so-called
Scotch-tape method) gives 2LG graphene samples with mostly 12/12C AB-stacked structures and the
strongest IL interactions. For this reason, the 2LG system obtained from exfoliation is, so far, the best
system to provide the fundamental physics behind the IL related phonon self-energy renormalizations.
Another commonly used method is the chemical vapor deposition (CVD), and has been proven to grow
2LG in which top and bottom layers are compose solely of either 13C or 12C resulting in a hybrid
12/13C 2LG. The method also grows 2LG in which both layers are composed of 12C, namely 12/12C
2LG [11,41,42]. Through the CVD method, in general, the 2LG systems result in twisted layers
(see Figure 3c,e for the twisted t-2LG Raman spectra). Recently, however, selected area electron
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diffraction (SAED) and Raman scattering have been used to show that the resultant 2LG systems grown
by CVD methods can also be 12/12C and 12/13C AB-2LG [11,41,42]. Figure 3d,f show the Raman spectra
for the AB-2LG systems. Indeed, the Raman G′(2D)/G intensity ratio (≈1) for the CVD grown 12/12C
AB-2LG system agrees well with the Scotch-tape sample and also the G′-band linewidth (≈60 cm−1) is
similar. In fact, the lineshape for the G′ band can be interpreted in terms of four peaks whose frequencies
(ranging from 2640 to 2715 cm−1) and linewidths (≈30 cm−1) are basically the same as the ones found
for the Scotch-tape sample. However, the G′ lineshape, which is determined by the Raman cross-sections
of each of the four peaks, is slightly different mainly because the little shoulder around 2645 cm−1

observed for the Scotch-tape samples [43] is not evident in the CVD grown samples. This suggests
that the IL interactions from AB-stacked CVD samples might be different from that in AB-stacked
scotch-tape samples.

The Raman spectrum in Figure 3e for twisted 12/13C t-2LG can be seen as a superposition of two
non-interacting 1LG systems, one made of 12C and another made of 13C. The relation between the
frequencies coming from the 12C and from the 13C is given by: ω(13C) =

√
12/13ω(12C) and this

explains why two peaks are seen in the G-band and for the G′ band regions. Note that the lower peaks
correspond to vibrations coming from the 13C 1LG. For the 12/13C AB-2LG system, we will still observe
two G band features, which are now a symmetric and antisymmetric combination between the LO and
TO phonon modes from the top and bottom layers (a more detailed explanation is given later in the text).
However, for the G′ band the situation is slightly different. Due to the differences in the 12C and 13C
masses, the TO modes from the top and bottom layers are no longer unique at the K point. However,
similar to what happens for the 12/12C AB-2LG system, the electronic dispersion is still a hyperbolic
dispersion with two different sub-bands-π1 and π2-(around the K point, as shown in Figure 4), since in
this isotopic system, opposite to what happens to the vibrational properties, the electronic properties
are maintained. Therefore, instead of four resonances with the TO mode, we could observe up to eight
different resonances (note that in the 12/13C AB-2LG systems the inversion symmetry is maintained for
electrons but broken for phonons).

Note that the IL interactions are quite similar for both production methods but not exactly the same and
further studies are clearly needed to explain these small differences in detail. Finally, Figure 2b shows
the phonon dispersion for a 12/12C AB-stacked 2LG. Since the unit cell of a 2LG contains 4 atoms,
we expect to observe 12 phonon branches (3 acoustic phonons and 9 optical phonons). The major
difference in comparison to the 1LG dispersion is the appearance of a layer breathing mode (LBM)
(ZO′ mode in Figure 2b) in which the layers in the 2LG system vibrates up and down out of phase [33,34].
A calculation for the phonon dispersion in 12/13C AB-2LG systems is still elusive.

2.2. Twisted Systems

The misorientation of a few stacked graphene layers can affect the electronic structure of the
carbon system. The rotation between the graphene layers has been receiving a lot of attention
recently [44–50]. This has been stimulated by the observation of Hass et al. [47] that graphene grown
epitaxially on SiC (0001̄) contains a high density of twist boundary faults, i.e., layers with a relative
rotation. The same authors [47] demonstrated that 2LG structure with the relative rotation frequently
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observed in experiment (θ = 30◦ ± 2.20◦) manifests an apparent electronic decoupling. Namely,
ab initio calculations showed that both layers displayed the Dirac cone and Fermi velocity characteristic
of 1LG [47]. This remarkable result has inspired a number of subsequent theoretical and experimental
works [44,48,49]. In Reference [44], bilayer and trilayer twist boundary systems were investigated by
ab initio calculations, and in both cases layers with a relative rotation were found to display apparent
1LG behavior. On the other hand, Reference [48] considered the θ → 0 limit of the rotated 2LG
in a continuum approximation, with the result that the layers exactly decoupled but with the Fermi
velocity of the Dirac cone suppressed as compared to 1LG. This latter result is in contrast to ab initio
calculations [44,48] for finite rotation angles where a Fermi velocity exactly equal to that of 1LG is
found [50].

Figure 5. (a) The 2D electronic band structures of Bernal AB 2LG [44];
(b) Atomic structure of t-2LG with rotation angle θ = 21.8◦. Dashed (red) and solid
(green) lines represent the lattices of layers 1 and 2, respectively [51]; (c) Velocity ratio
V2LG/V1LG for a commensurate (n, m) bilayer cell versus rotation angle θ: circle, VASP;
cross, tight-binding calculations. The line is the model of Lopez dos Santos et al. [48]:
V2LG/V1LG = 1 − 9[t̃/(V1LGKsin(θ/2))]2 , with t̃ = 0.11 eV and V1LGK = 2γ0π(31/2) =

9.8 eV [45]. Band structure of t-2LG with rotation angles (d) 9.43◦; (e) 3.89◦; (f) 2.65◦ and
(g) 1.47◦. Dashed (red) slopes around the K point indicate the monolayer’s band dispersion.
Note that the scale of wave number (horizontal axis) reduces as the rotation angle decreases.
Dirac point energy is set to zero [51].

(a) (b) (c)
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In a twisted (or turbostratic) bilayer graphene (t-2LG) two layers are stacked with a random rotation
angle (see Figure 5b). When stacking these two supercells, we obtain a bilayer structure with short-range
incommensurability, then the unit-cell area of t-2LG can be more than 1000 times as large as that of
1LG, due to slightly misoriented lattice vectors of two layers. The electronic structure of t-2LG shows
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a linear band dispersion near Dirac points [44,48,50,52] rather than the massive dispersion of AB-2LG,
and this is due to the relatively weak IL interaction. In t-2LG the superposition of the two honeycomb
lattices generates a Moiré pattern with longer period. The two Dirac electron gases are then coupled by a
periodic interaction, with a large supercell, which can restore a Dirac linear dispersion, but with a Fermi
velocity substantially reduced with respect to 1LG (see Figure 5c). In Figure 5d–g, we show examples of
band structures of t-2LG with rotation angles of 9.43◦, 3.89◦, 2.65◦ and 1.47◦, respectively [51]. Dashed
(red) slopes around the K point indicate the monolayer’s band dispersion. Note that the scale of wave
number (horizontal axis) reduces as the rotation angle decreases. Dirac point energy is set to zero [51].
It is important to note that the changes in the electronic dispersion due to different twisting angles are
expected to be maintained to 12/13C t-2LG systems. However, similar calculations to those for 12/12C
t-2LG, which are necessary to confirm the expectations, are still elusive.

Recently, it was explained and experimentally demonstrated that for small rotation angles (θ around
13◦ or less) the electronic overlap (coupling) of the Dirac cones from the twisted layers give rise to van
Hove singularities (vHs) in the electronic dispersion of the twisted system [53–56]. It was shown that the
vHs play an important role to changing, for example, the resonance conditions of Raman spectral features
such as the G band and G′ band [53,56]. Also, in twisted 2LG there is a static potential dependent on
the superlattice periodicity which is responsible for scattering electrons and, therefore, for the rise of
new Raman features in the twisted 2LG spectrum. Theses features , which appear at low frequencies
(ranging from 30 cm−1 to 200 cm−1) and high frequencies (ranging from 1300 cm−1 to 1700 cm−1),
have their frequencies dependent on the twisting angle and, therefore, may work as a convenient avenue
to predicting those angles [57,58].

3. Electron-Phonon Interactions: Theoretical Background

We think of a metal as composed of a lattice of positively charged ions embedded in a sea of nearly
free conduction electrons. We must suppose that in a vibrational wave in a metal, the local variations
in charge density, due to the motion of the positively charged ions, are screened by the motion of the
conduction electrons (see Figure 6). This influx of negative charge reduces the restoring force on the
ions, and so the frequency of the oscillation is drastically reduced [1]. The residual electric field that was
not screened by the electron gas acts on the electrons and that gives rise to the electron-phonon (e-ph)
interaction. In this section we shall consider some of the consequences of the interaction of phonons
with electrons.

Figure 6. The deep potential due to the displacement of the ions by a phonon is screened
by the flow of electrons [1].
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3.1. The Fröhlich Hamiltonian

This model takes for granted the concept of screening and it assumes that the ions interact with each
other and with the electrons only through a short-range screened potential (dashed line in Figure 6)
and it treats the electrons themselves as independent fermions. Also it neglects electron-electron
interactions. For a Bravais lattice the unperturbed Hamiltonian, where the electrons and phonons are
treated separately, is [1]:

H0 =
∑
k

εkc
†
kck +

∑
q,s

~ωq,sa
†
q,saq,s (2)

where c†k (ck) is the creation (annihilation) operator for the electrons with energy εk and momentum k,
and a†q (aq) is the creation (annihilation) operator for the phonons with energy ~ωq, momentum q and
direction of polarization s. If it happens that s is parallel to q, we say that it is a longitudinally polarized
phonon in the crystal. If s·q = 0, the phonon is transversely polarized. To the unperturbed Hamiltonian,
we add the interaction H1 of the electrons with the screened ions:

H1 =
∑
k,k′,l

〈k|V (r− l− yl)|k′〉 c†kck′ (3)

where |k〉 and |k′〉 are the initial and final electronic state, respectively. Here, it is assumed that at any
point the potential V (r − l − yl) due to a particular ion depends only on the distance from the center
of the ion, where yl is the ion displacement from the equilibrium position l. We can use the Fourier
transform of the potencial, and Equation (3) can be written as:

H1 =
∑
k,k′,l

ei(k
′−k)·(l+yl) Vk−k′ c†kck′ (4)

If we assume that the displacement yl of the ion is sufficiently small that (k′ − k) · yl � 1, we can
separate H1 into two parts, H1 = HBloch +He−ph. The first term

HBloch =
∑
k,k′,l

ei(k
′−k)·l Vk−k′ c†kck′ (5)

is independent of the lattice displacements. The second term can be written as:

He−ph = iN1/2
∑
k,k′

(k′ − k) · yq Vk−k′ c†kck′ (6)

where q = k − k′. The displacement yq can be written in the harmonic approximation as a function of
the phonon creation and annihilation operators [1] and the He−ph then becomes:

He−ph = i
∑
k,k′,s

√
N~

2Mωk−k′,s
(k′ − k) · s Vk−k′ (a†k′−k,s + ak−k′,s) c

†
kck′ (7)

For simplicity we shall assume the phonon spectrum to be isotropic, so that the phonons will be either
longitudinally or transversely polarized. Then, only the longitudinal modes, for which s is parallel to
k′− k, will enter He−ph. Also, since the HBloch is not dependent of the displacement, we shall neglect its
effects for the e-ph interaction. With these simplifications we are left with the Fröhlich Hamiltonian:

H =
∑
k

εkc
†
kck +

∑
q

~ωqa
†
qaq +

∑
k,k′

Mk,k′ (a†−q + aq) c†kck′ (8)
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where the electron-phonon matrix element is defined by:

Mk,k′ = i

√
N~

2Mωq

|k′ − k| Vk−k′ (9)

The interaction He−ph can be considered as being composed of two parts - terms involving a†−qc
†
kck′

and terms involving aqc
†
kck′ . These terms may be represented by the diagrams shown in Figure 7a,b,

respectively. In the first diagram an electron is scattered from k′ to k with the emission of a phonon with
momentum ( k′− k). The second diagram represents the electron being scattered from k′ to k with the
absorption of a phonon with momentum (k − k′).

Figure 7. The Fröhlich Hamiltonian includes an interaction term in which an electron is
scattered from k′ to k with either (a) emission or (b) absorption of a phonon. In each case
the total momentum is conserved.
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3.2. Phonon Frequencies and the Kohn Anomaly

To calculate the effect of the e-ph interaction on the phonon spectrum, we may use perturbation
theory to calculate the total energy ε of the system described by the Fröhlich Hamiltonian (Equation (8))
to second order in He−ph:

ε = ε0 + 〈Φ|Hel−ph|Φ〉+
〈
Φ|Hel−ph(ε0 −H0)

−1Hel−ph|Φ
〉

(10)

with ε0 = εk c
†
kck + ~ω0

q a
†
qaq being the unperturbed energy of the state Φ having nq phonons in the

longitudinally polarized mode q and nk electrons in state k. Since the components of He−ph act on Φ

either to destroy or create one phonon, the first-order term vanishes from this expression because the
resulting wavefunction must be orthogonal to Φ. In second order there is a set of nonvanishing terms,
as the phonon destroyed by the first factor of He−ph to act on Φ can be replaced by the second factor of
He−ph, and vice versa. We then find the contribution of the second-order terms ε2 to be

ε2 = 〈Φ|
∑
k,k′

|Mk,k′|2
[

(a†−qa−q) c†kck′ c†k′ck

(ε0 −H0)
+

(aqa
†
q) c†kck′ c†k′ck

(ε0 −H0)

]
|Φ〉 (11)

all other terms having zero matrix element since the resulting wavefunction will be orthogonal to Φ.
The first term in the brackets in Equation (11) can be represented as in Figure 8a. An electron is
first scattered from k to k′ with the absorption of a phonon with momentum −q = k′−k. The factor
(ε0 −H0)

−1 measures the amount of time the electron is allowed by the Uncertainty Principle to stay in
the intermediate state k′ and can be written as the energy difference between the initial and intermediate
states, (εk+~ω0

−q−εk′)−1. The electron is then scattered back into its original state with the re-emission
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of the phonon. We can represent the second term in Equation (11) by Figure 8b, and then, we find an
energy denominator of εk − ~ω0

q − εk′ .

Figure 8. The Fröhlich Hamiltonian includes an interaction term in which an electron is
scattered from k′ to k with either (a) emission or (b) absorption of a phonon. In each case
the total momentum is conserved.
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k k
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We can write the creation and annihilation operators in terms of occupation numbers (nk or nq).
For fermions (electrons) we have:

c†kck = nk (12)

ckc
†
k = 1− nk (13)

and for bosons (phonons):

a†qaq = nq (14)

aqa
†
q = 1 + nq (15)

Rearranging the creation and annihilation operators in Equation (11) into the form of number operators
and assuming that ωq = ω−q, and hence that in equilibrium 〈nq〉 = 〈n−q〉, and 〈nqnknk′〉 = 0 by
symmetry, the total energy of the system is then given by:

ε = ~ω0
q 〈nq〉+

∑
k,k′

|Mk,k′ |2 〈nk〉
[

2 〈nq〉 (εk − εk′)

(εk − εk′)2 − (~ω0
q)

2
+

1− 〈nk′〉
(εk − εk′ − ~ω0

q)

]
(16)

The effect of the e-ph interaction on the phonon spectrum is contained in the term proportional to
〈nq〉 in Equation (16). Now the perturbed phonon energy ~ωp

q is the energy required to increase 〈nq〉
by unit

~ωp
q =

∂ε

∂ 〈nq〉
= ~ω0

q +
∑
k

|Mk,k′ |2 2 〈nk〉 (εk − εk′)

(εk − εk′)2 − (~ω0
q)2

(17)

If we neglect the phonon energy in the denominator in comparison with the electron energies we have

~ωp
q = ~ω0

q −
∑
k

2|Mk,k′|2 〈nk〉 (εk′ − εk)−1 (18)

One may picture the origin of this change in phonon frequency by Figure 8a, in which the first interaction
is represented as the creation of an electron-hole (e-h) pair by the absorption of a phonon. One can then
say that it is the fact that the phonon spends part of its lifetime (in the order of picoseconds) in the form
of an e-h pair that modifies its energy.

One interesting consequence of Equation (18) occurs in metals when q has a value close to the
diameter of the Fermi surface 2kF . In this case, the states k and k′ =k − q are connected by q in
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the same Fermi surface, which causes a logarithmic divergence in Equation (18), and thus a kink in the
phonon dispersion is observed. This divergence when q = 2kF is the so-called Kohn anomaly [1].

For graphene, the Fermi surface is formed by the six K points. There are two possible phonon
wavevectors that can connect two electronic states at the Fermi surface, q = Γ and for q = K, as shown
in Figure 9a,b, respectively. In fact, Piscanec et al. [59] show that the Kohn anomaly occurs in graphene
for the LO phonon mode around the Γ of the Brillouin zone and for the iTO phonon mode around the K
point. The Kohn anomaly gives rise to interesting effects in the Raman spectrum of 1LG and 2LG and
can be studied by changing the Fermi level of the system.

Figure 9. The two possible vector (a) q = Γ and (b) q = K that can connect two electronic
states in the Fermi surface (red dots) in graphene.
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3.3. Consequences of the Kohn Anomaly in Graphene

Hereafter, this review discusses phonons in 2LG that occur either, around the Γ point or around the
K point. As a reminder, there are two types of e-ph interactions, namely intra-valley (AV) (Figure 10a,c)
and inter-valley (EV) (Figure 10b,d) processes [60–64]. For an AV process, the initial and final states
both occur within the region close to a K [K′] point, while for inter-valley processes, K is connected to K′

in a different valley by a q 6= 0 phonon. Thus the AV (EV) process corresponds to Γ (K) point phonons.
The phonon wavevector q for AV (EV) processes are measured from the Γ (K) points with both q = 0

and q 6= 0 possible [60–64].
The phonon self-energy renormalization will happen any time the matrix element Mk,k′ is different

of zero. Gate-modulated Raman and electrochemistry Raman are the most used techniques to observe
such renormalization effects. In gate-modulated Raman, the 2LG flake is deposited over a silicon (Si)
substrate with a 300 nm thick layer of SiO2. Next, lithography followed by liftoff is required to place
contacts on the flake so that gate voltages (Vg) can be applied to the device in a backgate configuration,
as illustrated in Figure 11a. Then, for each Vg value, Raman spectrum is taken and analyzed using
Lorentzian line-shapes from which frequencies and decay widths are extracted [60–64]. Note that
resonance Raman spectroscopy provides information about both the electronic and vibrational structures,
while the Vg variation allows for control of the Fermi level energy (EF) of the 2LG. In electrochemistry
Raman, the device preparation is done in the very same way as described above. However, instead of
applying Vg in a backgate configuration, an electrochemical polymer is utilized to topgating the devices.
Then, instead of varying Vg, the electrode potential is varied (see Figure 11b). Likewise Vg, the electrode
potential also allows for control of EF.
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Figure 10. (a) Possible (EF = 0) and not possible (EF 6= 0) AV q = 0 processes for e-h pair
creation (annihilation) due to phonon (with energy ~ωq) absorption (emission); (b) possible
(EF = 0 and EF 6= 0) q = 0 (measured from the K point) EV processes; (c) not possible
(EF = 0) and possible (EF 6= 0) AV processes and (d) possible EV processes for electron-
hole pair creation (annihilation) due to phonon (with energy ~ωq) absorption (emission)
when the phonon wave-vector is not zero (q 6= 0). Eeh is the e-h pair energy and EK→K′ is
the energy required to translate an electron from K to K′; (e) The frequency ωG hardening
and (f) decay width γG narrowing for the G band Raman feature as a function of gate voltage
Vg. The insets in (e) and (f) are theoretical predictions of the EF dependence of ~ωq − ~ω0

q

and γq for an AV q = 0 process; (g) The Vg dependence of the 2iTO (q = 2k) ωG′ and γG′ .
The inset in (g) shows illustrative predictions for the Vg-dependence of the phonon frequency
correction ωq−ω0

q (black solid line) and the corresponding decay width γq (grey dashed line)
when q 6= 0, both as a function of EF. The ωq − ω0

q and γq values in (g) were normalized to
illustrate the concept of ωq softening and γq broadening [60].

6

8

Figure 11. (a) Schematic view of the backgate graphene device. A variable voltage Vg can
be applied between the graphene and the silicon substrate. The device is treated as a parallel
plate capacitor where the silicon oxide layer is the dielectric medium; (b) Schematic view of
topgate graphene devices using electrochemical polymers.
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Starting with the case q = 0, the insets of Figure 10e,f, give the results illustrated for the
renormalization of the phonon frequencies (ωq) and linewidth (γq), respectively. From these insets,
we observe that when 2|EF| < ~ωq, real e-h pairs can be created (annihilated), which leads to a stronger
electron-ion interaction screening. As a consequence, the phonon mode softens [60–66]. However, when
2|EF| > ~ωq the production of real e-h pairs becomes forbidden due to the Pauli principle. This leads to a
phonon mode hardening where the phonons are not damped any more (they are now long lived) [60–66].
If 2|EF| = ~ωq, the phonon mode softening shows its highest values, which represent two singularities,
as shown by the black solid curve in the inset of Figure 10e. Due to a broadening (comparable to the
phonon energy) in |EF| due to thermal excitations (relaxations) and non-uniformity in the density of
carriers (due to foreign chemical species and charge traps in the substrate), these singularities are usually
observed at low temperatures (77 K or less) [65,66]. As an example of phonon renormalization when
q = 0 for the AV process (see Figure 10a), the ωG and γG variations of the G band Raman feature
are shown in Figure 10e,f, respectively, as |EF| is varied due to different Vg values. The experimental
results (Figure 10e,f) are in good agreement with theory [60–66], which shows a ωG hardening and γG
narrowing when Vg increases.

For the q 6= 0 AV/EV processes, in contrast to the observed for the G band (q = 0), by observing
Figure 10g, which brings the G′ band as an example, it is seen that ωq is softened, and that the ωq

softening is accompanied by a broadening of γq with increasing |EF| (increasing |Vg|). Now, instead of
the Pauli exclusion principle, the electronic and vibrational density of states (together with energy and
momentum conservation requirements) are determining if the e-h pair creation (annihilation) due to a
q 6= 0 phonon absorption (emission) will happen or not. In a previous work [60], the authors explained
that the behavior observed is common to Raman modes that come from an AV or EV process with q 6= 0

and is opposite to the behavior observed for the Γ point q = 0 phonons, such as for ωG. Namely, for
the q 6= 0 cases, when the Fermi level is around zero (see top diagrams in Figure 10b–d), either no
e-h pair can be created by the absorption of a phonon (for an AV process) or the probability of an e-h
pair creation is very small (for an AV process) because the density of states vanishes at the Dirac point.
However, when |EF| increases, the renormalization of the phonon energy occurs by the creation of an
e-h pair through the absorption of a phonon (bottom diagrams in Figure 10b through Figure 10d), then
a softening of ωq and a broadening of γq are observed, in contrast to what happens for q = 0 phonons.
The inset in Figure 10g brings an illustrative prediction for the q 6= 0 phonon renormalization case.

4. Inversion Symmetry in 2LG Systems

One major intriguing feature of 2LG is a band structure that can be tuned with external fields, such
as electric or magnetic fields. Ohta et al. [67] used angle resolved photoemission to show that 2LG has
a gap that can be tuned from 0 to up to 200 meV. Fundamentally, the gap opening in bilayer graphene
originates from the breaking of inversion symmetry, that can be achieved, for example, by applying an
electric field perpendicular to the layers. This creates an asymmetry between the two layers that lowers
the whole symmetry of the bilayer system, consequently opening an electronic band gap at the K point.

For 12/12C AB-2LG , at q = 0 the E2g phonon mode (G band) of monolayer graphene splits into two
double degenerated modes, associated with the in-phase (Eg) and out-of-phase (Eu) displacements of the
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atoms in the two layers [68]. The Eu mode is not Raman active, but, as in 1LG, the Eg mode can be seen
as one peak in the Raman spectrum, known as G band at ∼1582 cm−1. Moreover, since there are two
valence (π1 and π2) and two conduction (π1* and π2*) bands in this material, phonons can couple with
e-h pairs produced by interband or intraband transitions. Interbands transitions are those were the hole is
in the valence band and the electron in the conduction band. The intraband transitions occur when both
the electron and the hole are in the conduction or in the valence band.

T. Ando [69] calculated the dependence of the self-energy for the in-phase (IP) and for the
out-of-phase (OP) phonons as a function of Fermi energy. The phonon renormalization effect in 2LG is
understood by considering the selection rules for the interaction of the IP and OP phonon modes with
the interband or intraband e-h pairs. The e-ph interaction can be described by a 2 × 2 matrix for each
phonon symmetry given by [69]:

Φ
Eg

jj′(k) =
1

2

(
sin2 ψ cos2 ψ

cos2 ψ sin2 ψ

)
, ΦEu

jj′ (k) =
1

2

(
0 1

1 0

)
(19)

where each matrix element gives the contribution of e-h pairs involving different electronic sub-bands
πj or πj*. The diagonal terms are responsible for the interband e-ph coupling, while the out-of-diagonal
terms give the intraband coupling.

For the IP lattice vibration, all matrix elements are different from zero, and this phonon can interact
with both interband or intraband e-h pairs (see Figure 12). When EF = 0, there is a couple of the
phonon with the interband e-h pair, giving rise to the phonon energy renormalization. However, for the
OP phonon mode, the diagonal terms of the matrix are null, showing that there is no e-ph interactions
for interband transitions. Therefore, no Kohn anomaly is expected for the antisymmetric phonon mode
when the Fermi level is at the K point. The frequency of the out-of-phase vibration is, then, higher then
the frequency of the in-phase vibration for EF = 0.

Figure 12. (a) When EF = 0, only interband electron-hole pair creation by the absorption
of a phonon is allowed; (b) When EF 6= 0, intraband electron-hole pair creation by the
absorption of a phonon are also allowed [69].

If the Fermi energy is now moved away from the K point, the intraband e-h pairs can be produced by
phonons (see Figure 12). In this case, the OP phonons also have their energies renormalized, giving rise
to the Kohn anomaly and lowering the frequency of the phonons. Figure 13a,b show, respectively, the
frequency shift (solid lines) and the line width broadening (dashed lines) of the IP and OP phonon
modes as a function of the Fermi energy calculated by T. Ando [69]. The δ parameter is due to
disorder in the crystal. The frequency of the IP mode undergoes a hardening with increasing EF and
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exhibit a logarithmic singularity at EF = ~ω/2, while a narrowing of the line width is observed. The
renormalization for this phonon mode is analogous to the case of 1LG [30]. For the OP phonons, with the
increase of EF, the intraband transitions contributes now to the phonon self-energy, and the frequency of
this mode gradually decreases, and a small broadening of the line width can be observed.

Figure 13. Calculated frequency shift (full lines) and broadening (dashed lines) for the
(a) in-phase and (b) out-of-phase lattice vibrations of bilayer graphene as a function of the
Fermi energy for two different values of crystal disorder δ [69].
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Special care must be taken when analyzing the results for 2LG e-ph coupling. The results showed
in Figure 13a,b are valid only if you change the Fermi level position but keep the inversion symmetry
between the two layers. When there is an asymmetry between the two layers (for example, an electric
field perpendicular to the layers induced by the application of an external gate voltage), the inversion
symmetry of bilayer graphene is broken, lowering the symmetry of the system, that now belongs to
the C3v point group [70], and opening an electronic band gap at the K point. As a consequence, the
in-phase and the out-of-phase lattice vibrations are no longer eigenstates os the system, but the resulting
eigenstates can be regarded as superpositions of the IP and OP displacements [71,72]. Since the Raman
active mode (in-phase) is now present in both resulting modes, there will be two peaks in the Raman
spectrum: one with lower frequency G− and another with higher frequency G+.

The Raman spectrum can be quantitatively analyzed using a simple coupled-mode description [72]∣∣∣∣∣ E − EIP g

g E − EOP

∣∣∣∣∣ = 0 (20)

where EIP = ~ωIP − iγIP, EOP = ~ωOP − iγOP (γ is the line width), and g is the coupling between the
IP-OP modes. Solutions to Equation (20) are given by [72]

E± =
EIP + EOP

2
±

√(
EIP − EOP

2

)2

+ g2 (21)

so that the real and imaginary parts of E±, respectively, describe the energy and broadening of the
G+ and G− modes. The behavior of the relative intensities, the width broadening and the frequency
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shift of the G+ and G− peaks as a function of the charge concentration and Fermi energy is shown in
Figure 14a–c, respectively [72]. The peak intensity is determined by the size of EIP content within each
mode. At EF = ±200 meV, the two peaks in the Raman spectrum have the same intensity as shown in
Figure 14a because the coupling partitions of the Raman active Eg mode is equally distributed to the G+

and G− peaks. Away from EF = ±200 meV, the relative intensities of the G+ and G− reverse, reflecting
the fact that G− (G+) is dominated by the IP vibration at low (high) charge concentration.

Figure 14. Inversion symmetry-breaking induced phonon mixing. Evolution of the G+

(full lines) and G− (dashed lines) (a) relative intensity; (b) line width and (c) frequency with
carrier concentration and Fermi energy. The vertical dotted lines indicate a special position
of the Fermi level, 0.1 eV, that corresponds to half of the G-band energy. Figure adapted
from Reference [72].

It is important to note that the 12/12C AB-2LG systems, without any electric field applied to them, have
the inversion symmetry present naturally for both electrons and phonons. However, the 12/13C AB-2LG
systems have the inversion symmetry only for electrons. Phonons do not have the inversion symmetry
because the atoms in the top layer have different masses from those in the bottom layer. In other words,
the unit cell in 12/13C AB-2LG systems do not have inversion symmetry for phonons and what we
naturally see in the G band of such systems (see Figure 3f) are two peaks active in Raman resulting from
the combination between the IP and OP phonons (G+ and G−). Therefore, without any electric field,
while the 12/12C AB-2LG system is fully describe by the D3d point group, the 12/13C AB-2LG must
be described by direct product between the point groups C3v (describing phonon symmetries) and D3d

(describing electron symmetries). Note that, if an electrical field perpendicular to the 12/13C AB-2LG
is applied, the inversion symmetry is broken for electrons too and the system becomes equivalent to the
12/12C AB-2LG explained previously where the whole system belongs to the C3v point group.
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5. Intra- and Inter-Layer Phonon Energy Renormalizations

5.1. Interlayer-Related Phonons in 2LG

One of the most important consequences of the interlayer (IL) interactions in 2LG is the rise of IL
vibrational modes. C. H. Lui et al. [14] were pioneers to studying the out-of-plane optical (ZO′) phonon
mode (with frequency ωZO′ = 90 cm−1 predicted at the Γ-point, as shown in Figure 2b. The ZO′ mode is
also known as the IL breathing mode-LBM. They also studied the combination mode LOZO′ predicted
at the Γ-point showing that this combination occurs in the range for ωLOZO′ from 1600 to 1800 cm−1 for
multilayer graphene (MLG) with up to 6 layers [14]. The other IL-related combination modes present in
2LG are the LOZA combination mode (ZA is the IL out-of-plane acoustic mode whose frequency ωZA

is zero at the Γ-point, as shown in Figure 2b) and the 2ZO overtone (ZO is the out-of-plane tangential
optical mode with frequency ωZO = 885 cm−1 predicted at the Γ-point, as shown in Figure 2b) demand a
more detailed analysis, which is still elusive. All these features involve q 6= 0 intravalley (AV) processes,
therefore occurring around the Γ-point in the Brillouin zone. However, only the 2ZO overtone presents
two possible forward (q ≈ 0) and backward (q ≈ 2k) scattering mechanisms [21]. Note that both the
ZA and ZO modes are not Raman active at the Γ-point. In spite of recent advances in the study of
these interlayer modes, their phonon self-energies and e-ph interactions for these IL-dependent modes
have hardly been discussed. It is worth saying that, these modes ranging from 1600 to 1800 cm−1

are spectroscopic signatures for 2LG and by understanding them in detail, we can understand the
vdW-related phonon-dependent phenomena associated with these systems.

Figure 15f shows the phonon combination modes and overtones observed in 2LG in the spectral range
1600 to 1800 cm−1. The insets give the phonon vibration symmetries for the LOZA (P1) and the two LOZO′

(P2) peaks (upper box in Figure 15f), and the two 2ZO (P3) peaks (lower box in Figure 15f). The
LOZA mode comes from a q ≈ 2k intravalley phonon scattering process (q ≈ 2k AV) showing a
frequency dispersion ∂ωLOZA/∂EL = 26.1 cm−1/eV. By looking at the feature P2 in Figure 15f, we
observe that the LOZO′mode (q ≈ 2k AV process) splits into two peaks, LOZO′(+) and LOZO′(−), whose
frequency dispersions are ∂ωLOZO′(+)/∂EL = 55.1 cm−1/eV and ∂ωLOZO′(−)/∂EL = 34.2 cm−1/eV,
respectively [63]. As schematized in Figure 15c, the two P2 peaks do not arise from the phonon
dispersion but rather, they come from different resonant regimes of the LOZO′ combination mode
with the two electronic valence bands (π1 and π2) and the two electronic conduction bands
(π∗1 and π∗2) of 2LG. The LOZO′(+) comes from a resonance process involving the π1(π∗1) bands,
while the the LOZO′(−) comes from a resonance process involving the π2(π∗2) bands. These resonance
conditions (see Figure 15c) require the phonon momentum q for the LOZO′(+) mode to be larger than
that for the LOZO′(−) mode (qLOZO′(+) > qLOZO′(−)). As a consequence the phonon energies are such
that ~ωLOZO′(+) > ~ωLOZO′(−). For the two 2ZO features, Sato et al. [21] predicted through tight-binding
calculations that, in 2LG systems, the 2ZO overtone should be observed for forward (q ≈ 0) and
backward (q ≈ 2k) AV scattering, where the q ≈ 2k mode presents a negative frequency dispersion.
Although some information for the 2ZO (q ≈ 0) mode was reported by C. H. Lui et al. [14], the
existence of the 2ZO (q ≈ 2k) mode remained elusive. Here we report the 2ZO (q ≈ 2k) mode which
was found to show a negative frequency dispersion ∂ω2ZO(q≈2k)/∂EL = −48.1 cm−1/eV [63].
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Figure 15. The Vg dependence of (a) ωLOZO′(+) and (b) ωLOZO′(−); The insets show the
Vg dependence of γLOZO′(+) and γLOZO′(−); (c) The LOZO′ mode is resonant with both
electronic bands; the π1(π∗1), giving rise to the LOZO′(+) resonance and the π2(π∗2) giving
rise to the LOZO′(−) resonance; (d) The Vg dependence of ω2LO. The inset shows the Vg
dependence of γ2LO; (e) Density of electronic states of 2LG for the valence bands π1 and π2
(black curves) and for the conduction bands π∗1 (red curve) and π∗2 (blue curve); (f) LOZA
(P1) and LOZO′ (P2) combination modes and the 2ZO (P3) overtone as they appear in the
Raman spectra taken with the 532 nm laser line. The solid lines are Lorentzian curves used
to fit the spectrum. The upper and lower boxes show the lattice vibrations associated with
each normal mode involved in the combination modes and overtones [63].
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The IL interactions in 2LG rely on the interlayer hopping among equivalent and inequivalent carbon
atoms and, therefore, will be directly related to the phonon self-energy and to the e-ph coupling regarding
the ZO, ZO′ and ZA modes [3,40]. It is, however, important to note that the LO mode is dependent on
the intralayer hopping between two inequivalent carbon atoms, and the LO mode remains essentially
unchanged when changing the IL interactions [14,19–25]. As depicted in the inset of Figure 15c, the
LOZO′ combination mode relates to a q ≈ 2k AV process. Note that, Figure 15a,b show, respectively,
the EF dependence of ωLOZO′(+) and ωLOZO′(−) when Vg is varied. Both, ωLOZO′(+) and ωLOZO′(−)

soften with increasing |EF|. Correspondingly, as shown in the insets of Figure 15a,b, the phonon line
widths γLOZO′(+) and γLOZO′(−) broaden with increasing |EF|. Analogously, Figure16a shows that ωLOZA

(γLOZA) softens (broadens) with increasing |EF|, while for the 2ZO overtone, a negligible dependence on
Vg is observed for both ω2ZO and γ2ZO. This behavior is opposite to what happens to the q = 0 phonons
at the Γ-point [60], as is the case of the G-band feature. In order to quantify the ZO′ phonon self-energy
corrections, we measured the Vg dependence of ω2LO and γ2LO for the 2LO overtone (see Figure 15d),
which is known as the 2D′ band around 3244 cm−1. In analogy to the LOZO′ combination mode about
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the Γ-point, the 2LO overtone is a q ≈ 2k AV double resonant process and is a fruitful choice for
unraveling the two-phonon self-energy contributions that are merged in the LOZO′ combination mode.

Figure 16. (a) and (b) show, respectively, the Vg dependence of ωLOZA, ω2ZO for the q ≈ 2k

AV process and (c) shows Vg dependence of ω2ZO for the q ≈ 0 AV process. The insets show
the Vg dependence of the line widths γLOZA, γ2ZO for the q ≈ 2k AV process ((a) and (b);
respectively) and γ2ZO for the q ≈ 0 AV process (c).

(a) (b) (c)

The Raman scattering process involving overtone or combinations of phonon modes will conserve
both the frequency and momentum, so that in our case ωs = ωL − (ωLO + ωj) and ks = kL − (qLO + qj),
where ωs(ks) is the frequency (momentum) of the stokes scattered light, ωL(kL) is the frequency
(momentum) of the incident light, ωLO(qLO) is the frequency (momentum) of the LO phonon mode
and ωj(qj) is the frequency (momentum) of the ZO, ZO′ or ZA phonon modes. Since the electron
is vertically excited from the valence to the conduction band by the absorption of a photon, we have
ks = kL and, therefore, the phonon momenta will be such that qLO ≈ qj. This scattering process is
understood as follows: the electron is first scattered by one of the phonons, let us say the LO phonon,
and then the electron is scattered again by a second phonon (LO, ZO, ZO′ or ZA). On top of this, the
renormalization will happen independently for each phonon, so that, as a first approximation for a
combination mode or overtone, the renormalization will be Π(ωLO+j, EF) = Π(ωLO, EF) + Π(ωj, EF),
where j can be a LO, ZO, ZO′ or ZA phonon mode. Moreover, the IL interactions governing the ZO,
ZO′ and ZA modes will not change the intralayer dependent LO mode [14,19–21]. Therefore, what we
are observing in the gate-modulated Raman experiment for overtone and phonon combination modes is,
indeed, the summation of the individual phonon self-energy corrections of each phonon participating of
the scattering process [1]. The phonon self-energy renormalization strengths will be quantified by the
difference between the frequencies ω0

q at Vg = 0 and ωq for Vg 6= 0. As explained above, ω0
q at Vg = 0

describes the system with no renormalizations that are associated with e-h pair formation.
By inspecting Figure 15a,b, we find that ∆ωLOZO′(+) = 9 cm−1 and ∆ωLOZO′(−) = 7 cm−1,

respectively. On the other hand, by looking at Figure 15d we see that ∆ω2LO = 5 cm−1, which means
that the LO frequency renormalization for this AV process is ∆ωLO ≈ 2.5 cm−1. The self-energy
corrections regarding the LO mode will be the same for the LO contribution for both the LOZO′(+) and
LOZO′(−) features. Therefore the phonon self-energy correction ∆ωZO′(+) for the ZO′(+) mode will
be given by ∆ωLOZO′(+) − ∆ωLO = 6.5 cm−1 while the phonon self-energy correction ∆ωZO′(−) for
the ZO′(−) mode will be given by ∆ωLOZO′(−) − ∆ωLO = 4.5 cm−1. From the analysis above and
remembering that, the larger the self-energy corrections ∆ωq, the stronger are the e-ph couplings, we



Appl. Sci. 2014, 4 227

deduce that the IL e-ph coupling mediating the renormalizations for the ZO′ mode is stronger than the
renormalization for the LO mode. It is noteworthy that the self-energy renormalizations for LOZO′(+)
and LOZO′(−) are different even though they involve the same LO phonon. We understand these
differences as follows: the phonon self-energy corrections for q 6= 0 phonons rely on the density of
electron and phonon states [40]. The density of phonons states will be the same because the same
phonon is involved. However, as shown in Figure 15e, for energies smaller than |2| eV, the density of
electronic states for π2(π∗2) is always smaller than that for π1(π∗1). This means that the phonon self-energy
corrections are weaker for the ZO′(−) in comparison to that for the ZO′(+) not due to a different e-ph
coupling symmetry, but because the density of electronic states for π2(π∗2) is smaller in comparison to that
for π1(π∗1). By following the same strategy, we could also estimate the phonon self-energy corrections
for the ZA mode, whose LOZA combination mode frequency (linewidth) also hardens (broadens) as
expected for q 6= 0 AV processes. As shown in Figure 16a, ∆ωLOZA = 8 cm−1. Therefore, the ZA mode
self-energy corrections ∆ωZA = 5.5 cm−1. It is interesting to note that, the renormalization for the ZA
mode is similar to that ruling the ZO′ mode [63].

Interestingly, the results in Figure 16b,c show that, for both cases, the phonon self-energy corrections
to the phonon frequency ∆ω2ZO and to the line width ∆γ2ZO, are weak and as a consequence, the
ω2ZO and γ2ZO renormalizations show a constant behavior with increasing |EF|. The reason behind the
weak renormalization observed for the ZO mode is due to the lack of a phonon momentum q such that
q = k − k′, and this lack prevents any resonant renormalization from happening. This is confirmed
by symmetry arguments since the deformation potential mediating the e-ph coupling related to the ZO
mode, which is an anti-symmetric IL vibration, is expected to allow coupling of orthogonal electronic
states since its vibration breaks the lattice symmetry. It is worth to notice that these results are obtained
from exfoliated samples which means a perfect stacking between the two layers forming the 2LG
system, but we still cannot assert how the results will apply for twisted 2LG. Careful experiments
relating the twisting angles (which determines the strength of IL in twisted 2LG) and phonon self-energy
renormalizations are still required.

5.2. Isotopes

One of the challenges regarding few layers graphene systems is the difficulty to address and probe
individual layers. This problem can be promptly solved by isotope labeling of individual layers, as
has been recently demonstrated [73–75]. One can easily tune the frequency of the phonons by an
exchange of the 12C isotope with a 13C isotope with essentially no change to the electronic structure.
In this context, while isotopic labeling tunes the phonon properties (tuning, therefore, a gas of Bosons in
the system), electronic doping provides an important tool to tune the electronic properties of graphene
(tuning, therefore, a gas of Fermions in the system) [65,76,77].

The changes in the vibrational structure can be observed directly by Raman spectroscopy [74,78].
Although the doping of 2LG [79,80] and FLG [81] has been reported, the results are difficult to interpret,
since it is not clear how the doping charge is distributed in between the various graphene layers. This
problem can be overcome for turbostratic 2LG (t-2LG), since a special 2LG sample can be prepared
by sequential transfer of 12C and 13C graphene layers onto, for example, a SiO2 substrate, so that the
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Raman features of the top and bottom layers could be resolved and analyzed separately [73]. In these
samples, one can determine the doping charge associated with each individual layer independently when
both layers were similarly doped, as reported in Reference [73].

Recently, CVD synthesis was used to obtain AB stacked 2LG [11] regions where the add-layer is
synthesized from 13C and the continuous layer (primary 1LG) is synthesized from the 12C isotope, as
shown in Figure 17a. In such a sample, we are able to address individual layers by Raman spectroscopy,
follow the effect of phonon self-energy renormalizations for each individual layer separately and further
understand how the interlayer (IL) interactions work in these isotopic systems. In the sample from
Reference [75], a small central area is composed only from the 12C isotope and the border area is
composed of the 13C isotope. The continuous layer that formed first is composed of the 12C isotope [82].
Figure 17a shows a photograph of the resulting graphene sample obtained using an optical microscope
after transfer of the so-called 2LG thus prepared onto a SiO2/Si substrate. The hexagonal shaped darker
region (delimited by the black dotted line) in Figure 17a corresponds to the 2LG, while the rest of the
area (the background area) of the imaged spot is covered by 1LG. Figure 17b shows a 2D Raman map
plotting the G′ (2D) spectral linewidth. The G′ (2D) lineshape is very sensitive to the 2LG stacking order
as well as to the isotopic composition of the layers [11]. In Figure 17b it is possible to localize the 12C
1LG, the 12/12C AB-2LG as well as the 12/13C AB-2LG.

Figure 17. (a) Optical image of the graphene with a 13C-based add-layer (darker hexagonal
area delimited by the dotted line) on the SiO2/Si substrate. The diameter of the hexagon
is about 10µm. Note that the center (small area delimited by the gray dotted lines) of the
add-layer forms a 12/12C AB-2LG structure, while the remaining area is formed by 13/12C
AB-2LG; (b) G′ (2D) mode Full Width at Half Maximum (FWHM) identifying the 12C 1LG
region (FWHM∼ 30 cm−1), the 12/12C AB-2LG region (FWHM∼ 45 cm−1) and the 12/13C
AB-2LG region (FWHM ∼ 75 cm−1) [75].

(a) (b)

As showed in Section 2 in Figure 3, the Raman spectrum of the 13C 1LG sample exhibits the same
Raman features as the Raman spectrum of the 12C 1LG except for a downshift of all the Raman bands
for the 13C 1LG sample relative to the 12C graphene sample [73]. Figure 18b shows the Raman spectra
of 12/13C AB-2LG at different electrode potentials separated by 0.1 V. Interestingly, the behavior of
the Raman spectra for 12/13C AB-2LG (Figure 18b) is strongly different from that of 12/13C t-2LG
(Figure 18a). The Raman features in Figure 18a,b both present two G modes; one with higher frequency
(HG mode) and one with lower frequency (LG mode). At first glance, one may identify some similarity
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between the potential dependent behavior of the HG modes for the 12/13C AB-2LG and t-2LG systems.
However, the behavior of the LG mode for the 12/13C AB-2LG is completely different from both G mode
lineshapes, that is, different from both the HG and LG modes of the 12/13C t-2LG. Namely, for the LG
mode of the 12/13C AB-2LG, we observe small changes in the G mode frequency during negative doping,
when compared to 12/13C t-2LG (and has an opposite direction). For positive electrochemical potentials,
we observe a larger shift for the LG mode in AB-2LG, as seen in Figure 17b, but this frequency change
is still smaller than in the case of the LG mode in t-2LG.

Figure 18. (a) In-situ Raman spectro-electrochemistry of the 12/13C t-2LG G modes and
(b) In-situ Raman spectro-electrochemistry of the 12/13C AB-2LG G modes. The spectra
are excited by 2.33 eV laser excitation energy and the electrode potentials range from −1.5
to 1.5 V vs. Ag/Ag+ (from bottom to top) in units of 0.1 V. The red dashed curves are
guide to eyes. Note that, due to electrochemistry conventions, positive potentials are filling
the system with holes while negative potential are filling the system with electrons; (c) and
(d) Fitting analysis of the spectra showed in (a) and (b); (c) The frequency and linewidth
behavior of the LG mode (left panel) and HG (right panel) in t-2LG as a function of the
electrode potential; (d) The frequency and linewidth behavior of the LG mode (left panel)
and HG (right panel) in AB-2LG as a function of the electrode potential. All insets present
information on the intensity dependence with the electrode potential [75].

(a) (b) (c)

(d)

In charged graphene, the frequency shift of the G mode, which is a first-order Raman mode around
the Γ-point whose phonon momentum is null (q = 0), is related to both, the change in the C–C bond
strength and the renormalization of the phonon self-energy associated with many-body effects [80].
As discussed before, changes on the electrode potential lead to a renormalization of the phonon
energy, the phonon lifetime and consequently the energy of the carriers, that is, for both electrons and
holes [62,83]. Observing Figure 18c,d, the different dependence on electrode potentials suggest that
different mechanisms are ruling the doping of 12/13C AB-2LG in comparison to the 12/13C t-2LG at the
same applied electrode potential. Indeed, the t-2LG EF will depend on the charge concentration n as
|EF(1LG)| = ~|vF|(πn)1/2, since the weakly interacting layers composing the t-2LG system keep the 1LG
properties, while EF for the AB-2LG will obey |EF(AB−2LG)| = [−γ1 + (4π~2v2Fn + γ21)1/2]/2, where
γ1 = 0.35 eV. By inspecting both, |EF(1LG)| and |EF(AB−2LG)| relations, we see that, for a given change
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in n, EF for the t-2LG changes more than the EF for the AB-2LG [65,80]. Consequently, the frequency
variations for the t-2LG G modes are expected to be larger than the frequency variations for the AB-2LG.

Besides the different charging of the layers in both, 12/13C AB-2LG and 12/13C t-2LG, which changes
the magnitude of the phonon self-energy renormalizations, the observed experimental results for the G
mode frequency and linewidth shifts are quite distinct for both samples, as observed in Figure 18c,d. The
behavior observed for both the LG and HG modes for the 12/13C t-2LG agrees well to the corresponding
behavior observed for 1LG in which the frequency (linewidth) hardens (narrows) with increasing |EF|
(see Section 3). Indeed, as expected for t-2LG systems, the results in Figure 18a,c reflect that the
two layers, 12C and 13C layers, are fully decoupled and the differences in the phonon renormalization
magnitudes are due to different charging of each layer constituting the t-2LG. The renormalizations
observed are related to IP (Eg) modes of each 13C (the LG mode in Figure 18a) and 12C (the HG mode
in Figure 18a), separately. At this point, we must note that for the case of the 12/13C AB-2LG we do
not observe the standard behavior expected for the dependence of the G mode as a function of EF. For
the 12/13C AB-2LG, in spite of the inhomogeneous charging of the 12C and 13C, to be able to explain
the different magnitudes for the frequency change, it cannot fully explain the results in Figure 18b if we
consider that the LG and HG modes are originating from the IP modes from the top and bottom layers
separately. Moreover, the results in Figure 18b,d are also not fully consistent with other results observed
for 12/12C AB-2LG available in the literature [72,79]. This inconsistency is expected since the phonon
renormalizations strongly depend on the charge concentration of each of the layers in an AB-2LG.

In previous experiments, both the top and bottom layers of the AB stacked 2LG were contacted by
an electrode [79], and, for this reason, one can assume that |EF| of both layers in the present case will
be initially at the same potential. In Reference [75], the device is formed by the add-layer (the 13C
layer) which is located next to the continuous graphene layer, but only the continuous graphene layer
is contacted to the electrode (in this situation the two layer are at two different potentials). We must
therefore consider a potential barrier due to the different position of |EF| in the top layer relative to the
bottom layer [84,85]. Therefore the doping of the 13C graphene layer would depend on the efficiency of
the charge transfer from the 12C continuous layer to the 13C add-layer. In our case, the add-layer is at the
bottom, as commonly expected for CVD-based 2LGs [41,86]. Therefore, this add-layer is electrically
shielded by the top layer, and one can understand the latter observation, in which a smaller amount of
charge is located on the add-layer. This is consistent with previous calculations by Das et al. [80] and
experiments by Fang et al. [11]. We also note that a similar situation happens in the case of double wall
carbon nanotubes where both outer and inner tubes are metallic and only the outer tube is contacted by
the electrode [87].

In order to understand the results obtained here for the LG and HG modes in 12/13C AB-2LG, we must,
as stated earlier in the text, recall that the inversion symmetry in 12/13C AB-2LG is naturally broken due
to the different 12C and 13C masses. As a result, what we are observing in Figure18b is, indeed, a S
and AS mixing of the IP (Eg) and OP (Eu) modes distinctly observed only when the inversion symmetry
exists, like is the case for 12/12C AB-2LG. Indeed, this mass-related symmetry breaking is confirmed by
the electrochemistry measurements. As reported by Gava et al. [10] a signature of the IP and OP mixing
is that the intensity ratio (IHG/ILG) between the HG (G+ in Section 4) (an anti-symmetric combination of
IP and OP) and the LG (G− in Section 4) modes (a symmetric combination of IP and OP) must increase
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with increasing |EF|. This signature is confirmed by the experimental results, as shown in the insets
of Figure 18c,d.

Based on Gava et al. [10] and noting that due to conventions related to electrochemistry experiments,
positive (negative) electrode potentials means that the EF is decreasing (increasing), Araujo et al. [75]
concluded that nbottom > ntop. Based on this conclusion, the authors [75] discuss the existence of an
off-set in the change of the LG (G− in Section 4) and HG (G+ in Section 4) mode frequencies in their
dependence on electrode potential, as observed for the 12/13C AB-2LG. This is, in particular, clear for
the case of positive doping. As one can see from Figure 18b, there is a small increase in the frequency
of the LG (or G−) mode and almost no changes in the frequency of the HG (or G+) mode up to an
electrode potential of +1 V. Then, for the potentials above +1 V, the G mode frequencies are gradually
increased and seem to saturate from the potential +1.3 V on. This behavior is in contrast to 1LG or
t-2LG (Figure 18a) where the frequency starts to change even at very low positive and negative applied
potentials (±0.1 V). Besides the competition for the corrections in the phonon frequency between both
phenomena, phonon self-energy renormalizations and changes in the chemical C–C bonds (excess of
holes hardens the C–C bonds while excess of electrons softens the C–C bonds) [30], in AB-2LG, one
should also consider subsequent filling (emptying) of the second electronic band in the conduction band
π2* (of the second electronic band in the valence band π2) at higher electrode potentials. This band filling
(emptying) is important to decide which phenomena will dominate and rule the frequency changes. In
particular, it has been shown that the filling of π2* may lead to a kink in the dependence of the Raman
frequency on electrode potential [80] and this observation is consistent with a sudden change of the
slope of the frequency/potential dependence (δωG/δV ) during hole doping (positive potentials) as seen
in Figure 18b [80]. Indeed, when EF is at zero, real e-h pairs involving the π1 and π1* bands are being
created all time, which contributes to decreasing the phonon frequency. At the same time, virtual e-h
pairs are being created between π1 and π2 bands (in the valence band, which contributes to an increase
in frequency) while no e-h pairs are being created between π1* and π2* in the conduction band. Note
that, because it is a resonant effect, e-h pairs involving the π1 and π1* bands will dominate the virtual
processes. Nothing is happening to the bonds since the system is not doped yet.

When the system is doped with holes, in a first stage (electrochemical potential between 0 and 1 V),
the real e-h pair formation involving the bands π1* and π1 will be halted (since EF is decreasing) and the
e-h pairs involving the bands π1 and π2 will change their status from virtual to real e-h pairs. Therefore
the phonon self-energy renormalizations will decrease the frequency (broaden the linewidth), since
the real e-h pair formation will favor the frequency changes, while the C–C bonds will harden hence
increasing the frequency. On average, no (or a small) change in frequency is expected, in accordance
with the observations. When the 2LG system is doped with electrons, the virtual e-h pairs created
(annihilated) due to phonon absorption (emission) involving the π1 and π2 bands will always exist, which
contributes to increase the frequency. Again, in a first stage (electrochemical potential between −1 V
and 0), a competition between real and virtual e-h pair formations involving the π1 and π1* bands and
the π1 and π2 bands, respectively, will occur. When EF continues to increase, eventually the e-h pair
formations involving the π1 and π1* bands and the π1 and π2 bands will be virtual and real e-h pairs
involving the π1* and π2* bands start occurring. The net consequence is that the real electron hole pair
formation together with the softening of C–C bonds will be dominating. The net result is a decrease in
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the frequency, as shown in Figure 18d. As we progress to the second stage (electrochemical potential
<−1 V), all the e-h pair formations involving all the π1, π2, π1* and π2* will be virtual. However, this
virtual e-h pair formation will be a small perturbation favored by the C–C bonds softening. The net effect
is still a decrease in the phonon frequency.

The explanations above do not fully explain the behavior of the LG (or G−) mode for the 12/13C
AB-2LG in the range from 0 to 1 V, which requires a bandgap effect to be fully understood. In fact,
since the graphene is on the substrate which is known to dope graphene, we can consider this situation as
a device with a fixed voltage at the bottom gate and variable voltage at the top gate, which is realized by
changing the applied electrode potential. Since we gradually increase the gate voltage in our experiment,
the bandgap should be opened in the 12/13C AB-2LG electronic structure and, in principle, the charge
carriers are no longer injected into the graphene sample, until EF exceeds the band gap magnitude. The
gap opening should therefore be reflected in the Raman spectra of the doped AB-2LG. The situation can
be analogous to a semiconducting SWCNT, where one can find an offset in doping which is equal to
half the energy of the bandgap [88]. It is important to remember that since one of the layers is being
kept at a constant potential, the opening of a band gap is accompanied by the respective change of EF.
The changes of the Raman G mode features are related to the creation (annihilation) of e-h pairs due
to phonon absorption (emission) which hardens (narrows) the Raman band frequency (linewidth) and
it is directly connected to the lifetime of the e-h pair. Indeed, we discussed that any time the condition
Eph < 2|EF| (Eph stands for the phonon energy) is satisfied, the formation of real e-h pairs will be halted
and as a consequence the G mode frequency will increase and the respective linewidth will decrease.
Alternatively, the formation of real e-h pairs can be prevented by opening a bandgap, since the real e-h
pair formation will be halted every time the band gap energy (Egap) is larger than Eph. In this case,
any change in frequency will be more likely related to changes in the C–C bonds since they major any
contribution involving virtual e-h pair creations related to the band-gap. In other words, if theEph > Egap

condition is satisfied, e-h pairs will be formed and the hardening (narrowing) of the G mode frequency
(linewidth) should be observed independently of the Egap value.

The bandgap opening, in fact, reflects spectral changes in the positive electrochemical potential values
in the LG (or G−) modes due to the applied gate potential, as shown in Figure 18d. In Figure 18c, which
shows the data for the 12/13C t-2LG, the frequency hardening followed by a saturation at around −1 V
for the LG and HG modes is evident and means that the phonon self-energy renormalization is taking
place and is a major effect between −1 V and 0 and from −1 V on, the doping-related changes in the
C–C bonds, which decrease the phonon frequency, is a major effect. No band gap is introduced since
the 2LG in question is turbostratic. Now, as shown in Figure 18d, the LG (or G−) and HG (or G+)
frequencies decrease for the 12/13C AB-2LG, which means that the changes in the C–C bonds are the
major changes, as explained above. For negative electrochemical potentials, in which electrons are being
injected to the system, EF will be in the conduction band before the condition Eph < Egap occurs [20].
This means that the band gap will not play an important rule for negative potentials. For the range
from 0 to +1 V, the frequency is roughly constant for the HG (or G+) mode in Figure 18d and slightly
increases for the LG (or G−) mode. This suggests that the bandgap is likely affecting the LG (or G−)
mode which is halting the phonon renormalization, since when EF decreases, the electrons supposedly
going from the π1 band to the π1* band will eventually fall into the band gap. During the time this
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happens, the C–C bond changes will be the major effect in the frequency changes. Additionally, we
believe that the inhomogeneous charging of the top and bottom layers in AB-2LG could explain why
the band gap almost does not affect the HG (or G+) mode [80]. Finally, at high positive potentials
above 1 V, the explanations given above are enough to explain the frequency changes since the gap
will not affect the system anymore. Moreover, since the t-2LG system does not open a band gap, its
frequency behavior with the electrochemical potential is totally explained within the phonon self-energy
formalism and together with C–C bond changes.

6. Final Remarks

In this review we discussed intra- and interlayer-related interactions in twisted and AB-stacked bilayer
graphene (2LG) systems. As discussed, even though IL interactions are weak by nature (they are related
to van-der-Waals force between the constituent layers of the 2LG), they are strong enough to dramatically
change the vibrational and the electronic properties when departing from a fully misoriented twisted
system to an AB-stacked one. For example, thanks to these IL interactions, it is possible to open
up a bandgap in AB-stacked bilayers. The IL interactions also play a fundamental role to mediating
charge transfers between the constituent layers and are responsible for the origin of IL-related phonons,
which influence directly transport and infrared related phenomena in these bilayers. It was seen that
through chemical vapor deposition (CVD) method, one can synthesize either twisted or AB-stacked
12/12C 2LG and 12/13C 2LG. This opens up a brand-new route for 2LG applications in which through
backgate or electrochmical doping one can control the electrons and through isotopic decoration of the
layers one can control the phonons in such 2LG systems. Even though a comprehensive discussion was
addressed about electron-phonon (e-ph) interactions and phonon self-energy renormalizations related
to the IL interactions and its combination with the intralayer phonons, the authors agree that a fully
understanding of the mechanism ruling such interactions and renormalizations is still elusive and many
more experiments are required. From a gate-modulated Raman point of view, there is still plenty of
physics to be discussed mainly related to the twisted systems and to the isotopically labeled systems in,
for example, low-temperature regimes. These 2LG can serve as a convenient platform to understanding
fundamental phenomena related to IL interactions, which can be extrapolated to a whole class of new
two-dimensional materials such as transition metal dicalchogenides and topological insulators.

Finally, like stated throughout the text, the e-ph interactions and IL-interactions are of major
importance on transport and optical phenomena and several experimental efforts have been carried along
these lines. The authors would like to bring attention to some of these efforts. Namely, Yan et al. [15]
observed, recently, the phenomenon of phonon-induced transparency (PIT) in AB-2LG nanoribbons, in
which light absorption due to the plasmon excitations are strongly suppressed due to their coupling with
the infrared active Γ-point optical phonon. This PIT in 2LG is actively tunable by electrostatic gating and
is usually accompanied by strong distortion in light dispersion, leading to a strong slow light effect [15].
This phenomenon is important for several different applications, e.g., various applications in few-photon
non-linear optics, slow light devices, and biological sensing, without external optical pumping and at
room temperature. Additionally, Fano resonances, that are continuously tunable by means of electrical
gating, in 2LG have also been reported [16–18]. Fano resonances are features in absorption, scattering



Appl. Sci. 2014, 4 234

or transport spectra resulting from the interaction of discrete and continuum states (usually manifested
by the interactions of phonons with a continuum of free electrons). Tang et al. [16] show that due to the
many-body Fano resonance and to the unique tunable bandgap and strong e-ph interactions, 2LG offer the
possibility of a phonon laser, which can be easily appreciated from the analogy to its photon counterpart
as in semiconductor lasers. Also, Kuzmenko et al. [17] observed that the in-plane antisymmetric phonon
mode Eu ( with energy ≈ 0.2 eV) has a pronounced Fano-like asymmetry. This phonon shows a strong
increase of the infrared intensity and a frequency softening in bilayer graphene as a function of the
gate-induced doping. To conclude, Low et al. [18] demonstrated AB-2LG as a new and very interesting
plasmonic material, showing plasmonic frequency higher than that predicted by the classical derivation.
The finding by Low et al. opens routes for applications of 2LG in engineered metamaterials, resonant
heat transfer processes and many others.
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